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 Searching data involves determining whether a value 
(referred to as the search key) is present in the data and, if 
so, finding its location. 
◦ Two popular search algorithms are the simple linear search and the 

faster but more complex binary search. 

 Sorting places data in ascending or descending order, based 
on one or more sort keys. 
◦ This chapter introduces two simple sorting algorithms, the selection 

sort and the insertion sort, along with the more efficient but more 
complex merge sort. 

 Figure 19.1 summarizes the searching and sorting 
algorithms discussed in the examples and exercises of this 
book.
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 This section and Section 19.4 discuss two common 

search algorithms—one that’s easy to program yet 

relatively inefficient (linear search) and one that’s 

relatively efficient but more complex to program 

(binary search).
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 The linear search algorithm searches each element in an 
array sequentially. 
◦ If the search key does not match an element in the array, the 

algorithm tests each element, and when the end of the array is 
reached, informs the user that the search key is not present. 

◦ If the search key is in the array, the algorithm tests each element until 
it finds one that matches the search key and returns the index of that 
element.

 Class LinearSearchTest (Fig. 19.2) contains static 
method linearSearch for performing searches of an 
int array and main for testing linearSearch.
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 Searching algorithms all accomplish the same goal—

finding an element (or elements) that matches a given 

search key, if such an element does, in fact, exist. 

 The major difference is the amount of effort they 

require to complete the search. 

 Big O notation indicates how hard an algorithm may 

have to work to solve a problem. 

◦ For searching and sorting algorithms, this depends particularly 

on how many data elements there are.
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 If an algorithm is completely independent of the number of 

elements in the array, it is said to have a constant run time, 

which is represented in Big O notation as O(1) and 

pronounced as “order one.”  

◦ An algorithm that’s O(1) does not necessarily require only one 

comparison. 

◦ O(1) just means that the number of comparisons is constant—it does 

not grow as the size of the array increases. 
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 An algorithm that requires a total of n – 1 comparisons is 

said to be O(n). 

◦ An O(n) algorithm is referred to as having a linear run time. 

◦ O(n) is often pronounced “on the order of n” or simply “order n.”
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 Constant factors are omitted in Big O notation.

 Big O is concerned with how an algorithm’s run time grows in 
relation to the number of items processed. 

 O(n2) is referred to as quadratic run time and pronounced 
“on the order of n-squared” or more simply “order n-
squared.”
◦ When n is small, O(n2) algorithms (running on today’s computers) will 

not noticeably affect performance. 

◦ But as n grows, you’ll start to notice the performance degradation. 

◦ An O(n2) algorithm running on a million-element array would require a 
trillion “operations” (where each could actually require several 
machine instructions to execute). 

◦ A billion-element array would require a quintillion operations.

 You’ll also see algorithms with more favorable Big O measures. 
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 The linear search algorithm runs in O(n) time. 
◦ The worst case in this algorithm is that every element must be 

checked to determine whether the search item exists in the array. 
◦ If the size of the array is doubled, the number of comparisons that 

the algorithm must perform is also doubled. 

 Linear search can provide outstanding performance if the 
element matching the search key happens to be at or near 
the front of the array. 
◦ We seek algorithms that perform well, on average, across all 

searches, including those where the element matching the search key 
is near the end of the array.

 If a program needs to perform many searches on large 
arrays, it’s better to implement a more efficient algorithm, 
such as the binary search.
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 The binary search algorithm is more efficient than linear 
search, but it requires that the array be sorted. 
◦ The first iteration tests the middle element in the array. If this 

matches the search key, the algorithm ends. 

◦ If the search key is less than the middle element, the algorithm 
continues with only the first half of the array. 

◦ If the search key is greater than the middle element, the algorithm 
continues with only the second half. 

◦ Each iteration tests the middle value of the remaining portion of the 
array. 

◦ If the search key does not match the element, the algorithm 
eliminates half of the remaining elements. 

◦ The algorithm ends by either finding an element that matches the 
search key or reducing the subarray to zero size.
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 Method sort sorts the array data’s elements in an array 

in ascending order (by default).
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 In the worst-case scenario, searching a sorted array of 1023 
elements takes only 10 comparisons when using a binary 
search. 
◦ The number 1023 (210 – 1) is divided by 2 only 10 times to get the 

value 0, which indicates that there are no more elements to test. 
◦ Dividing by 2 is equivalent to one comparison in the binary search 

algorithm. 

 Thus, an array of 1,048,575 (220 – 1) elements takes a 
maximum of 20 comparisons to find the key, and an array of 
over one billion elements takes a maximum of 30 
comparisons to find the key. 
◦ A difference between an average of 500 million comparisons for the 

linear search and a maximum of only 30 comparisons for the binary 
search! 
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 The maximum number of comparisons needed for the 

binary search of any sorted array is the exponent of the 

first power of 2 greater than the number of elements in 

the array, which is represented as log2 n. 

 All logarithms grow at roughly the same rate, so in big 

O notation the base can be omitted. 

 This results in a big O of O(log n) for a binary search, 

which is also known as logarithmic run time and 

pronounced as “order log n.”

© Copyright 1992-2015 by Pearson 
Education, Inc. All Rights Reserved.



 Sorting data (i.e., placing the data into some particular order, 
such as ascending or descending) is one of the most important 
computing applications. 

 An important item to understand about sorting is that the end 
result—the sorted array—will be the same no matter which 
algorithm you use to sort the array. 

 The choice of algorithm affects only the run time and memory 
use of the program. 

 The rest of this chapter introduces three common sorting 
algorithms. 
◦ The first two—selection sort and insertion sort—are easy to program but 

inefficient. 
◦ The last algorithm—merge sort—is much faster than selection sort and 

insertion sort but harder to program. 
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 Selection sort
◦ simple, but inefficient, sorting algorithm

 Its first iteration selects the smallest element in the array and swaps it 
with the first element. 

 The second iteration selects the second-smallest item (which is the 
smallest item of the remaining elements) and swaps it with the second 
element. 

 The algorithm continues until the last iteration selects the second-
largest element and swaps it with the second-to-last index, leaving the 
largest element in the last index. 

 After the ith iteration, the smallest i items of the array will be sorted 
into increasing order in the first i elements of the array.

 After the first iteration, the smallest element is in the first position. 
After the second iteration, the two smallest elements are in order in the 
first two positions, etc.

 The selection sort algorithm runs in O(n2) time. 

© Copyright 1992-2015 by Pearson 
Education, Inc. All Rights Reserved.



 Class SelectionSortTest (Fig. 19.4) contains:
◦ static method selectionSort to sort an int array 

using the selection sort algorithm

◦ static method swap to swap the values of two array 
elements  

◦ static method printPass to display the array contents 
after each pass, and 

◦ main to test method selectionSort.
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 Insertion sort
◦ another simple, but inefficient, sorting algorithm

 The first iteration takes the second element in the array 
and, if it’s less than the first element, swaps it with the 
first element. 

 The second iteration looks at the third element and 
inserts it into the correct position with respect to the 
first two, so all three elements are in order. 

 At the ith iteration of this algorithm, the first i elements 
in the original array will be sorted. 

 The insertion sort algorithm also runs in O(n2) time. 
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 Class InsertionSortTest (Fig. 19.5) contains:
◦ static method insertionSort to sort ints using the 

insertion sort algorithm
◦ static method printPass to display the array contents 

after each pass, and 
◦ main to test method insertionSort.
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 Merge sort
◦ efficient sorting algorithm 
◦ conceptually more complex than selection sort and insertion sort

 Sorts an array by splitting it into two equal-sized subarrays, 
sorting each subarray, then merging them into one larger 
array. 

 The implementation of merge sort in this example is 
recursive. 
◦ The base case is an array with one element, which is, of course, 

sorted, so the merge sort immediately returns  in this case. 
◦ The recursion step splits the array into two approximately equal 

pieces, recursively sorts them, then merges the two sorted arrays into 
one larger, sorted array. 

 Merge sort has an efficiency of O(n log n).
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 Figure 19.6 declares the MergeSortTest class, 
which contains:

 static method mergeSort to initiate the sorting 
of an int array using the merge sort algorithm

 static method sortArray to perform the recursive 
merge sort algorithm—this is called by method 
mergeSort

 static method merge to merge two sorted 
subarrays into a single sorted subarray 

 static method subarrayString to get a 
subarray’s String representation for output 
purposes, and 

 main to test method mergeSort.
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