Chapter 19
Searching, Sorting and Big O

Java How to Program, 10/e

© Copyright 1992-2015 by Pearson Education, Inc. All Rights
Reserved.

OBJECTIVES

In this chapter you'll:

m Search for a given value in an array using linear search and binary search.
m Sort arrays using the iterative selection and insertion sort algorithms.

m Sort arrays using the recursive merge sort algorithm.

m Determine the efficiency of searching and sorting algorithms.

m Introduce Big O notation for comparing the efficiency of algorithms.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

19.1 Introduction
19.2 Linear Search

19.3 Big O Notation

19.3.1 O(I) Algorithms
19.3.2 O(n) Algorithms
1933 O(n?) Algorithms
1934 Big O of the Linear Search

19.4 Binary Search

19.4.1 Binary Search Implementation
19.4.2 Efficiency of the Binary Search

19.5 Sorting Algorithms
19.6 Selection Sort

19.6.1 Selection Sort Implementation
19.6.2 Efficiency of the Selection Sort
19.7 Insertion Sort

19.7.1 Insertion Sort Implementation
19.7.2 Efficiency of the Insertion Sort

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

19.8 Merge Sort

19.8.1 Merge Sort Implementation
19.8.2 Efficiency of the Merge Sort

19.9 Big O Summary for This Chapter’s Searching and Sorting Algorithms
19.10Wrap-Up

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

19.1 Introduction

» Searching data involves determining whether a value
(referred to as the search key) iIs present in the data and, if
so, finding its location.
> Two popular search algorithms are the simple linear search and the

faster but more complex binary search.

» Sorting places data in ascending or descending order, based
on one or more sort keys.
> This chapter introduces two simple sorting algorithms, the selection

sort and the insertion sort, along with the more efficient but more
complex merge sort.

» Figure 19.1 summarizes the searching and sorting
algorithms discussed in the examples and exercises of this

book.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

’,,w, Software Engineering Observation 19.1

6% [n apps that require searching and sorting, use the pre-
defined capabilities of the Java Collections API
(Chapter 16). The techniques presented in this chapter
are provided to introduce students to the concepts behind
searching and sorting algorithms—upper-level computer
science courses typically discuss such algorithms in detail,

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

Searching Algorithms:

16 binarySearch method of class Fig. 16.12
Collections

19 Linear search Section 19.2
Binary search Section 19.4
Recursive linear search Exercise 19.8
Recursive binary search Exercise 19.9

21 Linear search of a List Exercise 21.21
Binary tree search Exercise 21.23

Fig. 19.1 | Searching and sorting algorithms covered in this text. (Part |
of 2.)

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

Sorting Algorithms:

16 sort method of class Collections Figs. 16.6-16.9
SortedSet collection Fig. 16.17

19 Selection sort Section 19.6
Insertion sort Section 19.7
Recursive merge sort Section 19.8
Bubble sort Exercises 19.5 and 19.6
Bucket sort Exercise 19.7
Recursive quicksort Exercise 19.10

21 Binary tree sort Section 21.7

Fig. 19.1 | Searching and sorting algorithms covered in this text. (Part 2
of 2.)

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

19.2 Linear Search

» This section and Section 19.4 discuss two common
search algorithms—one that’s easy to program yet
relatively inefficient (linear search) and one that’s
relatively efficient but more complex to program
(binary search).

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

19.2 Linear Search (cont.)

» The linear search algorithm searches each element in an
array sequentially.

o If the search key does not match an element in the array, the
algorithm tests each element, and when the end of the array is
reached, informs the user that the search key is not present.

o If the search key is in the array, the algorithm tests each element until
It finds one that matches the search key and returns the index of that
element.

» Class L1nearSearchTest (Fig. 19.2) contains static
method 11nearSearch for performing searches of an
1nt array and main for testing 11nearSearch.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

1 // Fig. 19.2: LinearSearchTest.java

2 // Sequentially searching an array for an item.

3 import java.security.SecureRandom;

4 1import java.util.Arrays;

5 import java.util.Scanner;

6

7 public class LinearSearchTest

8 {

9 // perform a linear search on the data

10 public static int TinearSearch(int data[], int searchKey)
11 {

12 // 1oop through array sequentially

13 for (int index = 0; index < data.length; index++)
14 if (data[index] == searchKey)

15 return index; // return index of integer
16

17 return -1; // integer was not found

18 } // end method linearSearch

19
20 public static void main(String[] args)
21 {
22 Scanner input = new Scanner(System.in);
23 SecureRandom generator = new SecureRandom();
24

Fig. 19.2 | Sequentially searching an array for an item. (Part | of 3.)

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46

int[] data

new int[10]; // create array

for (int i
datal[i]

0; i < data.length; i++) // populate array
10 + generator.nextInt(90);

System.out.printf("%s%n%n", Arrays.toString(data)); // display array

// get input from user
System.out.print("Please enter an integer value (-1 to quit): ");
int searchInt = input.nextInt();

// repeatedly input an integer; -1 terminates the program
while (searchInt != -1)
{

int position = linearSearch(data, searchInt); // perform search

if (position == -1) // not found
System.out.printf("%d was not found%n%n", searchInt);
else // found
System.out.printf("%d was found in position %d%n%n",
searchInt, position);

Fig. 19.2 | Sequentially searching an array for an item. (Part 2 of 3.)

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

47 // get input from user

48 System.out.print("Please enter an integer value (-1 to quit): ");
49 searchInt = input.nextInt();

50 }

51 } // end main

52 1} // end class LinearSearchTest

[59, 97, 34, 90, 79, 56, 24, 51, 30, 69]

Please enter an integer value (-1 to quit): 79
79 was found 1in position 4

Please enter an integer value (-1 to quit): 61
61 was not found

Please enter an integer value (-1 to quit): 51
51 was found 1in position 7

1
(=1

Please enter an integer value (-1 to quit):

Fig. 19.2 | Sequentially searching an array for an item. (Part 3 of 3.)

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

19.3 Big O Notation

» Searching algorithms all accomplish the same goal—
finding an element (or elements) that matches a given
search key, If such an element does, in fact, exist.

» The major difference is the amount of effort they
require to complete the search.

» Big O notation indicates how hard an algorithm may
have to work to solve a problem.

> For searching and sorting algorithms, this depends particularly
on how many data elements there are.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

19.3.1 O(1) Algorithms

» If an algorithm is completely independent of the number of
elements in the array, it is said to have a constant run time,
which is represented in Big O notation as O(1) and
pronounced as “order one.”

> An algorithm that’s O(1) does not necessarily require only one
comparison.

> 0O(1) just means that the number of comparisons is constant—it does
not grow as the size of the array increases.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

19.3.2 O(n) Algorithms

» An algorithm that requires a total of n — 1 comparisons is
said to be O(n).
> An O(n) algorithm is referred to as having a linear run time.
> 0(n) is often pronounced “on the order of N or simply “order n.”

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

19.3.3 O(n?) Algorithms

» Constant factors are omitted in Big O notation.

» Big O 1s concerned with how an algorithm’s run time grows in
relation to the number of items processed.

» O(n?) is referred to as quadratic run time and pronounced
“on the order of N-squared” or more simply “order n-
squared.”

> When n is small, O(n?) algorithms (running on today s computers) will
not noticeably affect performance.

o But as n grows, you’ll start to notice the performance degradation.

> An O(n?) algorithm running on a million-element array would require a
trillion “operations” (where each could actually require several
machine instructions to execute).

> Abillion-element array would require a quintillion operations.
» You’ll also see algorithms with more favorable Big O measures.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

19.3.4 Big O of the Linear Search

» The linear search algorithm runs in O(n) time.

> The worst case In this algorithm is that every element must be
checked to determine whether the search item exists in the array.

o If the size of the array is doubled, the number of comparisons that
the algorithm must perform is also doubled.

» Linear search can provide outstanding performance If the

element matching the search key happens to be at or near

the front of the array.
> We seek algorithms that perform well, on average, across all

searches, including those where the element matching the search key
IS near the end of the array.
» If a program needs to perform many searches on large
arrays, 1t’s better to implement a more efficient algorithm,

such as the binary search.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

5. Performance Tip 19.1

=" Sometimes the simplest algorithms perform poorly. Their
virtue is that theyre easy to program, test and debug.
Sometimes more complex algorithms are required to re-
alize maximum performance.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

19.4 Binary Search

» The binary search algorithm Is more efficient than linear
search, but it requires that the array be sorted.

o

The first iteration tests the middle element in the array. If this
matches the search key, the algorithm ends.

If the search key is less than the middle element, the algorithm
continues with only the first half of the array.

If the search key is greater than the middle element, the algorithm
continues with only the second half.

Each iteration tests the middle value of the remaining portion of the
array.

If the search key does not match the element, the algorithm
eliminates half of the remaining elements.

The algorithm ends by either finding an element that matches the
search key or reducing the subarray to zero size.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

19.4.1 Binary Search Implementation

» Method sort sorts the array data’s elements in an array
In ascending order (by default).

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

1 // Fig. 19.3: BinarySearchTest.java

2 // Use binary search to locate an item in an array.

3 import java.security.SecureRandom;

4 1import java.util.Arrays;

5 import java.util.Scanner;

6

7 public class BinarySearchTest

8 {

9 // perform a binary search on the data

10 public static int binarySearch(int[] data, int key)

11 {

12 int low = 0; // Tow end of the search area

13 int high = data.length - 1; // high end of the search area
14 int middle = (low + high + 1) / 2; // middle element
15 int location = -1; // return value; -1 if not found
16

17 do // loop to search for element

I8 {

19 // print remaining elements of array
20 System.out.print(remainingElements(data, low, high));
21

Fig. 19.3 | Use binary search to locate an item in an array (the * in the output marks
the middle element). (Part | of 7.)

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

22 // output spaces for alignment

23 for (int i = 0; i < middle; i++)

24 System.out.print(” "Y);

25 System.out.printin(" * "); // indicate current middle

26

27 // if the element is found at the middle

28 if (key == data[middle])

29 location = middle; // location is the current middle
30 else if (key < data[middle]) // middle element is too high
31 high = middle - 1; // eliminate the higher half

32 else // middle element is too low

33 Tow = middle + 1; // eliminate the Tower half

34

35 middle = (low + high + 1) / 2; // recalculate the middle
36 } while ((low <= high) && (location == -1));

37

38 return location; // return location of search key

39 } // end method binarySearch

40

Fig. 19.3 | Use binary search to locate an item in an array (the * in the output marks
the middle element). (Part 2 of 7.)

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

41 // method to output certain values in array

42 private static String remainingElements(int[] data, int low, int high)
43 {

44 StringBuilder temporary = new StringBuilder();
45

46 // append spaces for alignment

47 for (int i = 0; i < Tow; i++)

48 temporary.append(” ");

49

50 // append elements left in array

51 for (int i = Tow; i <= high; i++)

52 temporary.append(data[i] + " ");

53

54 return String.format("%s%n", temporary);

55 } // end method remainingElements

56

57 public static void main(String[] args)

58 {

59 Scanner input = new Scanner(System.in);

60 SecureRandom generator = new SecureRandom();
61

62 int[] data = new int[15]; // create array
63

Fig. 19.3 | Use binary search to locate an item in an array (the * in the output marks
the middle element). (Part 3 of 7.)

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
8l
82
83
84
85

for (int i = 0; i < data.length; i++) // populate array
data[i] = 10 + generator.nextInt(90);

Arrays.sort(data); // binarySearch requires sorted array
System.out.printf("%s%n%n", Arrays.toString(data)); // display array

// get input from user
System.out.print("Please enter an integer value (-1 to quit): ");
int searchInt = input.nextInt();

// repeatedly input an integer; -1 terminates the program
while (searchInt != -1)
{

// perform search

int location = binarySearch(data, searchInt);

if (location == -1) // not found
System.out.printf("%d was not found%n%n", searchInt);
else // found
System.out.printf("%d was found in position %d%n%n",
searchInt, location);

Fig. 19.3 | Use binary search to locate an item in an array (the * in the output marks
the middle element). (Part 4 of 7.)

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

86 // get input from user

87 System.out.print("Please enter an integer value (-1 to quit): ");
88 searchInt = input.nextInt(Q);

89 }

90 } // end main

91 } // end class BinarySearchTest

Fig. 19.3 | Use binary search to locate an item in an array (the * in the output marks
the middle element). (Part 5 of 7.)

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

[13, 18, 29, 36, 42, 47, 56, 57, 63, 68, 80, 81, 82, 88, 88]

Please enter an integer value (-1 to quit): 18
13 18 29 36 42 47 56 57 63 68 80 81 82 88 88

13 18 29 36 42 47 56
13 18 29
18 was found in position 1

Please enter an integer value (-1 to quit): 82
13 18 29 36 42 47 56 57 63 68 80 81 82 88 88

63 68 80 81 82 88 88
82 88 88
82

82 was found 1in position 12

Fig. 19.3 | Use binary search to locate an item in an array (the * in the output marks
the middle element). (Part 6 of 7.)

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

Please enter an integer value (-1 to quit): 69
13 18 29 36 42 47 56 57 63 68 80 81 82 88 88

63 68 80 81 82 88 88
63 68 80
80

69 was not found

Please enter an integer value (-1 to quit): -1

Fig. 19.3 | Use binary search to locate an item in an array (the * in the output marks
the middle element). (Part 7 of 7.)

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

19.4.2 Efficiency of the Binary Search

» In the worst-case scenario, searching a sorted array of 1023
elements takes only 10 comparisons when using a binary

search.

> The number 1023 (21° — 1) is divided by 2 only 10 times to get the
value 0, which indicates that there are no more elements to test.

- Dividing by 2 is equivalent to one comparison in the binary search
algorithm.

» Thus, an array of 1,048,575 (22 — 1) elements takes a
maximum of 20 comparisons to find the key, and an array of
over one billion elements takes a maximum of 30
comparisons to find the key.

- Adifference between an average of 500 million comparisons for the
linear search and a maximum of only 30 comparisons for the binary
search!

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

19.4.2 Efficiency of the Binary Search (cont.)

» The maximum number of comparisons needed for the
binary search of any sorted array Is the exponent of the
first power of 2 greater than the number of elements in
the array, which is represented as log, n.

» All logarithms grow at roughly the same rate, so in big
O notation the base can be omitted.

» This results in a big O of O(log n) for a binary search,
which Is also known as logarithmic run time and
pronounced as “order log n.”

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

19.5 Sorting Algorithms

» Sorting data (i.e., placing the data into some particular order,
such as ascending or descending) is one of the most important
computing applications.

» An Important item to understand about sorting is that the end
result—the sorted array—will be the same no matter which
algorithm you use to sort the array.

» The choice of algorithm affects only the run time and memory
use of the program.

» The rest of this chapter introduces three common sorting
algorithms.

> The first two—selection sort and insertion sort—are easy to program but
inefficient.

> The last algorithm—merge sort—is much faster than selection sort and
insertion sort but harder to program.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

19.6 Selection Sort

» Selection sort
- simple, but inefficient, sorting algorithm

» Its first iteration selects the smallest element in the array and swaps it
with the first element.

» The second iteration selects the second-smallest item (which is the
smallest item of the remaining elements) and swaps it with the second
element.

» The algorithm continues until the last iteration selects the second-
largest element and swaps it with the second-to-last index, leaving the
largest element in the last index.

» After the ith iteration, the smallest i items of the array will be sorted
Into increasing order in the first i elements of the array.

» After the first iteration, the smallest element is in the first position.
After the second iteration, the two smallest elements are in order in the
first two positions, etc.

» The selection sort algorithm runs in O(n?) time.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

19.6.1 Selection Sort Implementation

» Class SelectionSortTest (Fig. 19.4) contains:

(0]

static method selectionSorttosortan 1nt array
using the selection sort algorithm

static method swap to swap the values of two array
elements

static method printPass to display the array contents
after each pass, and

main to test method selectionSort.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

VoO~NONNDE WN =

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

// Fig. 19.4: SelectionSortTest.java

// Sorting an array with selection sort.
import java.security.SecureRandom;
import java.util.Arrays;

pubTlic class SelectionSortTest
{
// sort array using selection sort
public static void selectionSort(int[] data)
{
// loop over data.length - 1 elements
for (int i = 0; 1 < data.length - 1; i++)

{
int smallest = i; // first index of remaining array
// loop to find index of smallest element
for (int index = i + 1; index < data.length; index++)
if (data[index] < data[smallest])
smallest = index;
swap(data, i, smallest); // swap smallest element into position
printPass(i + 1, smallest); // output pass of algorithm
}

} // end method selectionSort

Fig. 19.4 | Sorting an array with selection sort. (Part | of 4.)

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

25

26 // helper method to swap values in two elements

27 private static void swap(int[] data, int first, int second)
28 {

29 int temporary = data[first]; // store first in temporary
30 data[first] = data[second]; // replace first with second
31 data[second] = temporary; // put temporary in second

32 }

33

34 // print a pass of the algorithm

35 private static void printPass(int[] data, int pass, int index)
36 {

37 System.out.printf("after pass %2d: ", pass);

38

39 // output elements till selected item

40 for (int i = 0; i < index; i++)

41 System.out.printf("%d ", data[i]);

42

43 System.out.printf("%d* ", data[index]); // indicate swap
44

45 // finish outputting array

46 for (int i = index + 1; i < data.length; i++)

47 System.out.printf("%d ", data[i]);

48

49 System.out.printf("%n "); // for alignment

19.4 | Sorting an array with selection sort. (Part 2 of 4.)

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

50

51 // indicate amount of array that’s sorted
52 for (int j = 0; j < pass; Jj++)

53 System.out.print("-- ");

54 System.out.printin();

55 }

56

57 public static void main(String[] args)

58 {

59 SecureRandom generator = new SecureRandom();
60

61 int[] data = new int[10]; // create array
62

63 for (int i = 0; i < data.length; i++) // populate array
64 data[i] = 10 + generator.nextInt(90);

65

66 System.out.printf("Unsorted array:%n%s%n%n",
67 Arrays.toString(data)); // display array
68 selectionSort(data); // sort array

69

70 System.out.printf("Sorted array:%n%s%n%n'",
71 Arrays.toString(data)); // display array
72 }

73 1} // end class SelectionSortTest

Fig. 19.4 | Sorting an array with selection sort. (Part 3 of 4.)

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

Unsorted array:
[40, 60, 59, 46, 98, 82, 23, 51, 31, 36]

after pass 1: 23 60 59 46 98 82 40* 51 31 36

after pass 2: 23 31 59 46 98 82 40 51 60* 36

after pass 3: 23 31 36 46 98 82 40 51 60 59*

after pass 4: 23 31 36 40 98 82 46* 51 60 59

after pass 5: 23 31 36 40 46 82 98* 51 60 59

after pass 6: 23 31 36 40 46 51 98 82* 60 59

after pass 7: 23 31 36 40 46 51 59 82 60 98*

after pass 8: 23 31 36 40 46 51 59 60 82* 98

after pass 9: 23 31 36 40 46 51 59 60 82* 98

Sorted array:
[23, 31, 36, 40, 46, 51, 59, 60, 82, 98]

Fig. 19.4 | Sorting an array with selection sort. (Part 4 of 4.)

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

19.7 Insertion Sort

» Insertion sort
> another simple, but inefficient, sorting algorithm

» The first iteration takes the second element in the array
and, if 1t’s less than the first element, swaps it with the
first element.

» The second Iteration looks at the third element and
Inserts it into the correct position with respect to the
first two, so all three elements are in order.

» At the ith iteration of this algorithm, the first 1 elements
In the original array will be sorted.

» The insertion sort algorithm also runs in O(n?) time.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

19.7.1 Insertion Sort Implementation

» Class InsertionSortTest (Fig. 19.5) contains:
> static method insertionSort to sort 1nts using the
Insertion sort algorithm
> static method printPass to display the array contents
after each pass, and
> main to test method TnsertionsSort.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

1 // Fig. 19.5: InsertionSortTest.java

2 // Sorting an array with insertion sort.

3 import java.security.SecureRandom;

4 1import java.util.Arrays;

5

6 public class InsertionSortTest

7 {

8 // sort array using insertion sort

9 public static void insertionSort(int[] data)

10 {

11 // loop over data.length - 1 elements

12 for (int next = 1; next < data.length; next++)
13 {

14 int insert = datal[next]; // value to insert
15 int moveltem = next; // location to place element
16

17 // search for place to put current element
18 while (moveItem > 0 && data[moveItem - 1] > insert)
19 {
20 // shift element right one slot
21 data[moveltem] = data[moveItem - 1];
22 moveltem--;
23 3
24

Fig. 19.5 | Sorting an array with insertion sort. (Part | of 5.)

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

25 data[moveltem] = insert; // place inserted element

26 printPass(data, next, moveltem); // output pass of algorithm
27 }

28 }

29

30 // print a pass of the algorithm

31 public static void printPass(int[] data, int pass, int index)
32 {

33 System.out.printf("after pass %2d: ", pass);

34

35 // output elements till swapped item

36 for (int i = 0; 1 < index; i++)

37 System.out.printf("%d ", datal[i]);

38

39 System.out.printf("%d* ", datalindex]); // indicate swap
40

41 // finish outputting array

42 for (int i = index + 1; i < data.length; i++)

43 System.out.printf("%d ", datal[i]);

44

45 System.out.printf("%n "Y; // for alignment
46

Fig. 19.5 | Sorting an array with insertion sort. (Part 2 of 5.)

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

47 // indicate amount of array that’s sorted

48 for(int i = 0; i <= pass; i++)

49 System.out.print("-- ");

50 System.out.printin();

51 }

52

53 public static void main(String[] args)

54 {

55 SecureRandom generator = new SecureRandom();
56

57 int[] data = new int[10]; // create array
58

59 for (int i = 0; i1 < data.length; 1i++) // populate array
60 data[i] = 10 + generator.nextInt(90);

61

62 System.out.printf("Unsorted array:%n%s%n%n'",
63 Arrays.toString(data)); // display array
64 insertionSort(data); // sort array

65

66 System.out.printf("Sorted array:%n%s%n%n",
67 Arrays.toString(data)); // display array
68 }

69 1} // end class InsertionSortTest

Fig. 19.5 | Sorting an array with insertion sort. (Part 3 of 5.)

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

Unsorted array:
[34, 96, 12, 87, 40, 80, 16, 50, 30, 45]

after pass 1: 34 96* 12 87 40 80 16 50 30 45

after pass 2: 12* 34 96 87 40 80 16 50 30 45

after pass 3: 12 34 87* 96 40 80 16 50 30 45

after pass 4: 12 34 40* 8 96 80 16 50 30 45

after pass 5: 12 34 40 80* 8 96 16 50 30 45

after pass 6: 12 16* 34 40 80 87 96 50 30 45

after pass 7: 12 16 34 40 50 80 87 96 30 45

after pass 8: 12 16 30* 34 40 50 80 87 96 45

Fig. 19.5 | Sorting an array with insertion sort. (Part 4 of 5.)

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

after pass 9: 12 16 30 34 40 45* 50 80 87 096

Sorted array:
[12, 16, 30, 34, 40, 45, 50, 80, 87, 96]

Fig. 19.5 | Sorting an array with insertion sort. (Part 5 of 5.)

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

19.8 Merge Sort

» Merge sort
o efficient sorting algorithm
o conceptually more complex than selection sort and insertion sort

» Sorts an array by splitting it into two equal-sized subarrays,
sorting each subarray, then merging them into one larger
array.

» The Implementation of merge sort in this example Is
recursive.

> The base case is an array with one element, which is, of course,
sorted, so the merge sort immediately returns in this case.

> The recursion step splits the array into two approximately equal
pieces, recursively sorts them, then merges the two sorted arrays into
one larger, sorted array.

» Merge sort has an efficiency of O(n log n).

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

19.8.1 Merge Sort Implementation

<

4

<

Figure 19.6 declares the MergeSortTest class,
which contains:

static method mergeSort to initiate the sorting
of an 1nt array using the merge sort algorithm

static method sortArray to perform the recursive
merge sort algorithm—this is called by method
mergesort

stat1c method merge to merge two sorted
subarrays Into a single sorted subarray

static method subarrayString togeta
subarray’s Str1ing representation for output
purposes, and

main to test method mergeSort.

) Ay

,,,,,,,
\\\\\\\\\
\\ \
\\\\\\

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

VoO~NONNDE WN =

10
11
12
13
14
15
16
17
18
19
20
21
22

// Fig. 19.6: MergeSortTest.java

// Sorting an array with merge sort.
import java.security.SecureRandom;
import java.util.Arrays;

public class MergeSortTest
{
// calls recursive split method to begin merge sorting
public static void mergeSort(int[] data)
{
sortArray(data, 0, data.length - 1); // sort entire array
} // end method sort

// splits array, sorts subarrays and merges subarrays into sorted array
private static void sortArray(int[] data, int low, int high)
{

// test base case; size of array equals 1

if (Chigh - Tow) >= 1) // if not base case

{

int middlel (Tow + high) / 2; // calculate middle of array
int middle2 = middlel + 1; // calculate next element over

Fig. 19.6 | Sorting an array with merge sort. (Part | of 9.)

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47

// output split step
System.out.printf("split: %s%n",
subarrayString(data, low, high));

System.out.printf(” %s%n",
subarrayString(data, low, middlel));
System.out.printf("” %s%n%n',

subarrayString(data, middle2, high));

// split array in half; sort each half (recursive calls)
sortArray(data, Tow, middlel); // first half of array
sortArray(data, middle2, high); // second half of array

// merge two sorted arrays after split calls return
merge (data, low, middlel, middle2, high);
} // end if
} // end method sortArray

// merge two sorted subarrays into one sorted subarray
private static void merge(int[] data, int left, int middlel,
int middle2, int right)
{
int TeftIndex = left; // index into left subarray
int rightIndex = middle2; // index into right subarray
int combinedIndex = left; // index into temporary working array
int[] combined = new int[data.length]; // working array

19.6 | Sorting an array with merge sort. (Part 2 of 9.)

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

48

49 // output two subarrays before merging

50 System.out.printf("merge: %s%n",

51 subarrayString(data, Teft, middlel));

52 System.out.printf("” %s%n'",

53 subarrayString(data, middle2, right));

54

55 // merge arrays until reaching end of either

56 while (leftIndex <= middlel && rightIndex <= right)
57 {

58 // place smaller of two current elements into result
59 // and move to next space 1in arrays

60 if (data[leftIndex] <= data[rightIndex])

61 combined[combinedIndex++] = data[leftIndex++];
62 else

63 combined[combinedIndex++] = data[rightIndex++];
64 }

65

66 // if left array is empty

67 if (leftIndex == middle2)

68 // copy in rest of right array

69 while (rightIndex <= right)

70 combined[combinedIndex++] = data[rightIndex++];
71 else // right array 1is empty

Fig. 19.6 | Sorting an array with merge sort. (Part 3 of 9.)

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

72 // copy in rest of Tleft array

73 while (TeftIndex <= middlel)

74 combined[combinedIndex++] = data[leftIndex++];
75

76 // copy values back into original array

77 for (int i = left; i <= right; i++)

78 data[i] = combined[i];

79

80 // output merged array

81 System.out.printf (" %s%n%n™ ,

82 subarrayString(data, left, right));

83 } // end method merge

84

85 // method to output certain values in array

86 private static String subarrayString(int[] data, int Tow, int high)
87 {

88 StringBuilder temporary = new StringBuilder();
89

90 // output spaces for alignment

91 for (int i = 0; i < Tow; i++)

92 temporary.append(” ");

93

Fig. 19.6 | Sorting an array with merge sort. (Part 4 of 9.)

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

94 // output elements left in array

95 for (int i = Tow; i <= high; i++)

96 temporary.append(” " + data[i]);

97

98 return temporary.toString();

929 }

100

101 public static void main(String[] args)

102 {

103 SecureRandom generator = new SecureRandom();
104

105 int[] data = new int[10]; // create array
106

107 for (int i = 0; i < data.length; i++) // populate array
108 data[i] = 10 + generator.nextInt(90);

109

110 System.out.printf("Unsorted array:%n%s%n%n",
111 Arrays.toString(data)); // display array
112 mergeSort(data); // sort array

113

114 System.out.printf("Sorted array:%n%s%n%n'",
115 Arrays.toString(data)); // display array
116 }

11T } // end class MergeSortTest

Fig. 19.6 | Sorting an array with merge sort. (Part 5 of 9.)

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

Unsorted array:
[75, 56, 85, 90, 49, 26, 12, 48, 40, 47]

split: 75 56 85 90 49 26 12 48 40 47
75 56 85 90 49
26 12 48 40 47

split: 75 56 85 90 49
75 56 85
90 49
split: 75 56 85
75 56
85
split: 75 56
75
56
merge: 75
56
56 75

Fig. 19.6 | Sorting an array with merge sort. (Part 6 of 9.)

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

merge: 56 75

85
56 75 85
split: 90 49
90
49
merge: 90
49
49 90
merge: 56 75 85
49 90
49 56 75 85 90
split: 26 12 48 40 47
26 12 48
40 47
split: 26 12 48
26 12
48

Fig. 19.6 | Sorting an array with merge sort. (Part 7 of 9.)

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

split: 26 12
26
12
merge: 26
12
12 26
merge: 12 26
48
12 26 48
split: 40 47
40
47
merge: 40
47
40 47
merge: 12 26 48
40 47
12 26 40 47 48

Fig. 19.6 | Sorting an array with merge sort. (Part 8 of 9.)

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

merge: 49 56 75 85 90
12 26 40 47 48
12 26 40 47 48 49 56 75 85 90

Sorted array:
[12, 26, 40, 47, 48, 49, 56, 75, 85, 90]

Fig. 19.6 | Sorting an array with merge sort. (Part 9 of 9.)

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

Searching Algorithms:

Linear search

Binary search

Recursive linear search

Recursive binary search

Sorting Algorithms:
Selection sort
Insertion sort

Merge sort
Bubble sort

Section 19.2
Section 19.4
Exercise 19.8
Exercise 19.9

Section 19.6
Section 19.7
Section 19.8

Exercises 19.5 and 19.6 O

Fig. 19.7 | Searching and sorting algorithms with Big O values.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

1 0 1 0 1

2 1 2 2 4

3 1 3 3 9

4 1 4 4 16

5 1 5 5 25

10 1 10 10 100
100 2 100 200 10,000
1000 3 1000 3000 100
1,000,000 6 1,000,000 6,000,000 1012
1,000,000,000 9 1,000,000,00 9,000,000,00 1018

0 0

Fig. 19.8 | Number of comparisons for common Big O notations.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

	Slide 1: Chapter 19 Searching, Sorting and Big O
	Slide 2
	Slide 3
	Slide 4
	Slide 5: 19.1 Introduction
	Slide 6
	Slide 7
	Slide 8
	Slide 9: 19.2 Linear Search
	Slide 10: 19.2 Linear Search (cont.)
	Slide 11
	Slide 12
	Slide 13
	Slide 14: 19.3 Big O Notation
	Slide 15: 19.3.1 O(1) Algorithms
	Slide 16: 19.3.2 O(n) Algorithms
	Slide 17: 19.3.3 O(n2) Algorithms
	Slide 18: 19.3.4 Big O of the Linear Search
	Slide 19
	Slide 20: 19.4 Binary Search
	Slide 21: 19.4.1 Binary Search Implementation
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29: 19.4.2 Efficiency of the Binary Search
	Slide 30: 19.4.2 Efficiency of the Binary Search (cont.)
	Slide 31: 19.5 Sorting Algorithms
	Slide 32: 19.6 Selection Sort
	Slide 33: 19.6.1 Selection Sort Implementation
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38: 19.7 Insertion Sort
	Slide 39: 19.7.1 Insertion Sort Implementation
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45: 19.8 Merge Sort
	Slide 46: 19.8.1 Merge Sort Implementation
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57

