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OBJECTIVES
In this chapter you'll:

m Learn the concept of recursion.

Write and use recursive methods.

Determine the base case and recursion step in a recursive algorithm.

Learn how recursive method calls are handled by the system.

Learn the differences between recursion and iteration, and when to use each.

Learn what fractals are and how to draw them using recursion.

Learn what recursive backtracking is and why it’s an effective problem-solving technigue.
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18.1 Introduction

» For some problems, it’s useful to have a method call

itself.

= Known as a recursive method.
= Can call itself either directly or indirectly through another
method.

» Figure 18.1 summarizes the recursion examples and
exercises in this book.
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18 Factorial Method (Figs. 18.3 and 18.4)
Fibonacci Method (Fig. 18.5)
Towers of Hanoi (Fig. 18.11)
Fractals (Figs. 18.18 and 18.19)
What Does This Code Do? (Exercise 18.7, Exercise 18.12 and Exercise 18.13)
Find the Error in the Following Code (Exercise 18.8)
Raising an Integer to an Integer Power (Exercise 18.9)
Visualizing Recursion (Exercise 18.10)
Greatest Common Divisor (Exercise 18.11)
Determine Whether a String Is a Palindrome (Exercise 18.14)
Eight Queens (Exercise 18.15)
Print an Array (Exercise 18.106)
Print an Array Backward (Exercise 18.17)
Minimum Value in an Array (Exercise 18.18)
Star Fractal (Exercise 18.19)
Maze Traversal Using Recursive Backtracking (Exercise 18.20)
Generating Mazes Randomly (Exercise 18.21)
Mazes of Any Size (Exercise 18.22)
Time to Calculate a Fibonacci Number (Exercise 18.23)

Fig. 18.1 | Summary of the recursion examples and exercises in this text. (Part |
of 2)
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19

21

Merge Sort (Fig. 19.6)
Linear Search (Exercise 19.8)
Binary Search (Exercise 19.9)
Quicksort (Exercise 19.10)

Binary-Tree Insert (Fig. 21.17)

Preorder Traversal of a Binary Tree (Fig. 21.17)
Inorder Traversal of a Binary Tree (Fig. 21.17)
Postorder Traversal of a Binary Tree (Fig. 21.17)
Print a Linked List Backward (Exercise 21.20)
Search a Linked List (Exercise 21.21)

Fig. 18.1 | Summary of the recursion examples and exercises in this text. (Part 2
of 2)
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18.2 Recursion Concepts

» When a recursive method is called to solve a problem, it actually
IS capable of solving only the simplest case(s), or base case(s).
= If the method is called with a base case, it returns a result.

» If the method is called with a more complex problem, it divides
the problem into two conceptual pieces
= a piece that the method knows how to do and
= a piece that it does not know how to do.

» To make recursion feasible, the latter piece must resemble the
original problem, but be a slightly simpler or smaller version of
It.

» Because this new problem resembles the original problem, the
method calls a fresh copy of itself to work on the smaller
problem

= this is a recursive call

= also called the recursion step
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18.2 Recursion Concepts (cont.)

» The recursion step normally includes a return statement,
because its result will be combined with the portion of the
problem the method knew how to solve to form a result that
will be passed back to the original caller.

» The recursion step executes while the original method call
Is still active.

» For recursion to eventually terminate, each time the method
calls itself with a simpler version of the original problem,
the sequence of smaller and smaller problems must
converge on a base case.

= When the method recognizes the base case, it returns a result to the
previous copy of the method.

= A sequence of returns ensues until the original method call returns
the final result to the caller.
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18.2 Recursion Concepts (cont.)

» A recursive method may call another method, which

may In turn make a call back to the recursive method.

= This is known as an indirect recursive call or indirect
recursion.
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18.3 Example Using Recursion:
Factorials

» Factorial of a positive integer n, written n! (pronounced “n factorial™),
which is the product
"n-(n-1)-(h=-2)-...-1

» with 1! equal to 1 and 0! defined to be 1.

» The factorial of integer number (where number > 0) can be
calculated iteratively (nonrecursively) using a for statement as
follows:
= factorial = 1;
= for ( int counter = number; counter >= 1; counter-- )

factorial *= counter;

» Recursive declaration of the factorial calculation for integers greater
than 1 is arrived at by observing the following relationship:
“nl=n-(n-1)!

» Figure 18.3 uses recursion to calculate and print the factorials of the
Integers from O through 21.
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Final value = 120

51 51!
l T 5!'=5%*24=120is returned
5 % 4! 5 * 41
i T 41 =4%* 6 =24 Is returned
4 * 3| 4 * 3|
l T 31=3*2=06is returned
3 * 2| 3 0% 21
i T 21 =2* 1 =2is returned
2 * 1! 2 * 1]
l T | returned
______________________________ >
(a) Sequence of recursive calls (b) Values returned from each recursive call

Fig. 18.2 | Recursive evaluation of 5!.
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1 // Fig. 18.3: FactorialCalculator.java

2 // Recursive factorial method.

3

4 public class FactorialCalculator

5 {

6 // recursive method factorial (assumes its parameter is >= 0)
7 public static Tong factorial(long number)

8 {

9 it (number <= 1) // test for base case

10 return 1; // base cases: 0! =1 and 1! =1
11 else // recursion step

12 return number * factorial(number - 1);

13 }

14

15 // output factorials for values 0-21

16 public static void main(String[] args)

17 {

I8 // calculate the factorials of 0 through 21

19 for (int counter = 0; counter <= 21; counter++)
20 System.out.printf("%d! = %d%n", counter, factorial(counter));
21 }

22 } // end class FactorialCalculator

Fig. 18.3 | Recursive factorial method. (Part | of 2.)
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0!
1!
2!
3!
4!
5!

ONR R

24
120

12! 479001600 —— 12! causes overflow for int variables

20!
211

2432902008176640000
-4249290049419214848 —— 21! causes overflow for Tong variables

Fig. 18.3 | Recursive factorial method. (Part 2 of 2.)
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- Common Programming Error 18.1
Either omitting the base case or writing the recursion step
incorrectly so that it does not converge on the base case
can cause a logic error known as infinite recursion,
where recursive calls are continuously made until mem-
ory is exhausted or the method-call stack overflows. This
error is analogous to the problem of an infinite loop in an
iterative (nonrecursive) solution.
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18.3 Example Using Recursion:
Factorials (Cont.)

» We use type 1ong so the program can calculate
factorials greater than 121.

» The factorial method produces large values so

quickly that we exceed the largest 1ong value when
we attempt to calculate 21!.

» Package java.math provides classes Biginteger and
BigDecimal explicitly for arbitrary precision
calculations that cannot be performed with primitive

types.
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18.4 Reimplementing Class
FactorialCalculator Using Class
BigInteger

» Figure 18.4 reimplements class

FactorialCalculator using BigInteger
variables.

» To demonstrate larger values than what 1ong variables
can store, we calculate the factorials of the numbers 0—
50.
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1 // Fig. 18.4: FactorialCalculator.java

2 // Recursive factorial method.

3 import java.math.BigInteger;

4

5 public class FactorialCalculator

6 {

7 // recursive method factorial (assumes its parameter is >= 0)
8 public static BigInteger factorial(BigInteger number)

9 {

10 if (number.compareTo(BigInteger.ONE) <= 0) // test base case
11 return BigInteger.ONE; // base cases: 0! =1 and 1! =1
12 else // recursion step

13 return number.multiply(

14 factorial(number.subtract(BigInteger.ONE)));

15 }

16

17 // output factorials for values 0-50

18 public static void main(String[] args)

19 {
20 // calculate the factorials of 0 through 50
21 for (int counter = 0; counter <= 50; counter++)
22 System.out.printf("%d! = %d%n", counter,
23 factorial(BigInteger.valueOf(counter)));
24 }

25 } // end class FactorialCalculator

18.4 | Factorial calculations with a recursive method. (Part | of 2.)
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0!
1!
2!
3!
21!
22!
47!
48!

49!
50!

N R R

51090942171709440000 — 21! and larger values no longer cause overflow
1124000727777607680000

258623241511168180642964355153611979969197632389120000000000
12413915592536072670862289047373375038521486354677760000000000
608281864034267560872252163321295376887552831379210240000000000
30414093201713378043612608166064768844377641568960512000000000000

Fig. 18.4 | Factorial calculations with a recursive method. (Part 2 of 2.)
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18.4 Reimplementing Class
FactorialCalculator Using Class

BigInteger (Cont.)

» B1gInteger method compareTo compares the
BigInteger number that calls the method to the
method’s B1gInteger argument.

= Returns -1 if the B1gIteger that calls the method is less
than the argument, O if they are equal or 1 if the
BigInteger that calls the method is greater than the

argument.
» B1gInteger constant ONE represents the integer
value 1.
» B1gInteger methods multiply and subtract

Implement multiplication and subtraction. Similar
methods are provided for other arithmetic operations
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18.5 Example Using Recursion:
Fibonacci Series

» The Fibonacci series, begins with 0 and 1 and has the
property that each subsequent Fibonacci number is the sum
of the previous two.

- 01,1,23,5,8,13, 21, ..
» This series occurs in nature and describes a form of spiral.

» The ratio of successive Fibonacci numbers converges on a
constant value of 1.618...,
= called the golden ratio or the golden mean.

» The Fibonacci series may be defined recursively as follows:
* fibonacci(0) =0
fibonacci(1) =1

fibonacci(n) = fibonacci(n— 1) + fibonacci(n— 2)
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18.5 Example Using Recursion:
Fibonacci Series (cont.)

» Two base cases for
= fibonacci (0) is defined to be 0
= fibonacci (1) tobe 1

» Fibonacci numbers tend to become large quickly.

= We use type BigInteger as the parameter type and the
return type of method fibonacci.
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1 // Fig. 18.5: FibonacciCalculator.java

2 // Recursive fibonacci method.

3 import java.math.BigInteger;

4

5 public class FibonacciCalculator

6 {

7 private static BigInteger TWO = BigInteger.valueOf(2);
8

9 // recursive declaration of method fibonacci

10 public static BigInteger fibonacci(BigInteger number)
11 {

12 if (number.equals(BigInteger.ZERO) ||

13 number.equals(BigInteger.ONE)) // base cases
14 return number;

15 else // recursion step

16 return fibonacci(number.subtract(BigInteger.ONE)).add(
17 fibonacci (number.subtract(TW0)));

I8 }

19

Fig. 18.5 | Recursive fibonacci method. (Part | of 3.)
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20 // displays the fibonacci values from 0-40

21 public static void main(String[] args)

22 {

23 for (int counter = 0; counter <= 40; counter++)

24 System.out.printf("Fibonacci of %d is: %d%n", counter,
25 fibonacci(BigInteger.valueOf(counter)));

26 }

27 } // end class FibonacciCalculator

Fig. 18.5 | Recursive fibonacci method. (Part 2 of 3.)
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Fibonacci of 0 is: 0
Fibonacci of 1 1is: 1
Fibonacci of 2 is: 1
Fibonacci of 3 1is: 2
Fibonacci of 4 is: 3
Fibonacci of 5 is: 5
Fibonacci of 6 is: 8
Fibonacci of 7 is: 13
Fibonacci of 8 is: 21
Fibonacci of 9 1is: 34
Fibonacci of 10 1is: 55

Fibonacci of 37 1is: 24157817
Fibonacci of 38 is: 39088169
Fibonacci of 39 is: 63245986
Fibonacci of 40 1is: 102334155

Fig. 18.5 | Recursive fibonacci method. (Part 3 of 3.)
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18.5 Example Using Recursion:
Fibonacci Series (cont.)

» B1gInteger constants ZERO and ONE represent the
values 0 and 1, respectively.

» lif number is greater than 1, the recursion step
generates two recursive calls, each for a slightly smaller
problem than the original call to fibonacci.

» B1gInteger methods add and subtract are used
to help implement the recursive step.
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18.5 Example Using Recursion:
Fibonacci Series (cont.)

>

>

>

Figure 18.6 shows how method fibonacc1 evaluates
fibonacci (3).

The Java language specifies that the order of evaluation of
the operands is from left to right.

Thus, the call fibonacci (2) is made first and the call
fibonacci (1) second.

Each invocation of the fibonacci method that does not
match one of the base cases (0 or 1) results in two more
recursive calls to the fibonacci method.

Calculating the Fibonacci value of 20 with the program in
Fig. 18.5 requires 21,891 calls to the f1bonacci method;
cahculating the Fibonacci value of 30 requires 2,692,537
calls!
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fibonacci( 3 )

:

~ ™~
return fibonacci( 2 ) + fibonacci( 1 )
~ / ™~ f\ =~
return fibonacci( 1 ) + fibonacci( 0 ) return 1
l - - l
return 1 return 0

Fig. 18.6 | Setof recursive calls for fibonacci(3).
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5. Performance Tip 18.1
Awoid Fibonacci-style recursive programs, because they
result in an exponential “explosion” of method calls.
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18.6 Recursion and the Method-Call
Stack

» The method-call stack and stack frames keep track of
recursive method calls.
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A fibonacci( 3 )

RN

B fibonacci( 2 ) E fibonacci( 1 )
C fibonacci( 1 ) D fibonacci( 0 ) return 1
return 1 return 0O

Fig. 18.7 | Method calls made within the call fibonacci (3).
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(a)

Top of Stack

Method call: A
number = 3

Top of Stack

|

Method call; C
number = 1

Method call: B
number = 2

Method call: A
number = 3

()

Top of Stack

|

Method call; D
number = 0
Method call: B
number = 2

Method call: A
number = 3

(d)

Top of Stack

|

Method call: E
number = 1

Method call: A
number = 3

Fig. 18.8 | Method calls on the program-execution stack.
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18.7 Recursion vs. lteration

» Both 1teration and recursion are based on a control

statement:

= |teration uses a repetition statement (e.g., for,while or
do...while)

= Recursion uses a selection statement (e.g., 1f, 1f...elseor
switch)

» Both iteration and recursion involve repetition:
= Iteration explicitly uses a repetition statement
= Recursion achieves repetition through repeated method calls

» Iteration and recursion each involve a termination test:
= Iteration terminates when the loop-continuation condition fails
= Recursion terminates when a base case Is reached.
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18.7 Recursion vs. lteration (cont.)

» Both iteration and recursion can occur infinitely:

= An infinite loop occurs with iteration if the loop-continuation
test never becomes false

= Infinite recursion occurs if the recursion step does not reduce
the problem each time in a manner that converges on the base
case, or if the base case is not tested.
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1 // Fig. 18.9: FactorialCalculator.java

2 // Iterative factorial method.

3

4 public class FactorialCalculator

5 {

6 // recursive declaration of method factorial

7 public long factorial(long number)

8 {

9 Tong result = 1;

10

11 // iterative declaration of method factorial
12 for (long i = number; i >= 1; i--)

13 result *= 1i;

14

15 return result;

16 }

17

I8 // output factorials for values 0-10

19 public static void main(String[] args)
20 {
21 // calculate the factorials of 0 through 10
22 for (int counter = 0; counter <= 10; counter++)
23 System.out.printf("%d! = %d%n", counter, factorial(counter));
24 }

25 } // end class FactorialCalculator

18.9 | lterative factorial method. (Part | of 2.)

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.



0! =1
1! =1

21 = 2

31 = 6

41 = 24

51 = 120

6! = 720

7! = 5040

8! = 40320

9! = 362880
10! = 3628800

Fig. 18.9 | Iterative factorial method. (Part 2 of 2.)
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18.7 Recursion vs. lteration (cont.)

» Recursion repeatedly invokes the mechanism, and
consequently the overhead, of method calls.

= Can be expensive in terms of both processor time and memory
space.

» Each recursive call causes another copy of the method
(actually, only the method’s variables, stored in the
activation record) to be created
= this set of copies can consume considerable memory space.

» Since Iteration occurs within a method, repeated
method calls and extra memory assignment are
avoided.
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’,,mr’ Software Engineering Observation 18.1

B8R Any problem that can be solved recurszvely can also be
solved iteratively. A recursive approach is normally
preferred over an iterative approach when the recursive
approach more naturally mirrors the problem and results
in a program that is easier to understand and debug. A
recursive approach can often be implemented with fewer
lines of code. Another reason to choose a recursive

approach is that an iterative one might not be apparent.
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. Performance Tip 18.2

=" Avoid using recursion in situations requiring high per-
formance. Recursive calls take time and consume addi-
tional memory.
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Common Programming Error 18.2

Accidentally having a nonrecursive method call itself ei-
ther directly or indirectly through another method can
cause infinite recursion.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.




18.8 Towers of Hanoi

» Towers of Hanoi
= Move stack of disks from one peg to another under the constraints that

exactly one disk is moved at a time and at no time may a larger disk be

placed above a smaller disk.
= Three pegs are provided, one being used for temporarily holding disks.

» Moving n disks can be viewed in terms of moving only n—1

disks (hence the recursion) as follows:
= 1.Move n—1 disks from peg 1 to peg 2, using peg 3 as a temporary

holding area.
= 2.Move the last disk (the largest) from peg 1 to peg 3.

= 3.Move n—1 disks from peg 2 to peg 3, using peg 1 as a temporary

holding area.
» The process ends when the last task involves moving n = 1 disk

(i.e., the base case). This task is accomplished by moving the
disk, without using a temporary holding area.
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peg | peg 2 peg 3

| —
| e—

Fig. 18.10 | Towers of Hanoi for the case with four disks.
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1 // Fig. 18.11: TowersOfHanoi.java
2 // Towers of Hanoi solution with a recursive method.
3 public class TowersOfHanoi
4 {
5 // recursively move disks between towers
6 public static void solveTowers(int disks, int sourcePeg,
7 int destinationPeg, int tempPeg)
8 {
9 // base case -- only one disk to move
10 if (disks == 1)
11 {
12 System.out.printf("%n%d --> %d", sourcePeg, destinationPeg);
13 return;
14 }
15
16 // recursion step -- move (disk - 1) disks from sourcePeg
17 // to tempPeg using destinationPeg
18 solveTowers(disks - 1, sourcePeg, tempPeg, destinationPeg);
19
20 // move last disk from sourcePeg to destinationPeg
21 System.out.printf("%n%d --> %d", sourcePeg, destinationPeg);
22
Fig. 18.11 | Towers of Hanoi solution with a recursive method. (Part | of 2.)
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23 // move (disks - 1) disks from tempPeg to destinationPeg

24 solveTowers(disks - 1, tempPeg, destinationPeg, sourcePeg);
25 }

26

27 public static void main(String[] args)

28 {

29 int startPeqg = 1; // value 1 used to indicate startPeg in output
30 int endPeg = 3; // value 3 used to indicate endPeg in output
31 int tempPeqg = 2; // value 2 used to indicate tempPeg in output
32 int totalDisks = 3; // number of disks

33

34 // initial nonrecursive call: move all disks.

35 solveTowers(totalDisks, startPeg, endPeg, tempPeqg);

36 }

37 } // end class TowersOfHanoi

1 -->3

1 -->2

3 -—> 2

1 -->3

2 -—> 1

2 -—> 3

1 -->3
Fig. 18.11 | Towers of Hanoi solution with a recursive method. (Part 2 of 2.)
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18.9 Fractals

» Afractal Is a geometric figure that can be generated from a

>

pattern repeated recursively (Fig. 18.12).

The figure I1s modified by recursively applying the pattern
to each segment of the original figure.

Fractals have a self-similar property—when subdivided into
parts, each resembles a reduced-size copy of the whole.

Many fractals yield an exact copy of the original when a
portion of the fractal is magnified—such a fractal is said to
be strictly self-similar.

See our Recursion Resource Center
(www.deitel.com/recursion/) for websites that
demonstrate fractals.
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18.9.1 Koch Curve Fractal

» Strictly self-similar Koch Curve fractal (Fig. 18.12).
= |t is formed by removing the middle third of each line in the drawing and
replacing it with two lines that form a point, such that if the middle third
of the original line remained, an equilateral triangle would be formed.
» Formulas for creating fractals often involve removing all or part
of the previous fractal image.

» Start with a straight line (Fig. 18.12(a)) and apply the pattern,
creating a triangle from the middle third (Fig. 18.12(b)).

» Then apply the pattern again to each straight line, resulting in
Fig. 18.12(c).

» Each time the pattern is applied, the fractal is at a new level, or
depth (sometimes the term order is also used).

» After only a few iterations, this fractal begins to look like a
portion of a snowflake (Fig. 18.12(e and f)).
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(a) Level O (b) Level |

VAN

(c) Level 2 (d) Level 3
(e) Level 4 (f) Level 5

Fig. 18.12 | Koch Curve fractal.
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18.9.1 Koch Curve Fractal (cont.)

» The Koch Snowflake fractal is similar to the Koch
Curve but begins with a triangle rather than a line.

» The same pattern is applied to each side of the triangle,
resulting in an image that looks like an enclosed
snowflake.
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18.9.2 (Optional) Case Study: Lo Feather
Fractal

» The “Lo Feather Fractal”
= Program to create a strictly self-similar fractal.
= Named for Sin Han Lo, a Deitel & Associates colleague who created
It.
» The fractal will eventually resemble one-half of a feather
(see the outputs in Fig. 18.19).

» The base case, or fractal level of 0, begins as a line between
two points, A and B (Fig. 18.13).

» To create the next higher level, we find the midpoint (C) of
the line.

» To calculate the location of point C, use the following
formula:

(XA + xB) / 2;
/ 2;
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18.9.2 (Optional) Case Study: Lo Feather

<

Fractal (cont.)

>

>

To create this fractal, we also must find a point D that lies left of
segment AC and creates an isosceles right triangle ADC.

To calculate point D’s location, use the following formulas:

- XD = XA + (XC - xA) / 2 - (yC - yA) / 2;
yD = yA + (yC - yA) / 2 + (xC - xA) / 2;

We now move from level O to level 1 as follows: First, add points C
and D (as in Fig. 18.14).
Then, remove the original line and add segments DA, DC and DB.

The remaining lines will curve at an angle, causing our fractal to look
like a feather.

For the next level of the fractal, this algorithm is repeated on each of
the three lines in level 1.

For each line, the formulas above are applied, where the former point D
Is now considered to be point A, while the other end of each line is
considered to be point B.
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Fig. 18.13 | “Lo feather fractal” at level 0.
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Fig. 18.14 | Determining points C and D for level | of the “Lo feather fractal.”
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Fig. 18.15 | “Lo feather fractal” at level I, with C and D points determined for
level 2. [Note: The fractal at level O is included as a dashed line as a reminder of
where the line was located in relation to the current fractal ]
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Fig. 18.16 | “Lo feather fractal” at level 2, with dashed lines from level |
provided.
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Fig. 18.17 | “Lo feather fractal” at level 2.
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// Fig. 18.18: Fractal.java

// Fractal user interface.

import java.awt.Color;

import java.awt.FlowLayout;

import java.awt.event.ActionEvent;
import java.awt.event.ActionListener;
import javax.swing.JFrame;

import javax.swing.JButton;

import javax.swing.JLabel;

I0 import javax.swing.JPanel;

Il 1import javax.swing.JColorChooser;

VoO~NONNDE WN =

12

I3 public class Fractal extends JFrame

14 {

15 private static final int WIDTH = 400; // define width of GUI
16 private static final int HEIGHT = 480; // define height of GUI
17 private static final int MIN_LEVEL = 0;

18 private static final int MAX_LEVEL = 15;

19

20 // set up GUI

21 public Fractal(Q

22 {

23 super("Fractal™);

24

Fig. 18.18 | Fractal user interface. (Part | of 6.)
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25 // set up levellLabel to add to controlJ]Panel

26 final JLabel levellLabel = new JLabel("Level: 0");

27

28 final FractalJPanel drawSpace = new FractallPanel(0);
29

30 // set up control panel

31 final JPanel controlJPanel = new JPanel();

32 controlJPanel.setLayout(new FlowLayout());

33

34 // set up color button and register listener

35 final JButton changeColor]Button = new JButton("Color™);
36 controlJPanel.add(changeColor]Button);

37 changeColor]Button.addActionListener(

38 new ActionListener() // anonymous 1inner class

39 {

40 // process changeColor]Button event

41 @Override

42 public void actionPerformed(ActionEvent event)
43 {

44 Color color = JColorChooser.showDialog(

45 Fractal.this, "Choose a color™, Color.BLUE);
46

Fig. 18.18 | Fractal user interface. (Part 2 of 6.)
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47
48
49
50
51
52
33
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69

// set default color, if no color is returned
if (color == null)
color = Color.BLUE;

drawSpace.setColor(color);
}
} // end anonymous inner class
); // end addActionListener

// set up decrease level button to add to control panel and
// register listener
final JButton decreaselLevell]Button = new JButton('Decrease Level™);
controlJPanel.add(decreaselLevel]Button);
decreaselLevelJButton.addActionListener(

new ActionListener() // anonymous inner class

{
// process decreaselLevel]Button event
@Override
public void actionPerformed(ActionEvent event)
{

int level = drawSpace.getLevel();
--Tevel;

Fig. 18.18 | Fractal user interface. (Part 3 of 6.)
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70 // modify level if possible

71 if ((Tevel >= MIN_LEVEL)) &&
72 (level <= MAX_LEVEL))

73 {

74 levellLabel.setText("Level: " + level);
75 drawSpace.setLevel(level);
76 repaint();

77 }

78 }

79 } // end anonymous 1inner class

80 ); // end addActionListener

81

Fig. 18.18 | Fractal user interface. (Part 4 of 6.)
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82 // set up increase level button to add to control panel

83 // and register listener

84 final JButton increaselLevell]Button = new JButton(“Increase Level™);
85 controlJPanel.add(increaselLevel]Button);

86 increaselevelJButton.addActionListener(

87 new ActionListener() // anonymous inner class
88 {

89 // process increaselLevel]Button event

90 @Override

91 public void actionPerformed(ActionEvent event)
92 {

93 int Tevel = drawSpace.getlLevel();

94 ++level;

95

96 // modify level if possible

97 if ((level >= MIN_LEVEL)) &&

98 (Tevel <= MAX_LEVEL))

99 {

100 TevellLabel.setText("Level: " + level);
101 drawSpace.setLevel(level);

102 repaint();

103 }

104 }

105 } // end anonymous 1inner class

106 ); // end addActionListener

18.18 | Fractal user interface. (Parts of 6.)
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107

108 controlJPanel.add(levellLabel);

109

110 // create mainJPanel to contain controll]Panel and drawSpace
111 final JPanel mainJPanel = new JPanel();

112 mainJPanel.add(controlJPanel);

113 mainJPanel.add(drawSpace);

114

115 add(mainJPanel); // add JPanel to JFrame

116

117 setSize(WIDTH, HEIGHT); // set size of JFrame

118 setVisible(true); // display JFrame

119 } // end Fractal constructor

120

121 public static void main(String[] args)

122 {

123 Fractal demo = new Fractal(Q);

124 demo.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
125 }

126 } // end class Fractal

Fig. 18.18 | Fractal user interface. (Part 6 of 6.)
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1 // Fig. 18.19: FractallPanel.java

2 // Drawing the "Lo feather fractal" using recursion.

3 import java.awt.Graphics;

4 1import java.awt.Color;

5 import java.awt.Dimension;

6 import javax.swing.JPanel;

7

8 public class FractallJPanel extends JPanel

9 {

10 private Color color; // stores color used to draw fractal
11 private int Tlevel; // stores current level of fractal

12

13 private static final int WIDTH = 400; // defines width of JPanel
14 private static final int HEIGHT = 400; // defines height of JPanel
I5

16 // set the initial fractal level to the value specified

17 // and set up JPanel specifications

18 public FractalJPanel(int currentLevel)

19 {
20 color = Color.BLUE; // initialize drawing color to blue
21 Tevel = currentLevel; // set initial fractal Tevel
22 setBackground(Color.WHITE);
23 setPreferredSize(new Dimension(WIDTH, HEIGHT));
24 }

Fig. 18.19 | Drawing the “Lo feather fractal” using recursion. (Part | of 8.)

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.




25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44

// draw fractal recursively
public void drawFractal(int level, int xA, int yA, int xB,

{

int yB, Graphics g)

// base case: draw a line connecting two given points
if (Tevel == 0)
g.drawLine(xA, yA, xB, yB);
else // recursion step: determine new points, draw next level
{
// calculate midpoint between (xA, yA) and (xB, yB)
int xC = (XA + xB) / 2;
int yC = (YA + yB) / 2;

// calculate the fourth point (xD, yD) which forms an

// 1sosceles right triangle between (xA, yA) and (xC, yC)
// where the right angle 1is at (xD, yD)

int XD = xA + (xC - xA) / 2 - (yC - yA) / 2;

int yD = yA + (yC - yA) / 2 + (xC - xA) / 2;

Fig. 18.19 | Drawing the "Lo feather fractal” using recursion. (Part 2 of 8.)
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45 // recursively draw the Fractal

46 drawFractal (level - 1, xD, yD, xA, yA, g);
47 drawFractal(level - 1, xD, yD, xC, yC, @);
48 drawFractal(level - 1, xD, yD, xB, yB, ¢);
49 }

50 }

51

52 // start drawing the fractal

53 @0verride

54 public void paintComponent(Graphics g)

55 {

56 super.paintComponent(g);

57

58 // draw fractal pattern

59 g.setColor(color);

60 drawFractal(level, 100, 90, 290, 200, g);

61 }

62

63 // set the drawing color to c

64 public void setColor(Color c)

65 {

66 color = c;

67 }

68

Fig. 18.19 | Drawing the “Lo feather fractal” using recursion. (Part 3 of 8.)
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69 // set the new level of recursion

70 public void setLevel(int currentLevel)
71 {

72 level = currentlLevel;

73 }

74

75 // returns level of recursion

76 public int getLevel ()

77 {

78 return level;

79 }

80 1} // end class FractallPanel

Fig. 18.19 | Drawing the “Lo feather fractal” using recursion. (Part 4 of 8.)
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Fig. 18.19 | Drawing the “Lo feather fractal” using recursion. (Part 5 of 8.)
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Fig. 18.19 | Drawing the “Lo feather fractal” using recursion. (Part 6 of 8.)
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Fig. 18.19 | Drawing the “Lo feather fractal” using recursion. (Part 7 of 8.)
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Fig. 18.19 | Drawing the “Lo feather fractal” using recursion. (Part 8 of 8.)
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18.10 Recursive Backtracking

» Find a path through a maze, returning true if there is a possible solution
to the maze.

» Involves moving through the maze one step at a time, where moves can
be made by going down, right, up or left.

» From the current location, for each possible direction, the move is
made 1n that direction and a recursive call is made to solve the
remainder of the maze from the new location.

= When a dead end is reached, back up to the previous location and try to go in a
different direction.

= |If no other direction can be taken, back up again.
» Continue until you find a point in the maze where a move can be made
In another direction.

= Move in the new direction and continue with another recursive call to solve the
rest of the maze.

» Using recursion to return to an earlier decision point is known as
recursive backtracking.
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