
Java How to Program, 10/e

© Copyright 1992-2015 by Pearson Education, Inc. All Rights
Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

 A database is an organized collection of data.
 A database management system (DBMS) provides

mechanisms for storing, organizing, retrieving and modifying
data for many users.

 SQL is the international standard language used with relational
databases to perform queries and to manipulate data.

 Popular relational database management systems (RDBMSs)
◦ Microsoft SQL Server®
◦ Oracle®
◦ Sybase®
◦ IBM DB2®
◦ Informix®
◦ PostgreSQL
◦ MySQL™

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

 Java programs interact with databases using the Java

Database Connectivity (JDBC™) API.

 A JDBC driver enables Java applications to connect to

a database in a particular DBMS and allows you to

manipulate that database using the JDBC API.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

Java Persistence API (JPA)

 In online Chapter 29, we introduce Java Persistence API

(JPA).

 In that chapter, you’ll learn how to autogenerate Java classes

that represent the tables in a database and the relationships

between them—known as object-relational mapping—then

use objects of those classes to interact with a database.

 As you’ll see, storing data in and retrieving data from a

database will be handled for you—the techniques you learn in

this chapter will typically be hidden from you by JPA.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

 A relational database is a logical representation of data

that allows the data to be accessed without

consideration of its physical structure.

 A relational database stores data in tables.

 Tables are composed of rows, each describing a single

entity—in Fig. 24.1, an employee.

 Rows are composed of columns in which values are

stored.

 Primary key—a column (or group of columns) with a

value that is unique for each row.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

 We introduce relational databases in the context of this
chapter’s books database, which you’ll use in several
examples.

 The database consists of three tables: Authors,
AuthorISBN and Titles.

 AuthorISBN table consists of two columns that maintain
ISBNs for each book and their corresponding authors’ ID
numbers.

 The AuthorID column is a foreign key—a column in this
table that matches the primary-key column in another table.

 Every foreign-key value must appear as another table’s
primary-key value so the DBMS can ensure that the foreign
key value is valid—this is known as the Rule of Referential
Integrity.

 There is a one-to-many relationship between a primary key
and a corresponding foreign key.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

 Entity-relationship (ER) diagram for the books
database.

◦ Shows the database tables and the relationships among them.

◦ The names in italic are primary keys.

 A table’s primary key uniquely identifies each row in

the table.

 Every row must have a primary-key value, and that

value must be unique in the table.

◦ This is known as the Rule of Entity Integrity.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

 The next several subsections discuss the SQL queries

and statements using the SQL keywords.

 Other SQL keywords are beyond this text’s scope.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

 A SQL query “selects” rows and columns from one or more

tables in a database.

 The basic form of a SELECT query is
 SELECT * FROM tableName

 in which the asterisk (*) wildcard character indicates that

all columns from the tableName table should be retrieved.

 To retrieve all the data in the Authors table, use
 SELECT * FROM Authors

 To retrieve only specific columns, replace the asterisk (*)

with a comma-separated list of the column names, e.g.,
 SELECT AuthorID, LastName FROM Authors

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

 In most cases, only rows that satisfy selection criteria are selected.

 SQL uses the optional WHERE clause in a query to specify the selection
criteria for the query.

 The basic form of a query with selection criteria is
 SELECT columnName1, columnName2, … FROM tableName WHERE criteria

 To select the Title, EditionNumber and Copyright columns
from table Titles for which the Copyright date is greater than
2013, use the query

 SELECT Title, EditionNumber, Copyright
FROM Titles
WHERE Copyright > '2013'

 Strings in SQL are delimited by single (') rather than double (")
quotes.

 The WHERE clause criteria can contain the operators <, >, <=, >=, =,
<> and LIKE.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

 Operator LIKE is used for pattern matching with

wildcard characters percent (%) and underscore (_).

 A pattern that contains a percent character (%) searches

for strings that have zero or more characters at the

percent character’s position in the pattern.

 For example, the next query locates the rows of all the

authors whose last name starts with the letter D:
 SELECT AuthorID, FirstName, LastName

FROM Authors
WHERE LastName LIKE 'D%'

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

 An underscore (_) in the LIKE pattern string indicates

a single wildcard character at that position in the

pattern.

 The following query locates the rows of all the authors

whose last names start with any character (specified by

_), followed by the letter o, followed by any number of

additional characters (specified by %):
 SELECT AuthorID, FirstName, LastName

FROM Authors
WHERE LastName LIKE '_o%'

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

 The rows in the result of a query can be sorted into

ascending or descending order by using the optional

ORDER BY clause.

 The basic form of a query with an ORDER BY clause is
 SELECT columnName1, columnName2,… FROM tableName
ORDER BY column ASC
SELECT columnName1, columnName2,… FROM tableName
ORDER BY column DESC

◦ ASC specifies ascending order (lowest to highest)

◦ DESC specifies descending order (highest to lowest)

◦ column specifies the column on which the sort is based.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

 To obtain the list of authors in ascending order by last name (), use the
query

 SELECT AuthorID, FirstName, LastName
FROM Authors
ORDER BY LastName ASC

 To obtain the same list of authors in descending order by last name (),
use the query

 SELECT AuthorID, FirstName, LastName
FROM Authors
ORDER BY LastName DESC

 Multiple columns can be used for sorting with an ORDER BY clause of
the form

 ORDER BY column1 sortingOrder, column2 sortingOrder, …
◦ sortingOrder is either ASC or DESC.

 Sort all the rows in ascending order by last name, then by first name.
 SELECT AuthorID, FirstName, LastName

FROM Authors
ORDER BY LastName, FirstName

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

 The WHERE and ORDER BY clauses can be combined

in one query, as in
 SELECT ISBN, Title, EditionNumber, Copyright

FROM Titles
WHERE Title LIKE '%How to Program'
ORDER BY Title ASC

 which returns the ISBN, Title, EditionNumber
and Copyright of each book in the Titles table

that has a Title ending with "How to Program"
and sorts them in ascending order by Title.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

 Database designers often split related data into separate tables
to ensure that a database does not store data redundantly.

 Often, it is necessary to merge data from multiple tables into a
single result.
◦ Referred to as joining the tables

 An INNER JOIN merges rows from two tables by matching
values in columns that are common to the tables.

 SELECT columnName1, columnName2, …
FROM table1
INNER JOIN table2

ON table1.columnName = table2.columnName

 The ON clause specifies the columns from each table that are
compared to determine which rows are merged—these fields
almost always correspond to the foreign-key fields in the
tables being joined.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

 The following query produces a list of authors

accompanied by the ISBNs for books written by each

author:
 SELECT FirstName, LastName, ISBN
FROM Authors
INNER JOIN AuthorISBN

ON Authors.AuthorID = AuthorISBN.AuthorID
ORDER BY LastName, FirstName

 The syntax tableName.columnName in the ON clause,

called a qualified name, specifies the columns from

each table that should be compared to join the tables.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

 The INSERT statement inserts a row into a table.
 INSERT INTO tableName (columnName1, columnName2, …,

columnNameN)
VALUES (value1, value2, …, valueN)

where tableName is the table in which to insert the row.
◦ tableName is followed by a comma-separated list of column names

in parentheses
◦ not required if the INSERT operation specifies a value for every

column of the table in the correct order

 The list of column names is followed by the SQL keyword
VALUES and a comma-separated list of values in
parentheses.
◦ The values specified here must match the columns specified after the

table name in both order and type.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

 The INSERT statement
 INSERT INTO Authors (FirstName, LastName)

VALUES ('Sue', ‘Red')

 indicates that values are provided for the FirstName
and LastName columns. The corresponding values

are 'Sue' and ‘Red'.

 We do not specify an AuthorID in this example

because AuthorID is an autoincremented column in

the Authors table.

◦ Not every database management system supports

autoincremented columns.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

 An UPDATE statement modifies data in a table.
 UPDATE tableName

SET columnName1 = value1, columnName2 = value2, …,
columnNameN = valueN

WHERE criteria

 where tableName is the table to update.
◦ tableName is followed by keyword SET and a comma-separated list of

columnName = value pairs.
◦ Optional WHERE clause provides criteria that determine which rows to

update.

 The UPDATE statement-
 UPDATE Authors

SET LastName = ‘Black'
WHERE LastName = ‘Red' AND FirstName = 'Sue'

 indicates that LastName will be assigned the value Jones for
the row where LastName is Red and FirstName is Sue.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

 A SQL DELETE statement removes rows from a table.

 DELETE FROM tableName WHERE criteria

 where tableName is the table from which to delete.

◦ Optional WHERE clause specifies the criteria used to determine

which rows to delete.

◦ If this clause is omitted, all the table’s rows are deleted.

 The DELETE statement
 DELETE FROM Authors

WHERE LastName = ‘Black' AND FirstName = 'Sue'

 deletes the row for Sue Jones in the Authors table.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

 This chapter’s examples use Oracle’s pure Java
database Java DB, which is installed with Oracle’s
JDK on Windows, Mac OS X and Linux.

 For this chapter, you’ll be using the embedded version
of Java DB.
◦ The database you manipulate in each example must be located

in that example’s folder.
◦ This chapter’s examples are located in two subfolders of the
ch24 examples folder—books_examples and
addressbook_example.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

JDK Installation Folders
 The Java DB software is located in the db subdirectory of

your JDK’s installation directory. The directories listed below
are for Oracle’s JDK 7 update 51:
◦ 32-bit JDK on Windows:
 C:\Program Files (x86)\Java\jdk1.7.0_51

◦ 64-bit JDK on Windows:
 C:\Program Files\Java\jdk1.7.0_51

◦ Mac OS X:
 /Library/Java/JavaVirtualMachines/
jdk1.7.0_51.jdk/Contents/Home

◦ Ubuntu Linux:
 /usr/lib/jvm/java-7-oracle

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

 For Linux, the install location depends on the installer you use
and possibly the version of Linux that you use. We used Ubuntu
Linux for testing purposes.

 Depending on your platform, the JDK installation folder’s name
might differ if you’re using a different update of JDK 7 or using
JDK 8.

 Java DB comes with several files that enable you to configure
and run it.

 Before executing these files from a command window, you must
set the environment variable JAVA_HOME to refer to the JDK’s
exact installation directory listed above (or the location where
you installed the JDK if it differs from those listed above).

 See the Before You Begin section of this book for information
on setting environment variables.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

 After setting the JAVA_HOME environment variable, perform
the following steps:
◦ Run Notepad as an administrator. To do this on Windows 7, select Start >

All Programs > Accessories, right click Notepad and select Run as
administrator. On Windows 8, search for Notepad, right click it in the
search results and select Advanced in the app bar, then select Run as
administrator.

◦ From Notepad, open the batch file setEmbeddedCP.bat that is located
in the JDK installation folder’s db\bin folder.

◦ Locate the line

 @rem set DERBY_INSTALL=
◦ and change it to

 @set DERBY_INSTALL=%JAVA_HOME%\db
◦ Save your changes and close this file.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

◦ Open a Command Prompt window and change directories to
the JDK installation folder’s db\bin folder. Then, type
setEmbeddedCP.bat and press Enter to set the
environment variables required by Java DB.

◦ Use the cd command to change to this chapter’s
books_examples directory. This directory contains a SQL
script books.sql that builds the books database.

◦ Execute the following command (with the quotation marks):
 "%JAVA_HOME%\db\bin\ij"

◦ to start the command-line tool for interacting with Java DB.
The double quotes are necessary because the path that the
environment variable %JAVA_HOME% represents contains a
space. This will display the ij> prompt.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

◦ At the ij> prompt type
 connect 'jdbc:derby:books;create=true;user=deitel;

password=deitel';
◦ and press Enter to create the books database in the current directory and

to create the user deitel with the password deitel for accessing the
database.

◦ To create the database table and insert sample data in it, we’ve provided
the file address.sql in this example’s directory. To execute this SQL
script, type

◦ run 'books.sql';
◦ Once you create the database, you can execute the SQL statements

presented in Section 24.4 to confirm their execution.
◦ Each command you enter at the ij> prompt must be terminated with a

semicolon (;).

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

◦ To terminate the Java DB command-line tool, type
 exit;
◦ Change directories to the
addressbook_example subfolder of the ch24
examples folder, which contains the SQL script
addressbook.sql that builds the
addressbook database.
◦ Repeat Steps 6–9. In each step, replace books with
addressbook.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

 After setting the JAVA_HOME environment variable,
perform the following steps:
◦ Open a Terminal, then type:
 DERBY_HOME=/Library/Java/JavaVirtualMachines

/jdk1.7.0_51.jdk/Contents/Home/db
◦ and press Enter. Then type
 export DERBY_HOME

◦ and press Enter. This specifies where Java DB is located on
your Mac.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

◦ In the Terminal window, change directories to the JDK
installation folder’s db/bin folder. Then, type
./setEmbeddedCP and press Enter to set the environment
variables required by Java DB.

◦ In the Terminal window, use the cd command to change to the
books_examples directory. This directory contains a SQL
script books.sql that builds the books database.

◦ Execute the following command (with the quotation marks):
 $JAVA_HOME/db/bin/ij

◦ to start the command-line tool for interacting with Java DB.
This will display the ij> prompt.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

◦ Perform Steps 7–9 of Section 24.5.1 to create the books
database.

◦ Use the cd command to change to the
addressbook_example directory. This directory contains
a SQL script addressbook.sql that builds the
addressbook database.

◦ Perform Steps 7–9 of Section 24.5.1 to create the
addressbook database. In each step, replace books with
addressbook.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

 After setting the JAVA_HOME environment variable,
perform the following steps:
◦ Open a shell window.
◦ Perform the steps in Section 24.5.2, but in Step 1, set
DERBY_HOME to
 DERBY_HOME=YourLinuxJDKInstallationFolder/db

◦ On our Ubuntu Linux system, this was:
 DERBY_HOME=/usr/lib/jvm/java-7-oracle/db

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

 In this section, we present two examples.

 The first introduces how to connect to a database and

query the database.

 The second demonstrates how to display the result of

the query in a JTable.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

 The example of illustrates connecting to the database,

querying the database and processing the result.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

 The database URL identifies the name of the database to
connect to, as well as information about the protocol used by
the JDBC driver.

 JDBC supports automatic driver discovery
◦ It loads the database driver into memory for you.
◦ To ensure that the program can locate the database driver

class, you must include the class’s location in the program’s
classpath when you execute the program.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

Connecting to the Database

 The JDBC interfaces we use in this example each extend the
AutoCloseable interface, so you can use objects that
implement these interfaces with the try-with-
resources statement (introduced in Section 11.12).

 Each object created in the parentheses following keyword try
must be separated from the next by a semicolon (;).

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

 Connection object (package java.sql)
◦ referenced by connection.
◦ An object that implements interface Connection manages the

connection between the Java program and the database.

 Connection objects enable programs to create SQL
statements that manipulate databases.

 The program initializes connection with the result of a call
to static method getConnection of class
DriverManager (package java.sql), which attempts to
connect to the database specified by its URL.

 Method getConnection takes three arguments
◦ a String that specifies the database URL,
◦ a String that specifies the username and
◦ a String that specifies the password.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

 The URL jdbc:derby:books specifies

◦ the protocol for communication (jdbc)

◦ the subprotocol for communication (derby)

◦ the location of the database (books).

 The subprotocol derby indicates that the program

uses a Java DB/Apache Derby-specific subprotocol to

connect to the database.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

 Connection method createStatement obtains an object that
implements interface Statement (package java.sql).
◦ Used to submit SQL statements to the database.

 The Statement object’s executeQuery method submits a
query to the database.
◦ Returns an object that implements interface ResultSet and contains the

query results.
◦ The ResultSet methods enable the program to manipulate the query

result.

 A ResultSet’s ResultSetMetaData describes the
ResultSet’s contents.
◦ Can be used programatically to obtain information about the
ResultSet’s column names and types.

 ResultSetMetaData method getColumnCount retrieves the
number of columns in the ResultSet.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

 The first call to ResultSet method next positions the
ResultSet cursor to the first row
◦ Returns boolean value true if it is able to position to the next row;

otherwise, the method returns false.

 ResultSetMetaData method getColumnType returns a
constant integer from class Types (package java.sql)
indicating the type of a specified column.

 ResultSet method getInt can be used to get the column value
as an int.

 ResultSet get methods typically receive as an argument either
a column number (as an int) or a column name (as a String)
indicating which column’s value to obtain.

 ResultSet method getObject prints the Object’s String
representation.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

 The next example (and) allows the user to enter any query
into the program.

 Displays the result of a query in a JTable, using a
TableModel object to provide the ResultSet data to the
JTable.

 JTable is a swing GUI component that can be bound to a
database to display the results of a query.

 Class ResultSetTable-Model () performs the
connection to the database via a TableModel and
maintains the ResultSet.

 Class DisplayQueryResults () creates the GUI and
specifies an instance of class ResultSetTableModel
to provide data for the JTable.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

 ResultSetTableModel overrides TableModel
methods getColumnClass, getColumnCount,
getColumnName, getRowCount and getValueAt
(inherited from AbstractTableModel),

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

 Connection method createStatement with two
arguments receives the result set type and the result set
concurrency.

 The result set type () specifies whether the ResultSet’s cursor
is able to scroll in both directions or forward only and whether
the ResultSet is sensitive to changes made to the underlying
data.
◦ ResultSets that are sensitive to changes reflect those changes

immediately after they are made with methods of interface
ResultSet.

◦ If a ResultSet is insensitive to changes, the query that produced the
ResultSet must be executed again to reflect any changes made.

 The result set concurrency () specifies whether the ResultSet
can be updated with ResultSet’s update methods.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

 ResultSetMetaData method getColumnClassName obtains the fully
qualified class name for the specified column.

 ResultSetMetaData method getColumnCount obtains the number of
columns in the ResultSet.

 ResultSetMetaData method getColumnName obtains the column name
from the ResultSet.

 ResultSet method absolute positions the ResultSet cursor at a specific
row.

 ResultSet method last positions the ResultSet cursor at the last row in
the ResultSet.

 ResultSet method getRow obtains the row number for the current row in
the ResultSet.

 Method fireTableStructureChanged (inherited from class
AbstractTableModel) notifies any JTable using this
ResultSetTableModel object as its model that the structure of the model
has changed.
◦ Causes the JTable to repopulate its rows and columns with the new ResultSet data.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

 Any local variable that will be used in an anonymous inner
class must be declared final; otherwise, a compilation error
occurs. (In Java SE 8, this program would compile without
declaring these variables final because these variables would
be effectively final, as discussed in Chapter 17.)

 Class TableRowSorter (from package javax.swing.table) can be
used to sort rows in a JTable.
◦ When the user clicks the title of a particular JTable column, the
TableRowSorter interacts with the underlying TableModel to
reorder the rows based on the data in that column.

 JTable method setRowSorter specifies the
TableRowSorter for the JTable.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

 JTables can now show subsets of the data from the
underlying TableModel.
◦ This is known as filtering the data.

 JTable method setRowFilter specifies a RowFilter-
(from package javax.swing) for a JTable.

 RowFilter static method regexFilter receives a
String containing a regular expression pattern as its
argument and an optional set of indices that specify
which columns to filter.
◦ If no indices are specified, then all the columns are searched.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

 The interface RowSet provides several set methods that allow
you to specify the properties needed to establish a connectionand
create a Statement.
◦ RowSet also provides several get methods that return these properties.

 Two types of RowSet objects—connected and disconnected.
◦ A connected RowSet object connects to the database once and remains

connected while the object is in use.

◦ A disconnected RowSet object connects to the database, executes a query
to retrieve the data from the database and then closes the connection.

 A program may change the data in a disconnected RowSet
while it is disconnected.
◦ Modified data can be updated in the database after a disconnected
RowSet reestablishes the connection with the database.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

 Package javax.sql.rowset contains two subinterfaces of
RowSet—JdbcRowSet and CachedRowSet.

 JdbcRowSet, a connected RowSet, acts as a wrapper
around a ResultSet object and allows you to scroll
through and update the rows in the ResultSet.
◦ A JdbcRowSet object is scrollable and updatable by default.

 CachedRowSet, a disconnected RowSet, caches the data of
a ResultSet in memory and disconnects from the
database.
◦ A CachedRowSet object is scrollable and updatable by default.

◦ Also serializable, so it can be passed between Java applications
through a network, such as the Internet.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

 Class RowSetProvider (package javax.sql.rowset)
provides static method newFactory which returns a an object
that implements interface RowSetFactory (package
javax.sql.rowset) that can be used to create various types
of RowSets.

 The try-with-resources statement use RowSetFactory
method createJdbcRowSet to obtain a JdbcRowSet
object.

 JdbcRowSet method setUrl specifies the database URL.

 JdbcRowSet method setUsername specifies the username.

 JdbcRowSet method setPassword specifies the password.

 Jdbc-RowSet method setCommand specifies the SQL query
that will be used to populate the RowSet.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

 Jdbc-RowSet method execute executes the SQL query.

 Method execute performs four actions
◦ Establishes a Connection to the database

◦ Prepares the query Statement
◦ Executes the query

◦ Stores the ResultSet returned by query.

 The Connection, Statement and ResultSet are
encapsulated in the JdbcRowSet object.

 Jdbc-RowSet method close closes the RowSet’s
encapsulated ResultSet, Statement and
Connection.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

 Interface PreparedStatement enables you to create

compiled SQL statements that execute more efficiently

than Statement objects.

 Can also specify parameters, making them more

flexible than Statements.

◦ Programs can execute the same query repeatedly with different

parameter values.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

 To locate all book titles for an author with a specific

last name and first name:
PreparedStatement authorBooks =
connection.prepareStatement(

"SELECT LastName, FirstName, Title " +
"FROM Authors INNER JOIN AuthorISBN " +

"ON Authors.AuthorID=AuthorISBN.AuthorID " +
"INNER JOIN Titles " +

"ON AuthorISBN.ISBN=Titles.ISBN " +
"WHERE LastName = ? AND FirstName = ?");

 The two question marks (?) are placeholders for values

that will be passed as part of the query to the database.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

 Before executing a PreparedStatement, the program
must specify the parameter values by using the
PreparedStatement interface’s set methods.

 For the preceding query, both parameters are strings that
can be set with PreparedStatement method setString
as follows:

 authorBooks.setString(1, "Deitel");
authorBooks.setString(2, "Paul");

 Parameter numbers are counted from 1, starting with the
first question mark (?).

 Interface PreparedStatement provides set methods
for each supported SQL type.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

 Our AddressBook Java DB database contains an

Addresses table with the columns addressID,

FirstName, LastName, Email and

PhoneNumber.

 The column addressID is an identity column in the

Addresses table.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

 Invoke Connection method prepareStatement to

create a PreparedStatement.

 Calling PreparedStatement method

executeQuery returns a ResultSet containing the

rows that match the query.

 PreparedStatement method executeUpdate
executes a SQL statement that modifies the database.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

 Many database management systems can store individual SQL
statements or sets of SQL statements in a database, so that
programs accessing that database can invoke them.

 Such named collections of SQL statements are called stored
procedures.

 JDBC enables programs to invoke stored procedures using
objects that implement the interface CallableStatement.

 In addition, CallableStatements can specify output
parameters in which a stored procedure can place return values.

 The interface also includes methods to obtain the values of
output parameters returned from a stored procedure.

 To learn more about CallableStatements, visit
 java.sun.com/javase/6/docs/technotes/guides/jdbc/get
start/
callablestatement.html#999652

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

 Many database applications require guarantees that a series of
database insertions, updates and deletions executes properly
before the applications continue processing the next database
operation.

 Transaction processing enables a program that interacts with a
database to treat a database operation (or set of operations) as a
single operation.

 Such an operation also is known as an atomic operation or a
transaction.

 At the end of a transaction, a decision can be made either to
commit the transaction or roll back the transaction.

 Committing the transaction finalizes the database operation(s).
 Rolling back the transaction leaves the database in its state prior

to the database operation.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

 Connection method setAutoCommit specifies whether

each SQL statement commits after it completes (a true
argument) or whether several SQL statements should be

grouped as a transaction (a false argument).

 If the argument to setAutoCommit is false, the

program must follow the last SQL statement in the

transaction with a call to Connection method commit or

Connection method rollback.

 Interface Connection also provides method

getAutoCommit to determine the autocommit state for the

Connection.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

	Slide 1: Chapter 24 Accessing Databases with JDBC
	Slide 2
	Slide 3
	Slide 4
	Slide 5: 24.1 Introduction
	Slide 6: 24.1 Introduction (cont.)
	Slide 7
	Slide 8: 24.1 Introduction (cont.)
	Slide 9: 24.2 Relational Databases
	Slide 10
	Slide 11
	Slide 12: 24.3 A books Database
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21: 24.3 Relational Database Overview: The books Database (cont.)
	Slide 22
	Slide 23: 24.4 SQL
	Slide 24
	Slide 25: 24.4.1 Basic SELECT Query
	Slide 26
	Slide 27
	Slide 28
	Slide 29: 24.4.2 WHERE Clause
	Slide 30
	Slide 31: 24.4.2 WHERE Clause (cont.)
	Slide 32
	Slide 33
	Slide 34
	Slide 35: 24.4.2 WHERE Clause (cont.)
	Slide 36
	Slide 37: 24.4.3 ORDER BY Clause
	Slide 38: 24.4.3 ORDER BY Clause (cont.)
	Slide 39
	Slide 40
	Slide 41
	Slide 42: 24.4.3 ORDER BY Clause (cont.)
	Slide 43
	Slide 44: 24.4.4 Merging Data from Multiple Tables: INNER JOIN
	Slide 45: 24.4.4 Merging Data from Multiple Tables: INNER JOIN (cont.)
	Slide 46
	Slide 47
	Slide 48: 24.4.5 INSERT Statement
	Slide 49: 24.4.5 INSERT Statement (cont.)
	Slide 50
	Slide 51
	Slide 52
	Slide 53: 24.4.6 UPDATE Statement
	Slide 54
	Slide 55: 24.4.7 DELETE Statement
	Slide 56
	Slide 57: 24.5 Setting up a Java DB Database
	Slide 58: 24.5 Setting up a Java DB Database (Cont.)
	Slide 59: 24.5 Setting up a Java DB Database (Cont.)
	Slide 60: 24.5.1 Creating the Chapter’s Databases on Windows
	Slide 61: 24.5.1 Creating the Chapter’s Databases on Windows (Cont.)
	Slide 62: 24.5.1 Creating the Chapter’s Databases on Windows (Cont.)
	Slide 63: 24.5.1 Creating the Chapter’s Databases on Windows (Cont.)
	Slide 64: 24.5.2 Creating the Chapter’s Databases on Mac OS X
	Slide 65: 24.5.2 Creating the Chapter’s Databases on Mac OS X (Cont.)
	Slide 66: 24.5.2 Creating the Chapter’s Databases on Mac OS X (Cont.)
	Slide 67: 24.5.3 Creating the Chapter’s Databases on Linux
	Slide 68: 24.6 Manipulating Databases with JDBC
	Slide 69: 24.6.1 Connecting to and Querying a Database
	Slide 70
	Slide 71
	Slide 72
	Slide 73: 24.6.1 Connecting to and Querying a Database (cont.)
	Slide 74: 24.6.1 Connecting to and Querying a Database (cont.)
	Slide 75: 24.6.1 Connecting to and Querying a Database (cont.)
	Slide 76: 24.6.1 Connecting to and Querying a Database (cont.)
	Slide 77
	Slide 78
	Slide 79: 24.6.1 Connecting to and Querying a Database (cont.)
	Slide 80
	Slide 81: 24.6.1 Connecting to and Querying a Database (cont.)
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88: 24.6.2 Querying the books Database
	Slide 89: 24.8.2 Querying the books Database (cont.)
	Slide 90
	Slide 91
	Slide 92
	Slide 93
	Slide 94
	Slide 95
	Slide 96
	Slide 97
	Slide 98
	Slide 99: 24.6.2 Querying the books Database (cont.)
	Slide 100
	Slide 101
	Slide 102
	Slide 103
	Slide 104
	Slide 105
	Slide 106: 24.6.2 Querying the books Database (cont.)
	Slide 107
	Slide 108
	Slide 109
	Slide 110
	Slide 111
	Slide 112
	Slide 113
	Slide 114
	Slide 115
	Slide 116
	Slide 117
	Slide 118
	Slide 119: 24.6.2 Querying the books Database (cont.)
	Slide 120: 24.6.2 Querying the books Database (cont.)
	Slide 121: 24.7 RowSet Interface
	Slide 122: 24.7 RowSet Interface (cont.)
	Slide 123
	Slide 124
	Slide 125
	Slide 126
	Slide 127
	Slide 128: 24.7 RowSet Interface (cont.)
	Slide 129: 24.7 RowSet Interface (cont.)
	Slide 130: 24.8 PreparedStatements
	Slide 131: 24.8 PreparedStatements (cont.)
	Slide 132: 24.8 PreparedStatements (cont.)
	Slide 133
	Slide 134
	Slide 135
	Slide 136: 24.8 PreparedStatements (cont.)
	Slide 137: 24.8 PreparedStatements (cont.)
	Slide 138
	Slide 139
	Slide 140
	Slide 141
	Slide 142
	Slide 143
	Slide 144
	Slide 145
	Slide 146
	Slide 147
	Slide 148
	Slide 149
	Slide 150
	Slide 151
	Slide 152
	Slide 153
	Slide 154
	Slide 155
	Slide 156
	Slide 157
	Slide 158
	Slide 159
	Slide 160
	Slide 161
	Slide 162
	Slide 163
	Slide 164
	Slide 165
	Slide 166
	Slide 167
	Slide 168
	Slide 169
	Slide 170
	Slide 171: 24.9 Stored Procedures
	Slide 172
	Slide 173
	Slide 174: 24.10 Transaction Processing
	Slide 175: 24.10 Transaction Processing (cont.)

