
Java How to Program, 10/e

© Copyright 1992-2015 by Pearson Education, Inc. All Rights
Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

 Searching data involves determining whether a value
(referred to as the search key) is present in the data and, if
so, finding its location.
◦ Two popular search algorithms are the simple linear search and the

faster but more complex binary search.

 Sorting places data in ascending or descending order, based
on one or more sort keys.
◦ This chapter introduces two simple sorting algorithms, the selection

sort and the insertion sort, along with the more efficient but more
complex merge sort.

 Figure 19.1 summarizes the searching and sorting
algorithms discussed in the examples and exercises of this
book.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

 This section and Section 19.4 discuss two common

search algorithms—one that’s easy to program yet

relatively inefficient (linear search) and one that’s

relatively efficient but more complex to program

(binary search).

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

 The linear search algorithm searches each element in an
array sequentially.
◦ If the search key does not match an element in the array, the

algorithm tests each element, and when the end of the array is
reached, informs the user that the search key is not present.

◦ If the search key is in the array, the algorithm tests each element until
it finds one that matches the search key and returns the index of that
element.

 Class LinearSearchTest (Fig. 19.2) contains static
method linearSearch for performing searches of an
int array and main for testing linearSearch.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

 Searching algorithms all accomplish the same goal—

finding an element (or elements) that matches a given

search key, if such an element does, in fact, exist.

 The major difference is the amount of effort they

require to complete the search.

 Big O notation indicates how hard an algorithm may

have to work to solve a problem.

◦ For searching and sorting algorithms, this depends particularly

on how many data elements there are.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

 If an algorithm is completely independent of the number of

elements in the array, it is said to have a constant run time,

which is represented in Big O notation as O(1) and

pronounced as “order one.”

◦ An algorithm that’s O(1) does not necessarily require only one

comparison.

◦ O(1) just means that the number of comparisons is constant—it does

not grow as the size of the array increases.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

 An algorithm that requires a total of n – 1 comparisons is

said to be O(n).

◦ An O(n) algorithm is referred to as having a linear run time.

◦ O(n) is often pronounced “on the order of n” or simply “order n.”

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

 Constant factors are omitted in Big O notation.

 Big O is concerned with how an algorithm’s run time grows in
relation to the number of items processed.

 O(n2) is referred to as quadratic run time and pronounced
“on the order of n-squared” or more simply “order n-
squared.”
◦ When n is small, O(n2) algorithms (running on today’s computers) will

not noticeably affect performance.

◦ But as n grows, you’ll start to notice the performance degradation.

◦ An O(n2) algorithm running on a million-element array would require a
trillion “operations” (where each could actually require several
machine instructions to execute).

◦ A billion-element array would require a quintillion operations.

 You’ll also see algorithms with more favorable Big O measures.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

 The linear search algorithm runs in O(n) time.
◦ The worst case in this algorithm is that every element must be

checked to determine whether the search item exists in the array.
◦ If the size of the array is doubled, the number of comparisons that

the algorithm must perform is also doubled.

 Linear search can provide outstanding performance if the
element matching the search key happens to be at or near
the front of the array.
◦ We seek algorithms that perform well, on average, across all

searches, including those where the element matching the search key
is near the end of the array.

 If a program needs to perform many searches on large
arrays, it’s better to implement a more efficient algorithm,
such as the binary search.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

 The binary search algorithm is more efficient than linear
search, but it requires that the array be sorted.
◦ The first iteration tests the middle element in the array. If this

matches the search key, the algorithm ends.

◦ If the search key is less than the middle element, the algorithm
continues with only the first half of the array.

◦ If the search key is greater than the middle element, the algorithm
continues with only the second half.

◦ Each iteration tests the middle value of the remaining portion of the
array.

◦ If the search key does not match the element, the algorithm
eliminates half of the remaining elements.

◦ The algorithm ends by either finding an element that matches the
search key or reducing the subarray to zero size.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

 Method sort sorts the array data’s elements in an array

in ascending order (by default).

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

 In the worst-case scenario, searching a sorted array of 1023
elements takes only 10 comparisons when using a binary
search.
◦ The number 1023 (210 – 1) is divided by 2 only 10 times to get the

value 0, which indicates that there are no more elements to test.
◦ Dividing by 2 is equivalent to one comparison in the binary search

algorithm.

 Thus, an array of 1,048,575 (220 – 1) elements takes a
maximum of 20 comparisons to find the key, and an array of
over one billion elements takes a maximum of 30
comparisons to find the key.
◦ A difference between an average of 500 million comparisons for the

linear search and a maximum of only 30 comparisons for the binary
search!

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

 The maximum number of comparisons needed for the

binary search of any sorted array is the exponent of the

first power of 2 greater than the number of elements in

the array, which is represented as log2 n.

 All logarithms grow at roughly the same rate, so in big

O notation the base can be omitted.

 This results in a big O of O(log n) for a binary search,

which is also known as logarithmic run time and

pronounced as “order log n.”

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

 Sorting data (i.e., placing the data into some particular order,
such as ascending or descending) is one of the most important
computing applications.

 An important item to understand about sorting is that the end
result—the sorted array—will be the same no matter which
algorithm you use to sort the array.

 The choice of algorithm affects only the run time and memory
use of the program.

 The rest of this chapter introduces three common sorting
algorithms.
◦ The first two—selection sort and insertion sort—are easy to program but

inefficient.
◦ The last algorithm—merge sort—is much faster than selection sort and

insertion sort but harder to program.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

 Selection sort
◦ simple, but inefficient, sorting algorithm

 Its first iteration selects the smallest element in the array and swaps it
with the first element.

 The second iteration selects the second-smallest item (which is the
smallest item of the remaining elements) and swaps it with the second
element.

 The algorithm continues until the last iteration selects the second-
largest element and swaps it with the second-to-last index, leaving the
largest element in the last index.

 After the ith iteration, the smallest i items of the array will be sorted
into increasing order in the first i elements of the array.

 After the first iteration, the smallest element is in the first position.
After the second iteration, the two smallest elements are in order in the
first two positions, etc.

 The selection sort algorithm runs in O(n2) time.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

 Class SelectionSortTest (Fig. 19.4) contains:
◦ static method selectionSort to sort an int array

using the selection sort algorithm

◦ static method swap to swap the values of two array
elements

◦ static method printPass to display the array contents
after each pass, and

◦ main to test method selectionSort.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

 Insertion sort
◦ another simple, but inefficient, sorting algorithm

 The first iteration takes the second element in the array
and, if it’s less than the first element, swaps it with the
first element.

 The second iteration looks at the third element and
inserts it into the correct position with respect to the
first two, so all three elements are in order.

 At the ith iteration of this algorithm, the first i elements
in the original array will be sorted.

 The insertion sort algorithm also runs in O(n2) time.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

 Class InsertionSortTest (Fig. 19.5) contains:
◦ static method insertionSort to sort ints using the

insertion sort algorithm
◦ static method printPass to display the array contents

after each pass, and
◦ main to test method insertionSort.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

 Merge sort
◦ efficient sorting algorithm
◦ conceptually more complex than selection sort and insertion sort

 Sorts an array by splitting it into two equal-sized subarrays,
sorting each subarray, then merging them into one larger
array.

 The implementation of merge sort in this example is
recursive.
◦ The base case is an array with one element, which is, of course,

sorted, so the merge sort immediately returns in this case.
◦ The recursion step splits the array into two approximately equal

pieces, recursively sorts them, then merges the two sorted arrays into
one larger, sorted array.

 Merge sort has an efficiency of O(n log n).

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

 Figure 19.6 declares the MergeSortTest class,
which contains:

 static method mergeSort to initiate the sorting
of an int array using the merge sort algorithm

 static method sortArray to perform the recursive
merge sort algorithm—this is called by method
mergeSort

 static method merge to merge two sorted
subarrays into a single sorted subarray

 static method subarrayString to get a
subarray’s String representation for output
purposes, and

 main to test method mergeSort.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

	Slide 1: Chapter 19 Searching, Sorting and Big O
	Slide 2
	Slide 3
	Slide 4
	Slide 5: 19.1 Introduction
	Slide 6
	Slide 7
	Slide 8
	Slide 9: 19.2 Linear Search
	Slide 10: 19.2 Linear Search (cont.)
	Slide 11
	Slide 12
	Slide 13
	Slide 14: 19.3 Big O Notation
	Slide 15: 19.3.1 O(1) Algorithms
	Slide 16: 19.3.2 O(n) Algorithms
	Slide 17: 19.3.3 O(n2) Algorithms
	Slide 18: 19.3.4 Big O of the Linear Search
	Slide 19
	Slide 20: 19.4 Binary Search
	Slide 21: 19.4.1 Binary Search Implementation
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29: 19.4.2 Efficiency of the Binary Search
	Slide 30: 19.4.2 Efficiency of the Binary Search (cont.)
	Slide 31: 19.5 Sorting Algorithms
	Slide 32: 19.6 Selection Sort
	Slide 33: 19.6.1 Selection Sort Implementation
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38: 19.7 Insertion Sort
	Slide 39: 19.7.1 Insertion Sort Implementation
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45: 19.8 Merge Sort
	Slide 46: 19.8.1 Merge Sort Implementation
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57

