
Java How to Program, 10/e

© Copyright 1992-2015 by Pearson Education, Inc. All Rights 
Reserved.



© Copyright 1992-2015 by Pearson 
Education, Inc. All Rights Reserved.



© Copyright 1992-2015 by Pearson 
Education, Inc. All Rights Reserved.



 In this chapter, we cover
◦ Additional components and layout managers and lay the 

groundwork for building more complex GUIs. 

◦ Sliders for selecting from a range of integer values, then 
discuss additional details of windows. 

◦ Swing’s pluggable look-and-feel (PLAF). 

◦ Multiple-document interface (MDI)—a main window (often 
called the parent window) containing other windows (often 
called child windows) to manage several open documents in 
parallel. 

© Copyright 1992-2015 by Pearson 
Education, Inc. All Rights Reserved.



Java SE 8: Implementing Event Listeners with Lambdas

 Throughout this chapter, we use anonymous inner 
classes and nested classes to implement event handlers 
so that the examples can compile and execute with both 
Java SE 7 and Java SE 8. 

 In many of the examples, you could implement the 
functional event-listener interfaces with Java SE 8 
lambdas (as demonstrated in Section 17.9).

© Copyright 1992-2015 by Pearson 
Education, Inc. All Rights Reserved.



 JSliders enable a user to select from a range of integer 

values. 

 Figure 22.1 shows a horizontal JSlider with tick 

marks and the thumb that allows a user to select a 

value. 

 Can be customized to display major tick marks, minor-

tick marks and labels for the tick marks. 

 Also support snap-to ticks, which cause the thumb, 

when positioned between two tick marks, to snap to the 

closest one.

© Copyright 1992-2015 by Pearson 
Education, Inc. All Rights Reserved.



© Copyright 1992-2015 by Pearson 
Education, Inc. All Rights Reserved.



 The down arrow key and up arrow key also cause the 

thumb of the JSlider to decrease or increase by 1 

tick, respectively.

 The PgDn (page down) key and PgUp (page up) key 

cause the thumb of the JSlider to decrease or 

increase by block increments of one-tenth of the range 

of values, respectively.

 The Home key moves the thumb to the minimum value 

of the JSlider, and the End key moves the thumb to 

the maximum value of the JSlider.

© Copyright 1992-2015 by Pearson 
Education, Inc. All Rights Reserved.



 JSliders have either a horizontal orientation or a 

vertical orientation.

◦ For a horizontal JSlider, the minimum value is at the left 

end of the JSlider and the maximum is at the right end.

◦ For a vertical JSlider, the minimum value is at the bottom 

and the maximum is at the top.

 The minimum and maximum value positions on a 

JSlider can be reversed by invoking JSlider
method setInverted with boolean argument true.

© Copyright 1992-2015 by Pearson 
Education, Inc. All Rights Reserved.



© Copyright 1992-2015 by Pearson 
Education, Inc. All Rights Reserved.



© Copyright 1992-2015 by Pearson 
Education, Inc. All Rights Reserved.



© Copyright 1992-2015 by Pearson 
Education, Inc. All Rights Reserved.



© Copyright 1992-2015 by Pearson 
Education, Inc. All Rights Reserved.



© Copyright 1992-2015 by Pearson 
Education, Inc. All Rights Reserved.



 JSlider method setMajorTickSpacing specifies how 

many values are represented by each major tick mark.

 JSlider method setPaintTicks with a true argument 

indicates that the tick marks should be displayed (they are 

not displayed by default).

 JSliders generate ChangeEvents (package 

javax.swing.event) in response to user interactions.

◦ Handled by a ChangeListener (package javax.swing.event) 

that declares method stateChanged.

 JSlider method getValue returns the current thumb 

position. 

© Copyright 1992-2015 by Pearson 
Education, Inc. All Rights Reserved.



 A JFrame is a window with a title bar and a border.

 JFrame is a subclass of Frame, which is a subclass of 
Window. 
◦ These are heavyweight Swing GUI components.

 A window is provided by the local platform’s windowing 
toolkit.

 By default, when the user closes a JFrame window, it is 
hidden, but you can control this with JFrame method 
setDefaultCloseOperation.
◦ Interface WindowConstants (package javax.swing), which class 
JFrame implements, declares three constants—
DISPOSE_ON_CLOSE, DO_NOTHING_ON_CLOSE and 
HIDE_ON_CLOSE (the default)—for use with this method.

© Copyright 1992-2015 by Pearson 
Education, Inc. All Rights Reserved.



 Class Window (an indirect superclass of JFrame) declares 
method dispose to return a window’s resources to the 
system.
◦ When a Window is no longer needed in an application, you should 

explicitly dispose of it.
◦ Can be done by calling the Window’s dispose method or by 

calling method setDefaultCloseOperation with the 
argument WindowConstants.DISPOSE_ON_CLOSE.

 A window is not displayed until the program invokes the 
window’s setVisible method with a true argument.

 A window’s size should be set with a call to method 
setSize.

 The position of a window when it appears on the screen is 
specified with method setLocation.

© Copyright 1992-2015 by Pearson 
Education, Inc. All Rights Reserved.



 When the user manipulates the window, window events occur.

 Event listeners are registered for window events with Window method 
addWindowListener.

 The WindowListener interface provides seven window-event-handling 
methods
◦ windowActivated (called when user makes a window the active window)
◦ windowClosed (called after the window is closed)
◦ windowClosing (called when the user initiates closing of the window)
◦ windowDeactivated (called when the user makes another window the active 

window)
◦ windowDeiconified (called when a user restores a minimized window)
◦ windowIconified (called when window minimized)
◦ windowOpened (called when window first displayed)

© Copyright 1992-2015 by Pearson 
Education, Inc. All Rights Reserved.



 Menus are an integral part of GUIs.

 Allow the user to perform actions without 

unnecessarily cluttering a GUI with extra components.

 In Swing GUIs, menus can be attached only to objects 

of the classes that provide method setJMenuBar.
◦ Two such classes are JFrame and JApplet.

 The classes used to declare menus are JMenuBar, 

JMenu, JMenuItem, JCheckBoxMenuItem and 

class JRadioButtonMenuItem.

© Copyright 1992-2015 by Pearson 
Education, Inc. All Rights Reserved.



© Copyright 1992-2015 by Pearson 
Education, Inc. All Rights Reserved.



 Class JMenuBar (a subclass of JComponent) 
managea a menu bar, which is a container for menus.

 Class JMenu (a subclass of 
javax.swing.JMenuItem)—menus.
◦ Menus contain menu items and are added to menu bars or to 

other menus as submenus.

 Class JMenuItem (a subclass of 
javax.swing.AbstractButton)—menu items.
◦ A menu item causes an action event when clicked.

◦ Can also be a submenu that provides more menu items from 
which the user can select.

© Copyright 1992-2015 by Pearson 
Education, Inc. All Rights Reserved.



 Class JCheckBoxMenuItem (a subclass of 
javax.swing.JMenuItem)—menu items that can be 
toggled on or off.

 Class JRadioButtonMenuItem (a subclass of 
javax.swing.JMenuItem)—menu items that can be 
toggled on or off like JCheckBoxMenuItems.
◦ When multiple JRadioButtonMenuItems are maintained as part of 

a ButtonGroup, only one item in the group can be selected at a given 
time.

 Mnemonics can provide quick access to a menu or menu item 
from the keyboard.
◦ Can be used with all subclasses of 
javax.swing.AbstractButton.

 JMenu method setMnemonic (inherited from class 
AbstractButton) indicates the mnemonic for a menu.

© Copyright 1992-2015 by Pearson 
Education, Inc. All Rights Reserved.



© Copyright 1992-2015 by Pearson 
Education, Inc. All Rights Reserved.



© Copyright 1992-2015 by Pearson 
Education, Inc. All Rights Reserved.



© Copyright 1992-2015 by Pearson 
Education, Inc. All Rights Reserved.



© Copyright 1992-2015 by Pearson 
Education, Inc. All Rights Reserved.



© Copyright 1992-2015 by Pearson 
Education, Inc. All Rights Reserved.



© Copyright 1992-2015 by Pearson 
Education, Inc. All Rights Reserved.



© Copyright 1992-2015 by Pearson 
Education, Inc. All Rights Reserved.



© Copyright 1992-2015 by Pearson 
Education, Inc. All Rights Reserved.



© Copyright 1992-2015 by Pearson 
Education, Inc. All Rights Reserved.



© Copyright 1992-2015 by Pearson 
Education, Inc. All Rights Reserved.



© Copyright 1992-2015 by Pearson 
Education, Inc. All Rights Reserved.



© Copyright 1992-2015 by Pearson 
Education, Inc. All Rights Reserved.



© Copyright 1992-2015 by Pearson 
Education, Inc. All Rights Reserved.



© Copyright 1992-2015 by Pearson 
Education, Inc. All Rights Reserved.



 In most prior uses of showMessageDialog, the first 
argument was null.
◦ The first argument specifies the parent window that helps 

determine where the dialog box will be displayed.

◦ If null, the dialog box appears in the center of the screen.

◦ Otherwise, it appears centered over the specified parent 
window.

 When using the this reference in an inner class, 
specifying this by itself refers to the inner-class 
object.
◦ To reference the outer-class object’s this reference, qualify 
this with the outer-class name and a dot (.). 

© Copyright 1992-2015 by Pearson 
Education, Inc. All Rights Reserved.



 Dialog boxes are typically modal—does not allow any other 
window in the application to be accessed until the dialog 
box is dismissed.

 Class JDialog can be used to create your own modal or 
nonmodal dialogs.

 JMenuBar method add attaches a menu to a JMenuBar.

 AbstractButton method setSelected selects the 
specified button.

 JMenu method addSeparator adds a horizontal separator
line to a menu.

 AbstractButton method isSelected determines if a 
button is selected.

© Copyright 1992-2015 by Pearson 
Education, Inc. All Rights Reserved.



© Copyright 1992-2015 by Pearson 
Education, Inc. All Rights Reserved.



© Copyright 1992-2015 by Pearson 
Education, Inc. All Rights Reserved.



© Copyright 1992-2015 by Pearson 
Education, Inc. All Rights Reserved.



© Copyright 1992-2015 by Pearson 
Education, Inc. All Rights Reserved.



 Context-sensitive pop-up menus are created with class 
JPopupMenu (a subclass of JComponent).
◦ Provide options that are specific to the component for which the 

popup trigger event occurred—on most systems, when the user 
presses and releases the right mouse button.

 MouseEvent method isPopupTrigger returns true if the 
popup trigger event occurred

 JPopupMenu method show displays a JPopupMenu. 
◦ The first argument specifies the origin component—helps determine 

where the JPopupMenu will appear on the screen. 

◦ The last two arguments are the x-y coordinates (measured from the 
origin component’s upper-left corner) at which the JPopupMenu is 
to appear.

© Copyright 1992-2015 by Pearson 
Education, Inc. All Rights Reserved.



© Copyright 1992-2015 by Pearson 
Education, Inc. All Rights Reserved.



© Copyright 1992-2015 by Pearson 
Education, Inc. All Rights Reserved.



© Copyright 1992-2015 by Pearson 
Education, Inc. All Rights Reserved.



© Copyright 1992-2015 by Pearson 
Education, Inc. All Rights Reserved.



© Copyright 1992-2015 by Pearson 
Education, Inc. All Rights Reserved.



© Copyright 1992-2015 by Pearson 
Education, Inc. All Rights Reserved.



© Copyright 1992-2015 by Pearson 
Education, Inc. All Rights Reserved.



© Copyright 1992-2015 by Pearson 
Education, Inc. All Rights Reserved.



© Copyright 1992-2015 by Pearson 
Education, Inc. All Rights Reserved.



 Java’s AWT GUI components (package java.awt) take 
on the look-and-feel of the platform on which the program 
executes.
◦ Introduces interesting portability issues.

 Swing’s lightweight GUI components provide uniform 
functionality across platforms and define a uniform cross-
platform look-and-feel. 
◦ Section 12.2 introduced the Nimbus look-and-feel.

◦ Earlier versions of Java used the metal look-and-feel, which is still 
the default. 

 Can customize the look-and-feel
◦ The installed look-and-feels will vary by platform.

© Copyright 1992-2015 by Pearson 
Education, Inc. All Rights Reserved.



© Copyright 1992-2015 by Pearson 
Education, Inc. All Rights Reserved.



© Copyright 1992-2015 by Pearson 
Education, Inc. All Rights Reserved.



© Copyright 1992-2015 by Pearson 
Education, Inc. All Rights Reserved.



© Copyright 1992-2015 by Pearson 
Education, Inc. All Rights Reserved.



© Copyright 1992-2015 by Pearson 
Education, Inc. All Rights Reserved.



© Copyright 1992-2015 by Pearson 
Education, Inc. All Rights Reserved.



© Copyright 1992-2015 by Pearson 
Education, Inc. All Rights Reserved.



© Copyright 1992-2015 by Pearson 
Education, Inc. All Rights Reserved.



© Copyright 1992-2015 by Pearson 
Education, Inc. All Rights Reserved.



© Copyright 1992-2015 by Pearson 
Education, Inc. All Rights Reserved.



© Copyright 1992-2015 by Pearson 
Education, Inc. All Rights Reserved.



© Copyright 1992-2015 by Pearson 
Education, Inc. All Rights Reserved.



 Class UIManager (package javax.swing) contains nested class 
LookAndFeelInfo (a public static class) that maintains 
information about a look-and-feel.

 UIManager static method getInstalledLookAndFeels gets an array 
of UIManager.LookAndFeelInfo objects that describe each 
look-and-feel available on your system.

 UIManager static method setLookAndFeel changes the look-and-
feel.

 UIManager.LookAndFeelInfo method getClassName
determines the name of the look-and-feel class that corresponds to the 
UIManager.LookAndFeelInfo object.

 SwingUtilities static method updateComponentTreeUI changes the 
look-and-feel of every GUI component attached to its argument to the 
new look-and-feel.

© Copyright 1992-2015 by Pearson 
Education, Inc. All Rights Reserved.



 Multiple-document interface (MDI)

◦ a main window (called the parent window) containing other 

windows (called child windows), and is often used to manage 

several open documents.

 Swing’s JDesktopPane and JInternalFrame classes 

implement multiple-document interfaces.

© Copyright 1992-2015 by Pearson 
Education, Inc. All Rights Reserved.



© Copyright 1992-2015 by Pearson 
Education, Inc. All Rights Reserved.



© Copyright 1992-2015 by Pearson 
Education, Inc. All Rights Reserved.



© Copyright 1992-2015 by Pearson 
Education, Inc. All Rights Reserved.



© Copyright 1992-2015 by Pearson 
Education, Inc. All Rights Reserved.



© Copyright 1992-2015 by Pearson 
Education, Inc. All Rights Reserved.



© Copyright 1992-2015 by Pearson 
Education, Inc. All Rights Reserved.



© Copyright 1992-2015 by Pearson 
Education, Inc. All Rights Reserved.



© Copyright 1992-2015 by Pearson 
Education, Inc. All Rights Reserved.



 The JInternalFrame constructor used here takes five 
arguments
◦ a String for the title bar of the internal window
◦ a boolean indicating whether the internal frame can be resized by 

the user
◦ a boolean indicating whether the internal frame can be closed by 

the user
◦ a boolean indicating whether the internal frame can be maximized 

by the user 
◦ a boolean indicating whether the internal frame can be minimized 

by the user.

 For each of the boolean arguments, a true value 
indicates that the operation should be allowed (as is the case 
here).

© Copyright 1992-2015 by Pearson 
Education, Inc. All Rights Reserved.



 A JInternalFrame has a content pane to which 

GUI components can be attached.

 JInternalFrame method pack sets the size of the 

child window.

◦ Uses the preferred sizes of the components to determine the 

window’s size.

 Classes JInternalFrame and JDesktopPane
provide many methods for managing child windows.

© Copyright 1992-2015 by Pearson 
Education, Inc. All Rights Reserved.



 A JTabbedPane arranges GUI components into layers, 

of which only one is visible at a time.

 Users access each layer by clicking a tab.

 The tabs appear at the top by default but also can be 

positioned at the left, right or bottom of the 

JTabbedPane.

 Any component can be placed on a tab.

◦ If the component is a container, such as a panel, it can use any 

layout manager to lay out several components on the tab.

 Class JTabbedPane is a subclass of JComponent.

© Copyright 1992-2015 by Pearson 
Education, Inc. All Rights Reserved.



© Copyright 1992-2015 by Pearson 
Education, Inc. All Rights Reserved.



© Copyright 1992-2015 by Pearson 
Education, Inc. All Rights Reserved.



© Copyright 1992-2015 by Pearson 
Education, Inc. All Rights Reserved.



© Copyright 1992-2015 by Pearson 
Education, Inc. All Rights Reserved.



© Copyright 1992-2015 by Pearson 
Education, Inc. All Rights Reserved.



 JTabbedPane method addTab adds a new tab. In the 

version with four arguments:

◦ The first is a String that specifies the title of the tab.

◦ The second is an Icon reference that specifies an icon to 

display on the tab—can be null

◦ The third is a Component to display when the user clicks the 

tab.

◦ The last is a String that specifies the tab’s tool tip.

© Copyright 1992-2015 by Pearson 
Education, Inc. All Rights Reserved.



 This section presents two additional layout managers 

(summarized in Fig. 22.15).

© Copyright 1992-2015 by Pearson 
Education, Inc. All Rights Reserved.



© Copyright 1992-2015 by Pearson 
Education, Inc. All Rights Reserved.



 The BoxLayout layout manager (in package 

javax.swing) arranges GUI components 

horizontally along a container’s x-axis or vertically 

along its y-axis.

© Copyright 1992-2015 by Pearson 
Education, Inc. All Rights Reserved.



© Copyright 1992-2015 by Pearson 
Education, Inc. All Rights Reserved.



© Copyright 1992-2015 by Pearson 
Education, Inc. All Rights Reserved.



© Copyright 1992-2015 by Pearson 
Education, Inc. All Rights Reserved.



© Copyright 1992-2015 by Pearson 
Education, Inc. All Rights Reserved.



© Copyright 1992-2015 by Pearson 
Education, Inc. All Rights Reserved.



© Copyright 1992-2015 by Pearson 
Education, Inc. All Rights Reserved.



 static Box method createVerticalBox returns references 
to Box containers with a vertical BoxLayout in which 
GUI components are arranged top-to-bottom.

 Before adding each button, line 33 adds a vertical strut to 
the container with .

 A vertical strut is an invisible GUI component that has a 
fixed pixel height and is used to guarantee a fixed amount 
of space between GUI components.
◦ created with static Box method createVerticalStrut
◦ When the container is resized, the distance between GUI components 

separated by struts does not change.

 Class Box also declares method createHorizontalStrut for 
horizontal BoxLayouts.

© Copyright 1992-2015 by Pearson 
Education, Inc. All Rights Reserved.



 Horizontal glue is an invisible GUI component that can 

be used between fixed-size GUI components to occupy 

additional space.

◦ created with static Box method createHorizontalGlue

◦ When the container is resized, components separated by glue 

components remain the same size, but the glue stretches or 

contracts to occupy the space between them.

 Class Box also declares method createVerticalGlue for 

vertical BoxLayouts.

© Copyright 1992-2015 by Pearson 
Education, Inc. All Rights Reserved.



 A rigid area is an invisible GUI component that always has a 
fixed pixel width and height.
◦ created with static Box method create-RigidArea

 The BoxLayout constructor receives a reference to the 
container for which it controls the layout and a constant 
indicating whether the layout is horizontal (BoxLayout.X_AXIS) or 
vertical (BoxLayout.Y_AXIS).

 static Box method createGlue creates a component that 
expands or contracts based on the size of the Box.

 JTabbedPane.TOP—tabs should appear at the top of the 
JTabbedPane.

 JTabbedPane.SCROLL_TAB_LAYOUT—tabs should wrap to a new 
line if there are too many to fit on one line.

© Copyright 1992-2015 by Pearson 
Education, Inc. All Rights Reserved.



 One of the most powerful predefined layout managers 

is GridBagLayout (in package java.awt).

 Similar to GridLayout but much more flexible.

 Components can vary in size and can be added in any 

order. 

© Copyright 1992-2015 by Pearson 
Education, Inc. All Rights Reserved.



 The first step in using GridBagLayout is 

determining the appearance of the GUI.

 Use paper to draw the GUI, then draw a grid over it, 

dividing the components into rows and columns.

 The initial row and column numbers should be 0, so 

that the GridBagLayout layout manager can use the 

row and column numbers to properly place the 

components in the grid.

 Figure 22.18 demonstrates drawing the lines for the 

rows and columns over a GUI.

© Copyright 1992-2015 by Pearson 
Education, Inc. All Rights Reserved.



© Copyright 1992-2015 by Pearson 
Education, Inc. All Rights Reserved.



 A GridBagConstraints object describes how a 

component is placed in a GridBagLayout.

 Several GridBagConstraints fields are 

summarized in Fig. 22.19.

 GridBagLayout method setConstraints takes a 

Component argument and a 

GridBagConstraints argument.

© Copyright 1992-2015 by Pearson 
Education, Inc. All Rights Reserved.



© Copyright 1992-2015 by Pearson 
Education, Inc. All Rights Reserved.



© Copyright 1992-2015 by Pearson 
Education, Inc. All Rights Reserved.



© Copyright 1992-2015 by Pearson 
Education, Inc. All Rights Reserved.



© Copyright 1992-2015 by Pearson 
Education, Inc. All Rights Reserved.



© Copyright 1992-2015 by Pearson 
Education, Inc. All Rights Reserved.



© Copyright 1992-2015 by Pearson 
Education, Inc. All Rights Reserved.



© Copyright 1992-2015 by Pearson 
Education, Inc. All Rights Reserved.



© Copyright 1992-2015 by Pearson 
Education, Inc. All Rights Reserved.



© Copyright 1992-2015 by Pearson 
Education, Inc. All Rights Reserved.



 A variation of GridBagLayout uses 

GridBagConstraints constants RELATIVE and 

REMAINDER.

◦ RELATIVE specifies that the next-to-last component in a 

particular row should be placed to the right of the previous 

component in the row.

◦ REMAINDER specifies that a component is the last component 

in a row.

© Copyright 1992-2015 by Pearson 
Education, Inc. All Rights Reserved.



© Copyright 1992-2015 by Pearson 
Education, Inc. All Rights Reserved.



© Copyright 1992-2015 by Pearson 
Education, Inc. All Rights Reserved.



© Copyright 1992-2015 by Pearson 
Education, Inc. All Rights Reserved.



© Copyright 1992-2015 by Pearson 
Education, Inc. All Rights Reserved.



© Copyright 1992-2015 by Pearson 
Education, Inc. All Rights Reserved.



© Copyright 1992-2015 by Pearson 
Education, Inc. All Rights Reserved.


	Slide 1: Chapter 22 GUI Components: Part 2
	Slide 2
	Slide 3
	Slide 4: 22.1  Introduction
	Slide 5: 22.1  Introduction (Cont.)
	Slide 6: 22.2  JSlider 
	Slide 7
	Slide 8: 22.2  JSlider (cont.)
	Slide 9: 22.2  JSlider (cont.)
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15: 22.2  JSlider (cont.)
	Slide 16: 22.3  Understanding Windows in Java
	Slide 17: 22.3  Windows: Additional Notes (cont.)
	Slide 18: 22.3  Windows: Additional Notes (cont.)
	Slide 19: 22.4  Using Menus with Frames 
	Slide 20
	Slide 21: 22.4  Using Menus with Frames (cont.)
	Slide 22: 22.4  Using Menus with Frames (cont.)
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37: 22.4  Using Menus with Frames (cont.)
	Slide 38: 22.4  Using Menus with Frames (cont.)
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43: 22.5  JPopupMenu
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53: 22.6  Pluggable Look-and-Feel
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66: 22.6  Pluggable Look-and-Feel (cont.)
	Slide 67: 22.7  JDesktopPane and JInternalFrame 
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76: 22.7  JDesktopPane and JInternalFrame (cont.)
	Slide 77: 22.7  JDesktopPane and JInternalFrame (cont.)
	Slide 78: 22.8  JTabbedPane 
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84: 22.8  JTabbedPane (cont.)
	Slide 85: 22.9  BoxLayout Manager
	Slide 86
	Slide 87: 22.9  Layout Managers: BoxLayout and GridBagLayout
	Slide 88
	Slide 89
	Slide 90
	Slide 91
	Slide 92
	Slide 93
	Slide 94: 22.9   BoxLayout Manager (cont.)
	Slide 95: 22.9   BoxLayout Manager (cont.)
	Slide 96: 22.9   BoxLayout Manager (cont.)
	Slide 97: 22.10  GridBagLayout Layout Manager
	Slide 98: 22.10  GridBagLayout Layout Manager (cont.)
	Slide 99
	Slide 100: 22.10  GridBagLayout Layout Manager (cont.)
	Slide 101
	Slide 102
	Slide 103
	Slide 104
	Slide 105
	Slide 106
	Slide 107
	Slide 108
	Slide 109
	Slide 110: 22.10  GridBagLayout Layout Manager (cont.)
	Slide 111
	Slide 112
	Slide 113
	Slide 114
	Slide 115
	Slide 116

