
Java How to Program, 10/e

© Copyright 1992-2015 by Pearson Education, Inc. All Rights
Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

 For some problems, it’s useful to have a method call

itself.

▪ Known as a recursive method.

▪ Can call itself either directly or indirectly through another

method.

 Figure 18.1 summarizes the recursion examples and

exercises in this book.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

 When a recursive method is called to solve a problem, it actually
is capable of solving only the simplest case(s), or base case(s).
▪ If the method is called with a base case, it returns a result.

 If the method is called with a more complex problem, it divides
the problem into two conceptual pieces
▪ a piece that the method knows how to do and
▪ a piece that it does not know how to do.

 To make recursion feasible, the latter piece must resemble the
original problem, but be a slightly simpler or smaller version of
it.

 Because this new problem resembles the original problem, the
method calls a fresh copy of itself to work on the smaller
problem
▪ this is a recursive call
▪ also called the recursion step

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

 The recursion step normally includes a return statement,
because its result will be combined with the portion of the
problem the method knew how to solve to form a result that
will be passed back to the original caller.

 The recursion step executes while the original method call
is still active.

 For recursion to eventually terminate, each time the method
calls itself with a simpler version of the original problem,
the sequence of smaller and smaller problems must
converge on a base case.
▪ When the method recognizes the base case, it returns a result to the

previous copy of the method.
▪ A sequence of returns ensues until the original method call returns

the final result to the caller.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

 A recursive method may call another method, which

may in turn make a call back to the recursive method.

▪ This is known as an indirect recursive call or indirect

recursion.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

 Factorial of a positive integer n, written n! (pronounced “n factorial”),
which is the product
▪ n · (n – 1) · (n – 2) · … · 1

 with 1! equal to 1 and 0! defined to be 1.

 The factorial of integer number (where number 0) can be
calculated iteratively (nonrecursively) using a for statement as
follows:
▪ factorial = 1;
▪ for (int counter = number; counter >= 1; counter--)

factorial *= counter;

 Recursive declaration of the factorial calculation for integers greater
than 1 is arrived at by observing the following relationship:
▪ n! = n · (n – 1)!

 Figure 18.3 uses recursion to calculate and print the factorials of the
integers from 0 through 21.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

 We use type long so the program can calculate

factorials greater than 12!.

 The factorial method produces large values so

quickly that we exceed the largest long value when

we attempt to calculate 21!.

 Package java.math provides classes BigInteger and

BigDecimal explicitly for arbitrary precision

calculations that cannot be performed with primitive

types.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

 Figure 18.4 reimplements class
FactorialCalculator using BigInteger
variables.

 To demonstrate larger values than what long variables
can store, we calculate the factorials of the numbers 0–
50.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

 BigInteger method compareTo compares the
BigInteger number that calls the method to the
method’s BigInteger argument.
▪ Returns -1 if the BigIteger that calls the method is less

than the argument, 0 if they are equal or 1 if the
BigInteger that calls the method is greater than the
argument.

 BigInteger constant ONE represents the integer
value 1.

 BigInteger methods multiply and subtract
implement multiplication and subtraction. Similar
methods are provided for other arithmetic operations

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

 The Fibonacci series, begins with 0 and 1 and has the
property that each subsequent Fibonacci number is the sum
of the previous two.

 0, 1, 1, 2, 3, 5, 8, 13, 21, …

 This series occurs in nature and describes a form of spiral.

 The ratio of successive Fibonacci numbers converges on a
constant value of 1.618…,
▪ called the golden ratio or the golden mean.

 The Fibonacci series may be defined recursively as follows:
 fibonacci(0) = 0

fibonacci(1) = 1
fibonacci(n) = fibonacci(n – 1) + fibonacci(n – 2)

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

 Two base cases for

▪ fibonacci(0) is defined to be 0

▪ fibonacci(1) to be 1

 Fibonacci numbers tend to become large quickly.

▪ We use type BigInteger as the parameter type and the

return type of method fibonacci.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

 BigInteger constants ZERO and ONE represent the

values 0 and 1, respectively.

 Iif number is greater than 1, the recursion step

generates two recursive calls, each for a slightly smaller

problem than the original call to fibonacci.

 BigInteger methods add and subtract are used

to help implement the recursive step.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

 Figure 18.6 shows how method fibonacci evaluates
fibonacci(3).

 The Java language specifies that the order of evaluation of
the operands is from left to right.

 Thus, the call fibonacci(2) is made first and the call
fibonacci(1) second.

 Each invocation of the fibonacci method that does not
match one of the base cases (0 or 1) results in two more
recursive calls to the fibonacci method.

 Calculating the Fibonacci value of 20 with the program in
Fig. 18.5 requires 21,891 calls to the fibonacci method;
calculating the Fibonacci value of 30 requires 2,692,537
calls!

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

 The method-call stack and stack frames keep track of

recursive method calls.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

 Both iteration and recursion are based on a control
statement:
▪ Iteration uses a repetition statement (e.g., for, while or
do…while)

▪ Recursion uses a selection statement (e.g., if, if…else or
switch)

 Both iteration and recursion involve repetition:
▪ Iteration explicitly uses a repetition statement

▪ Recursion achieves repetition through repeated method calls

 Iteration and recursion each involve a termination test:
▪ Iteration terminates when the loop-continuation condition fails

▪ Recursion terminates when a base case is reached.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

 Both iteration and recursion can occur infinitely:

▪ An infinite loop occurs with iteration if the loop-continuation

test never becomes false

▪ Infinite recursion occurs if the recursion step does not reduce

the problem each time in a manner that converges on the base

case, or if the base case is not tested.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

 Recursion repeatedly invokes the mechanism, and
consequently the overhead, of method calls.
▪ Can be expensive in terms of both processor time and memory

space.

 Each recursive call causes another copy of the method
(actually, only the method’s variables, stored in the
activation record) to be created
▪ this set of copies can consume considerable memory space.

 Since iteration occurs within a method, repeated
method calls and extra memory assignment are
avoided.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

 Towers of Hanoi
▪ Move stack of disks from one peg to another under the constraints that

exactly one disk is moved at a time and at no time may a larger disk be
placed above a smaller disk.

▪ Three pegs are provided, one being used for temporarily holding disks.

 Moving n disks can be viewed in terms of moving only n – 1
disks (hence the recursion) as follows:
▪ 1.Move n – 1 disks from peg 1 to peg 2, using peg 3 as a temporary

holding area.
▪ 2.Move the last disk (the largest) from peg 1 to peg 3.
▪ 3.Move n – 1 disks from peg 2 to peg 3, using peg 1 as a temporary

holding area.

 The process ends when the last task involves moving n = 1 disk
(i.e., the base case). This task is accomplished by moving the
disk, without using a temporary holding area.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

 A fractal is a geometric figure that can be generated from a
pattern repeated recursively (Fig. 18.12).

 The figure is modified by recursively applying the pattern
to each segment of the original figure.

 Fractals have a self-similar property—when subdivided into
parts, each resembles a reduced-size copy of the whole.

 Many fractals yield an exact copy of the original when a
portion of the fractal is magnified—such a fractal is said to
be strictly self-similar.

 See our Recursion Resource Center
(www.deitel.com/recursion/) for websites that
demonstrate fractals.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

 Strictly self-similar Koch Curve fractal (Fig. 18.12).
▪ It is formed by removing the middle third of each line in the drawing and

replacing it with two lines that form a point, such that if the middle third
of the original line remained, an equilateral triangle would be formed.

 Formulas for creating fractals often involve removing all or part
of the previous fractal image.

 Start with a straight line (Fig. 18.12(a)) and apply the pattern,
creating a triangle from the middle third (Fig. 18.12(b)).

 Then apply the pattern again to each straight line, resulting in
Fig. 18.12(c).

 Each time the pattern is applied, the fractal is at a new level, or
depth (sometimes the term order is also used).

 After only a few iterations, this fractal begins to look like a
portion of a snowflake (Fig. 18.12(e and f)).

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

 The Koch Snowflake fractal is similar to the Koch

Curve but begins with a triangle rather than a line.

 The same pattern is applied to each side of the triangle,

resulting in an image that looks like an enclosed

snowflake.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

 The “Lo Feather Fractal”
▪ Program to create a strictly self-similar fractal.
▪ Named for Sin Han Lo, a Deitel & Associates colleague who created

it.

 The fractal will eventually resemble one-half of a feather
(see the outputs in Fig. 18.19).

 The base case, or fractal level of 0, begins as a line between
two points, A and B (Fig. 18.13).

 To create the next higher level, we find the midpoint (C) of
the line.

 To calculate the location of point C, use the following
formula:

 xC = (xA + xB) / 2;
yC = (yA + yB) / 2;

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

 To create this fractal, we also must find a point D that lies left of
segment AC and creates an isosceles right triangle ADC.

 To calculate point D’s location, use the following formulas:
 xD = xA + (xC - xA) / 2 - (yC - yA) / 2;
yD = yA + (yC - yA) / 2 + (xC - xA) / 2;

 We now move from level 0 to level 1 as follows: First, add points C
and D (as in Fig. 18.14).

 Then, remove the original line and add segments DA, DC and DB.

 The remaining lines will curve at an angle, causing our fractal to look
like a feather.

 For the next level of the fractal, this algorithm is repeated on each of
the three lines in level 1.

 For each line, the formulas above are applied, where the former point D
is now considered to be point A, while the other end of each line is
considered to be point B.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

 Find a path through a maze, returning true if there is a possible solution
to the maze.

 Involves moving through the maze one step at a time, where moves can
be made by going down, right, up or left.

 From the current location, for each possible direction, the move is
made in that direction and a recursive call is made to solve the
remainder of the maze from the new location.
▪ When a dead end is reached, back up to the previous location and try to go in a

different direction.
▪ If no other direction can be taken, back up again.

 Continue until you find a point in the maze where a move can be made
in another direction.
▪ Move in the new direction and continue with another recursive call to solve the

rest of the maze.

 Using recursion to return to an earlier decision point is known as
recursive backtracking.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

	Slide 1: Chapter 18, Recursion
	Slide 2
	Slide 3
	Slide 4: 18.1 Introduction
	Slide 5
	Slide 6
	Slide 7: 18.2 Recursion Concepts
	Slide 8: 18.2 Recursion Concepts (cont.)
	Slide 9: 18.2 Recursion Concepts (cont.)
	Slide 10: 18.3 Example Using Recursion: Factorials
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15: 18.3 Example Using Recursion: Factorials (Cont.)
	Slide 16: 18.4 Reimplementing Class FactorialCalculator Using Class BigInteger
	Slide 17
	Slide 18
	Slide 19: 18.4 Reimplementing Class FactorialCalculator Using Class BigInteger (Cont.)
	Slide 20: 18.5 Example Using Recursion: Fibonacci Series
	Slide 21: 18.5 Example Using Recursion: Fibonacci Series (cont.)
	Slide 22
	Slide 23
	Slide 24
	Slide 25: 18.5 Example Using Recursion: Fibonacci Series (cont.)
	Slide 26: 18.5 Example Using Recursion: Fibonacci Series (cont.)
	Slide 27
	Slide 28
	Slide 29: 18.6 Recursion and the Method-Call Stack
	Slide 30
	Slide 31
	Slide 32: 18.7 Recursion vs. Iteration
	Slide 33: 18.7 Recursion vs. Iteration (cont.)
	Slide 34
	Slide 35
	Slide 36: 18.7 Recursion vs. Iteration (cont.)
	Slide 37
	Slide 38
	Slide 39
	Slide 40: 18.8 Towers of Hanoi
	Slide 41
	Slide 42
	Slide 43
	Slide 44: 18.9 Fractals
	Slide 45: 18.9.1 Koch Curve Fractal
	Slide 46
	Slide 47: 18.9.1 Koch Curve Fractal (cont.)
	Slide 48: 18.9.2 (Optional) Case Study: Lo Feather Fractal
	Slide 49: 18.9.2 (Optional) Case Study: Lo Feather Fractal (cont.)
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69: 18.10 Recursive Backtracking

