
Java How to Program, 10/e

© Copyright 1992-2015 by Pearson Education, Inc. All Rights
Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

 Dynamic data structures grow and shrink at execution time.

 Linked lists are collections of data items “linked up in a chain”—
insertions and deletions can be made anywhere in a linked list.

 Stacks are important in compilers and operating systems;
insertions and deletions are made only at one end of a stack—its
top.

 Queues represent waiting lines; insertions are made at the back
(also referred to as the tail) of a queue and deletions are made
from the front (also referred to as the head).

 Binary trees facilitate high-speed searching and sorting of data,
eliminating duplicate data items efficiently, representing file-
system directories, compiling expressions into machine language
and many other interesting applications.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

 A self-referential class contains an instance variable that refers to another
object of the same class type.

 For example, the generic class declaration
class Node<T>
{

private T data;
private Node<T> nextNode; // reference to next node

public Node(T data) { /* constructor body */ }
public void setData(T data) { /* method body */ }
public T getData() { /* method body */ }
public void setNext(Node<T> next) { /* method body */ }
public Node<T> getNext() { /* method body */ }

} // end class Node<T>

declares class Node, which has two private instance variables—
data (of the generic type T) and Node<T> variable nextNode.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

 Variable nextNode references a Node<T> object, an

object of the same class being declared here—hence,

the term “self-referential class.”

 Field nextNode is a link—it “links” an object of type

Node<T> to another object of the same type.

 Programs can link self-referential objects together to

form such useful data structures as lists, queues, stacks

and trees.

 Figure 21.1 illustrates two self-referential objects

linked together to form a list.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

 Creating and maintaining dynamic data structures requires

dynamic memory allocation—allowing a program to obtain

more memory space at execution time to hold new nodes

and to release space no longer needed.

 The limit for dynamic memory allocation can be as large as

the amount of available physical memory in the computer

or the amount of available disk space in a virtual-memory

system.

 Often the limits are much smaller, because the computer’s

available memory must be shared among many

applications.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

 A linked list is a linear collection (i.e., a sequence) of self-
referential-class objects, called nodes, connected by reference
links—hence, the term “linked” list.

 Typically, a program accesses a linked list via a reference to its
first node.

 The program accesses each subsequent node via the link
reference stored in the previous node.

 By convention, the link reference in the last node of the list is set
to null to indicate “end of list.”

 A linked list is appropriate when the number of data elements to
be represented in the data structure is unpredictable.

 Linked lists become full only when the system has insufficient
memory to satisfy dynamic storage allocation requests.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

 Linked list nodes normally are not stored contiguously in
memory.

 Rather, they are logically contiguous.

 illustrates a linked list with several nodes.

 This diagram presents a singly linked list—each node
contains one reference to the next node in the list.

 Often, linked lists are implemented as doubly linked lists—
each node contains a reference to the next node in the list
and a reference to the preceding one.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

 The program of Figs. 21.3–21.5 uses an object of our
generic List class to manipulate a list of miscellaneous
objects.

 The program consists of four classes:

 ListNode (Fig. 21.3, lines 6–37),

 List (Fig. 21.3, lines 40–147),

 EmptyListException (Fig. 21.4)

 ListTest (Fig. 21.5).

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

 Method insertAtBack (lines 69–75 of Fig. 21.3)

places a new node at the back of the list.

 The steps are:
◦ Call isEmpty to determine whether the list is empty.

◦ If the list is empty, assign to firstNode and lastNode the
new ListNode that was initialized with insertItem.

◦ If the list is not empty, link the new node into the list by
assigning to lastNode and lastNode.nextNode the
reference to the new ListNode that was initialized with
insertItem.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

 Method removeFromFront (lines 78–92 of) removes
the first node of the list and returns a reference to the
removed data.

 The steps are:
◦ Assign firstNode.data to removedItem.
◦ If firstNode and lastNode refer to the same object, the list

has only one element at this time. So, the method sets firstNode
and lastNode to null to remove the node from the list (leaving
the list empty).

◦ If the list has more than one node, then the method leaves
reference lastNode as is and assigns the value of
firstNode.nextNode to firstNode. Thus, firstNode
references the node that was previously the second node in the list.

◦ Return the removedItem reference (line 91).

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

 Method removeFromBack (lines 95–118 of Fig. 21.3)
removes the last node of a list and returns a reference to the
removed data.

 The steps are:
◦ Assign lastNode.data to removedItem.
◦ If the firstNode and lastNode refer to the same object, the list

has only one element at this time. So, set firstNode and
lastNode to null to remove that node from the list (leaving the
list empty).

◦ If the list has more than one node, create the ListNode reference
current and assign it firstNode.

◦ Now “walk the list” with current until it references the node
before the last node. The while loop assigns
current.nextNode to current as long as
current.nextNode is not lastNode.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

◦ After locating the second-to-last node, assign current to
lastNode to update which node is last in the list.

◦ Set the current.nextNode to null to remove the last
node from the list and terminate the list at the current node.

◦ Return the removedItem reference.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

 Method print (lines 127–146 of Fig. 21.3) first

determines whether the list is empty (lines 129–133).

 If so, print displays a message indicating that the list

is empty and returns control to the calling method.

 Otherwise, print outputs the list’s data. Line 136

creates ListNode current and initializes it with

firstNode.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

 The Java API types (classes, interfaces and enums) are

organized in packages that group related types.

 Packages facilitate software reuse by enabling programs to

import existing classes, rather than copying them into the

folders of each program that uses them.

 Programmers use packages to organize program components,

especially in large programs.

 Packages help you specify unique names for every type you

declare, which (as we’ll discuss) helps prevent class-name

conflicts.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

Steps for Declaring a Reusable Class

 Before a class can be imported into multiple programs, it must

be placed in a package to make it reusable.

◦ Declare one or more public types (classes, interfaces and enums).

Only public types can be reused outside the package in which they’re

declared.

◦ Choose a unique package name and add a package declaration
to the source-code file for each reusable type that should be part of the

package.

◦ Compile the types so that they’re placed in the appropriate package

directory.

◦ Import the reusable types into a program and use them.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

Step 1: Creating public Types for Reuse

 For Step 1, you declare the types that will be placed in the package,

including both the reusable types and any supporting types.

 In Fig. 21.3, class List is public, so it’s reusable outside its package.

Class ListNode, however, is not public, so it can be used only by class

List and any other types declared in the same package.

 In Fig. 21.4, class EmptyListException is public, so it, too, is

reusable.

 If a source-code file contains more than one type, all types in the file are

placed in the same package when the file is compiled.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

Step 2: Adding the package Statements

 For Step 2, you provide a package declaration containing the package’s

name.

 All source-code files containing types that should be part of the same

package must contain the same package declaration.

 Figures 21.3 and 21.4 each contain:

◦ package com.deitel.datastructures;

 indicating that all the types declared in those files—ListNode and List
in Fig. 21.3 and EmptyListException in Fig. 21.4—are part of the

com.deitel.datastructures package.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

Package Naming Conventions

 A package name’s parts are separated by dots (.), and there typically are

two or more parts.

 To ensure unique package names, you typically begin the name with your

institution’s or company’s Internet domain name in reverse order—e.g., our

domain name is deitel.com, so we begin our package names with

com.deitel.

 After the reversed domain name, you can specify additional parts in a

package name.

 We chose datastructures as the next part in our package name to

indicate that classes ListNode, List and EmptyListException are

from this data structures chapter.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

Fully Qualified Names

 The package name is part of the fully qualified type name, so the name

of class List is actually com.deitel.datastructures.List.

 You can use this fully qualified name in your programs, or you can import

the class and use its simple name (the class name by itself—List) in the

program.

 If another package also contains a List class, the fully qualified class

names can be used to distinguish between the classes in the program and

prevent a name conflict (also called a name collision).

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

Step 3: Compiling Packaged Types

 When a Java file containing a package declaration is compiled, the

resulting class file is placed in a directory specified by the declaration.

 Classes in the package com.deitel.datastructures are placed in

the directory

◦ com

◦ deitel

◦ datastructures

 The names in the package declaration specify the exact location of the

package’s classes.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

 The javac command-line option -d causes the compiler to create the

directories based on the package declaration.

 The option also specifies where the top-level directory in the package name

should be placed on your system—you may specify a relative or complete

path to this location. For example, the command

◦ javac -d . List.java EmptyListException.java

 specifies that the first directory in our package name (com) should be

placed in the current directory.

◦ The period (.) after -d in the preceding command represents the current directory on the

Windows, UNIX, Linux and Mac OS X operating systems (and several others as well).

 Similarly, the command

◦ javac -d .. List.java EmptyListException.java

 specifies that the first directory in our package name (com) should be

placed in the parent directory.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

Step 4: Importing Types from Your Package

 Once types are compiled into a package, they can be imported (Step 4).

 Class ListTest (Fig. 21.5) is in the default package because its .java
file does not contain a package declaration.

 Because class ListTest is in a different package from List and

EmptyListException, you must either import these classes so that

class ListTest can use them (lines 3–4 of Fig. 21.5) or you must fully

qualify the names List and EmptyListException everywhere

they’re used throughout class ListTest.

 For example, line 10 of Fig. 21.5 could have been written as:

com.deitel.datastructures.List<Integer> list =

new com.deitel.datastructures.List<>();

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

Single-Type-Import vs. Type-Import-On-Demand Declarations

 Lines 3–4 of Fig. 21.5 are single-type-import declarations—they each

specify one class to import. When a source-code file uses multiple classes

from a package, you can import those classes with a a type-import-on-

demand declaration of the form

◦ import packagename.*;

 which uses an asterisk (*) at its end to inform the compiler that all public

classes from the packagename package can be used in the file containing

the import.

 Only those classes that are used are loaded at execution time.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

Specifying the Classpath When Compiling a Program

 When compiling ListTest, javac must locate the .class files for

classes List and EmptyListException to ensure that class

ListTest uses them correctly.

 The compiler uses a special object called a class loader to locate the classes

it needs.

◦ The class loader begins by searching the standard Java classes that are bundled with

the JDK.

◦ Then it searches for optional packages. Java provides an extension mechanism that

enables new (optional) packages to be added to Java for development and execution

purposes.

◦ If the class is not found in the standard Java classes or in the extension classes, the

class loader searches the classpath—a list of directories or archive files

containing reusable types.

◦ Each directory or archive file is separated from the next by a directory separator—a

semicolon (;) on Windows or a colon (:) on UNIX/Linux/Mac OS X.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

 By default, the classpath consists only of the current directory.

However, the classpath can be modified by

◦ providing the -classpath listOfDirectories option to the javac compiler or

◦ setting the CLASSPATH environment variable (a special variable that you define

and the operating system maintains so that programs can search for classes in the

specified locations).

 If you compile ListTest.java without specifying the -
classpath option, as in

◦ javac ListTest.java

 the class loader assumes that the additional package(s) used by the

ListTest program are in the current directory.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

 To compile ListTest.java, use the command

◦ javac -classpath .;.. ListTest.java

 on Windows or the command

◦ javac -classpath .:.. ListTest.java

 on UNIX/Linux/Mac OS X. The . in the classpath enables the class

loader to locate ListTest in the current directory.

 The .. enables the class loader to locate the contents of package

com.deitel.datastructures in the parent directory.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

Specifying the Classpath When Executing a Program

 When you execute a program, the JVM must be able to locate the

.class files for the program’s classes.

 Like the compiler, the java command uses a class loader that

searches the standard classes and extension classes first, then

searches the classpath (the current directory by default).

 The classpath can be specified explicitly by using the same

techniques discussed for the compiler.

 As with the compiler, it’s better to specify an individual program’s

classpath via command-line JVM options.

 You can specify the classpath in the java command via the -

classpath or -cp command-line options, followed by a list of

directories or archive files.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

 Again, if classes must be loaded from the current directory, be sure

to include a dot (.) in the classpath to specify the current directory.

 To execute the ListTest program, use the following command:

◦ java -classpath .:.. ListTest

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

 A stack is a constrained version of a list—new nodes
can be added to and removed from a stack only at the
top.

 A stack is referred to as a last-in, first-out (LIFO) data
structure.

 A stack is not required to be implemented as a linked
list—it can also be implemented using an array.

 The primary methods for manipulating a stack are push
and pop, which add a new node to the top of the stack
and remove a node from the top of the stack,
respectively.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

 You can also implement a class by reusing a list class

through composition.

 Next program uses a private List<T> in class

StackComposition<T>’s declaration.

 Composition enables us to hide the List<T> methods

that should not be in our stack’s public interface.

 We provide public interface methods that use only

the required List<T> methods.

 Implementing each stack method as a call to a

List<T> method is called delegation.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

 A queue is similar to a checkout line in a supermarket—the
cashier services the person at the beginning of the line first.

 Other customers enter the line only at the end and wait for
service.

 Queue nodes are removed only from the head (or front) of
the queue and are inserted only at the tail (or end).

 For this reason, a queue is a first-in, first-out (FIFO) data
structure.

 The insert and remove operations are known as enqueue
and dequeue.

 Next program creates a Queue<T> class that contains a
List<T> () object and provides methods enqueue,
dequeue, isEmpty and print.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

 A tree is a nonlinear, two-dimensional data structure with special
properties.

 Tree nodes contain two or more links.

 Binary tree nodes each contain two links (one or both of which may be
null).

 The root node is the first node in a tree.

 Each link in the root node refers to a child.

 The left child is the first node in the left subtree (also known as the root
node of the left subtree), and the right child is the first node in the right
subtree (also known as the root node of the right subtree).

 The children of a specific node are called siblings.

 A node with no children is called a leaf node.

 Computer scientists normally draw trees from the root node down—the
opposite of the way most trees grow in nature.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

 A binary search tree (with no duplicate node values) has the
characteristic that the values in any left subtree are less than
the value in that subtree’s parent node, and the values in any
right subtree are greater than the value in that subtree’s
parent node.

 Fig. 21.16 illustrates a binary search tree with 12 integer
values.

 Figs. 21.17 and 21.18 create a generic binary search tree
class and use it to manipulate a tree of integers.

 The application in traverses the tree (i.e., walks through all
its nodes) three ways—using recursive inorder, preorder
and postorder traversals (trees are almost always processed
recursively).

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

 Class Tree requires Comparable objects, so that each value
inserted in the tree can be compared with the existing values to
determine the insertion point.

 Class Tree’s method insertNode (lines 56–62) first
determines whether the tree is empty.

 If so, line 59 allocates a new TreeNode, initializes the node
with the value being inserted in the tree and assigns the new node
to reference root.

 If the tree is not empty, line 61 calls TreeNode method
insert (lines 21–41).

 This method uses recursion to determine the location for the new
node in the tree and inserts the node at that location.

 A node can be inserted only as a leaf node in a binary search tree.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

 TreeNode method insert compares the value to insert
with the data value in the root node.
◦ If the insert value is less than the root node data, the program

determines if the left subtree is empty.
 If so, allocates a new TreeNode, initializes it with the value being

inserted and assigns the new node to reference leftNode.

 Otherwise, recursively calls insert for the left subtree to insert the
value into the left subtree.

◦ If the insert value is greater than the root node data, the program
determines if the right subtree is empty.
 If so, allocates a new TreeNode, initializes it with the value being

inserted and assigns the new node to reference rightNode.

 Otherwise, recursively calls insert for the right subtree to insert the
value in the right subtree.

◦ If the insertValue is already in the tree, it’s simply ignored.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

 Methods inorderTraversal,
preorderTraversal and postorderTraversal
call Tree helper methods inorderHelper,
preorderHelper and postorderHelper,
respectively, to traverse the tree and print the node values.
◦ Helper methods in class Tree enable you to start a traversal without

having to pass the root node to the method.

◦ Reference root is an implementation detail that a programmer
should not be able to access.

 Methods inorderTraversal,
preorderTraversal and postorderTraversal
simply take the private root reference and pass it to the
appropriate helper method to initiate a traversal of the tree.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

 The base case for each helper method determines whether the reference
it receives is null and, if so, returns immediately.

 Method inorderHelper defines the steps for an inorder traversal:
◦ Traverse the left subtree with a call to inorderHelper
◦ Process the value in the node
◦ Traverse the right subtree with a call to inorderHelper

 The inorder traversal does not process the value in a node until the
values in that node’s left subtree are processed.

 The inorder traversal of the tree in Fig. 21.19 is
 6 13 17 27 33 42 48

 Note that the inorder traversal of a binary search tree prints the node
values in ascending order.

 The process of creating a binary search tree actually sorts the data;
thus, it’s called the binary tree sort.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

 Method preorderHelper defines the steps for a
preorder traversal:
◦ Process the value in the node
◦ Traverse the left subtree with a call to preorderHelper
◦ Traverse the right subtree with a call to preorderHelper

 The preorder traversal processes the value in each node as
the node is visited.

 After processing the value in a particular node, the preorder
traversal processes the values in the left subtree, then
processes the values in the right subtree.

 The preorder traversal of the tree in Fig. 21.19 is
 27 13 6 17 42 33 48

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

 Method postorderHelper defines the steps for a
postorder traversal:
◦ Traverse the left subtree with a call to postorderHelper
◦ Traverse the right subtree with a call to postorderHelper
◦ Process the value in the node

 The postorder traversal processes the value in each
node after the values of all that node’s children are
processed.

 The post-orderTraversal of the tree in Fig.
21.19 is

 6 17 13 33 48 42 27

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

 A binary search tree facilitates duplicate elimination.
 Insert operation recognizes a duplicate, because a duplicate

follows the same “go left” or “go right” decisions on each
comparison as the original value did.

 Searching a binary tree for a value that matches a key value is
fast, especially for tightly packed (or balanced) trees.
◦ In a tightly packed tree, each level contains about twice as many

elements as the previous level.
◦ A tightly packed binary search tree (e.g.,) with n elements has log2n

levels.
◦ Thus, at most log2n comparisons are required either to find a match or to

determine that no match exists.
◦ Searching a (tightly packed) 1000-element binary search tree requires at

most 10 comparisons, because 210 > 1000.
◦ Searching a (tightly packed) 1,000,000-element binary search tree

requires at most 20 comparisons, because 220 > 1,000,000.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

 The chapter exercises present algorithms for several

other binary tree operations, such as deleting an item

from a binary tree, printing a binary tree in a two-

dimensional tree format and performing a level-order

traversal of a binary tree.

 The level-order traversal visits the nodes of the tree

row by row, starting at the root node level.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

	Slide 1: Chapter 21 Custom Generic Data Structures
	Slide 2
	Slide 3
	Slide 4: 21.1 Introduction
	Slide 5
	Slide 6: 21.2 Self-Referential Classes
	Slide 7: 21.2 Self-Referential Classes (cont.)
	Slide 8
	Slide 9: 21.3 Dynamic Memory Allocation
	Slide 10: 21.4 Linked Lists
	Slide 11
	Slide 12
	Slide 13: 21.4.1 Singly Linked Lists
	Slide 14
	Slide 15
	Slide 16: 21.4.2 Implementing a Generic List Class
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29: 21.4.6 List Method insertAtBack
	Slide 30
	Slide 31: 21.4.7 List Method removeFromFront
	Slide 32
	Slide 33: 21.4.8 List Method removeFromBack
	Slide 34: 21.4 Linked Lists (cont.)
	Slide 35
	Slide 36: 21.4.9 List Method print
	Slide 37: 21.4.10 Creating Your Own Packages
	Slide 38: 21.4.10 Creating Your Own Packages (cont.)
	Slide 39: 21.4.10 Creating Your Own Packages (cont.)
	Slide 40: 21.4.10 Creating Your Own Packages (cont.)
	Slide 41: 21.4.10 Creating Your Own Packages (cont.)
	Slide 42: 21.4.10 Creating Your Own Packages (cont.)
	Slide 43: 21.4.10 Creating Your Own Packages (cont.)
	Slide 44: 21.4.10 Creating Your Own Packages (cont.)
	Slide 45: 21.4.10 Creating Your Own Packages (cont.)
	Slide 46: 21.4.10 Creating Your Own Packages (cont.)
	Slide 47
	Slide 48
	Slide 49: 21.4.10 Creating Your Own Packages (cont.)
	Slide 50: 21.4.10 Creating Your Own Packages (cont.)
	Slide 51: 21.4.10 Creating Your Own Packages (cont.)
	Slide 52
	Slide 53
	Slide 54
	Slide 55: 21.4.10 Creating Your Own Packages (cont.)
	Slide 56: 21.4.10 Creating Your Own Packages (cont.)
	Slide 57: 21.5 Stacks
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62: 21.5 Stacks (cont.)
	Slide 63
	Slide 64
	Slide 65: 21.6 Queues
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71: 21.7 Trees
	Slide 72
	Slide 73: 21.7 Trees (Cont.)
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83: 21.7 Trees (Cont.)
	Slide 84: 21.7 Trees (Cont.)
	Slide 85: 21.7 Trees (Cont.)
	Slide 86: 21.7 Trees (Cont.)
	Slide 87: 21.7 Trees (Cont.)
	Slide 88: 21.7 Trees (Cont.)
	Slide 89: 21.7 Trees (Cont.)
	Slide 90: 21.7 Trees (Cont.)
	Slide 91

