
Java How to Program, 10/e

© Copyright 1992-2015 by Pearson Education, Inc. All Rights
Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

 Detect type mismatches at compile time—known as

compile-time type safety.

 Generic methods and generic classes provide the means

to create type safe general models.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

 Overloaded methods are often used to perform similar

operations on different types of data.

 Study each printArray method.

◦ Note that the type array element type appears in each method’s

header and for-statement header.

◦ If we were to replace the element types in each method with a

generic name—T by convention—then all three methods

would look like the one in Fig. 20.2.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

 If the operations performed by several overloaded

methods are identical for each argument type, the

overloaded methods can be more conveniently coded

using a generic method.

 You can write a single generic method declaration that

can be called with arguments of different types.

 Based on the types of the arguments passed to the

generic method, the compiler handles each method call

appropriately.

 Line 22 begins method printArray’s declaration.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

 All generic method declarations have a type-parameter section (< T >
in this example) delimited by angle brackets that precedes the method’s
return type.

 Each type-parameter section contains one or more type parameters,
separated by commas.

 A type parameter, also known as a type variable, is an identifier that
specifies a generic type name.

 Can be used to declare the return type, parameter types and local
variable types in a generic method, and act as placeholders for the
types of the arguments passed to the generic method (actual type
arguments).

 A generic method’s body is declared like that of any other method.

 Type parameters can represent only reference types—not primitive
types.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

 When the compiler translates generic method
printArray into Java bytecodes, it removes the
type-parameter section and replaces the type
parameters with actual types.

 This process is known as erasure.

 By default all generic types are replaced with type
Object.

 So the compiled version of method printArray
appears as shown in Fig. 20.4—there is only one copy
of this code, which is used for all printArray calls
in the example.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

 Generic method maximum determines and returns the
largest of its three arguments of the same type.

 The relational operator > cannot be used with
reference types, but it’s possible to compare two objects
of the same class if that class implements the generic
interface Comparable<T> (package java.lang).
◦ All the type-wrapper classes for primitive types implement this

interface.

 Generic interfaces enable you to specify, with a single
interface declaration, a set of related types.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

 Comparable<T> objects have a compareTo method.

◦ The method must return 0 if the objects are equal, a negative

integer if object1 is less than object2 or a positive

integer if object1 is greater than object2.

 A benefit of implementing interface

Comparable<T> is that Comparable<T> objects

can be used with the sorting and searching methods of

class Collections (package java.util).

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

 The type-parameter section specifies that T extends
Comparable<T>—only objects of classes that implement
interface Comparable<T> can be used with this method.

 Comparable is known as the type parameter’s upper
bound.

 By default, Object is the upper bound.

 Type-parameter declarations that bound the parameter
always use keyword extends regardless of whether the
type parameter extends a class or implements an interface.

 The Comparable<T> restriction is important, because
not all objects can be compared.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

 When the compiler translates generic method
maximum into Java bytecodes, it uses erasure to
replace the type parameters with actual types.

 All type parameters are replaced with the upper bound
of the type parameter, which is specified in the type-
parameter section.

 When the compiler replaces the type-parameter
information with the upper-bound type in the method
declaration, it also inserts explicit cast operations in
front of each method call to ensure that the returned
value is of the type expected by the caller.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

 A generic method may be overloaded like any other method.

 A class can provide two or more generic methods that

specify the same method name but different method

parameters.

 A generic method can also be overloaded by nongeneric

methods.

 When the compiler encounters a method call, it searches for

the method declaration that best matches the method name

and the argument types specified in the call—an error

occurs if two or more overloaded methods both could be

considered best matches.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

 The concept of a data structure, such as a stack, can be

understood independently of the element type it

manipulates.

 Generic classes provide a means for describing the

concept of a stack (or any other class) in a type-

independent manner.

 These classes are known as parameterized classes or

parameterized types because they accept one or more

type parameters.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

 The code in methods testPushDouble and

testPushInteger from the previous example is

almost identical for pushing values onto a

Stack<Double> or a Stack<Integer>,

respectively, and the code in methods

testPopDouble and testPopInteger is almost

identical for popping values from a Stack<Double>
or a Stack<Integer>, respectively.

 This presents another opportunity to use generic

methods.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

 It’s also possible to instantiate generic class Stack
without specifying a type argument, as follows:

 // no type-argument specified
Stack objectStack = new Stack(5);

◦ objectStack has a raw type

◦ The compiler implicitly uses type Object throughout the
generic class for each type argument.

◦ The preceding statement creates a Stack that can store
objects of any type.

◦ Important for backward compatibility with prior Java versions.

◦ Raw-type operations are unsafe and could lead to exceptions.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

 Figure 20.12 shows the warning messages generated by

the compiler when the file RawTypeTest.java
(Fig. 20.11) is compiled with the

-Xlint:unchecked option, which provides more

information about potentially unsafe operations in code

that uses generics.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

 In this section, we introduce a powerful generics concept
known as wildcards.

 Suppose that you’d like to implement a generic method
sum that totals the numbers in an ArrayList.
◦ You’d begin by inserting the numbers in the collection.
◦ The numbers would be autoboxed as objects of the type-wrapper

classes—any int value would be autoboxed as an Integer object,
and any double value would be autoboxed as a Double object.

◦ We’d like to be able to total all the numbers in the ArrayList
regardless of their type.

◦ For this reason, we’ll declare the ArrayList with the type
argument Number, which is the superclass of both Integer and
Double.

◦ In addition, method sum will receive a parameter of type
ArrayList<Number> and total its elements.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

 In method sum:

◦ The for statement assigns each Number in the ArrayList
to variable element, then uses Number method doubleValue
to obtain the Number’s underlying primitive value as a

double value.

◦ The result is added to total.

◦ When the loop terminates, the method returns the total.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

 Given that method sum can total the elements of an ArrayList of
Numbers, you might expect that the method would also work for
ArrayLists that contain elements of only one numeric type, such as
ArrayList<Integer>.

 Modified class TotalNumbers to create an ArrayList- of
Integers and pass it to method sum.

 When we compile the program, the compiler issues the following error
message:

 sum(java.util.ArrayList<java.lang.Number>) in
TotalNumbersErrors cannot be applied to
(java.util.ArrayList<java.lang.Integer>)

 Although Number is the superclass of Integer, the compiler doesn’t
consider the parameterized type ArrayList<Number> to be a
superclass of ArrayList<Integer>.

 If it were, then every operation we could perform on
ArrayList<Number> would also work on an
ArrayList<Integer>.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

 To create a more flexible version of the sum method that can
total the elements of any ArrayList containing elements of
any subclass of Number we use wildcard-type arguments.

 Wildcards enable you to specify method parameters, return
values, variables or fields, and so on, that act as supertypes or
subtypes of parameterized types.

 In Fig. 20.14, method sum’s parameter is declared in line 50 with
the type:

 ArrayList<? extends Number>

 A wildcard-type argument is denoted by a question mark (?),
which by itself represents an “unknown type.”
◦ In this case, the wildcard extends class Number, which means that the

wildcard has an upper bound of Number.
◦ Thus, the unknown-type argument must be either Number or a subclass

of Number.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

 Because the wildcard (?) in the method’s header does not specify a
type-parameter name, you cannot use it as a type name throughout the
method’s body (i.e., you cannot replace Number with ? in line 55).

 You could, however, declare method sum as follows:
◦ public static <T extends Number> double

sum(ArrayList< T > list)
◦ allows the method to receive an ArrayList that contains elements of any
Number subclass.

◦ You could then use the type parameter T throughout the method body.

 If the wildcard is specified without an upper bound, then only the
methods of type Object can be invoked on values of the wildcard
type.

 Also, methods that use wildcards in their parameter’s type arguments
cannot be used to add elements to a collection referenced by the
parameter.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

	Slide 1: Chapter 20 Generic Classes and Methods
	Slide 2
	Slide 3
	Slide 4: 20.1 Introduction
	Slide 5: 20.2 Motivation for Generic Methods
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10: 20.3 Generic Methods: Implementation and Compile-Time Translation
	Slide 11
	Slide 12
	Slide 13: 20.3 Generic Methods: Implementation and Compile-Time Translation (cont.)
	Slide 14
	Slide 15
	Slide 16
	Slide 17: 20.3 Generic Methods: Implementation and Compile-Time Translation (cont.)
	Slide 18
	Slide 19: 20.4 Additional Compile-Time Translation Issues: Methods That Use a Type Parameter as the Return Type
	Slide 20: 20.4 Additional Compile-Time Translation Issues: Methods That Use a Type Parameter as the Return Type (cont.)
	Slide 21
	Slide 22
	Slide 23: 20.4 Additional Compile-Time Translation Issues: Methods That Use a Type Parameter as the Return Type (cont.)
	Slide 24: 20.4 Additional Compile-Time Translation Issues: Methods That Use a Type Parameter as the Return Type (cont.)
	Slide 25
	Slide 26: 20.5 Overloading Generic Methods
	Slide 27: 20.6 Generic Classes
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37: 20.6 Generic Classes (cont.)
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42: 20.8 Raw Types
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47: 20.7 Raw Types (cont.)
	Slide 48
	Slide 49
	Slide 50: 20.8 Wildcards in Methods That Accept Type Parameters
	Slide 51
	Slide 52
	Slide 53: 20.8 Wildcards in Methods That Accept Type Parameters (cont.)
	Slide 54: 20.8 Wildcards in Methods That Accept Type Parameters (cont.)
	Slide 55: 20.8 Wildcards in Methods That Accept Type Parameters (cont.)
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60: 20.8 Wildcards in Methods That Accept Type Parameters (cont.)
	Slide 61

