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 For some problems, it’s useful to have a method call 

itself. 

▪ Known as a recursive method. 

▪ Can call itself either directly or indirectly through another 

method. 

 Figure 18.1 summarizes the recursion examples and 

exercises in this book.
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 When a recursive method is called to solve a problem, it actually 
is capable of solving only the simplest case(s), or base case(s). 
▪ If the method is called with a base case, it returns a result. 

 If the method is called with a more complex problem, it divides 
the problem into two conceptual pieces
▪ a piece that the method knows how to do and 
▪ a piece that it does not know how to do. 

 To make recursion feasible, the latter piece must resemble the 
original problem, but be a slightly simpler or smaller version of 
it. 

 Because this new problem resembles the original problem, the 
method calls a fresh copy of itself to work on the smaller 
problem
▪ this is a recursive call
▪ also called the recursion step
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 The recursion step normally includes a return statement, 
because its result will be combined with the portion of the 
problem the method knew how to solve to form a result that 
will be passed back to the original caller. 

 The recursion step executes while the original method call 
is still active. 

 For recursion to eventually terminate, each time the method 
calls itself with a simpler version of the original problem, 
the sequence of smaller and smaller problems must 
converge on a base case. 
▪ When the method recognizes the base case, it returns a result to the 

previous copy of the method. 
▪ A sequence of returns ensues until the original method call returns 

the final result to the caller.
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 A recursive method may call another method, which 

may in turn make a call back to the recursive method. 

▪ This is known as an indirect recursive call or indirect 

recursion. 
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 Factorial of a positive integer n, written n! (pronounced “n factorial”), 
which is the product
▪ n · (n – 1) · (n – 2) · … · 1 

 with 1! equal to 1 and 0! defined to be 1. 

 The factorial of integer number (where number  0) can be 
calculated iteratively (nonrecursively) using a for statement as 
follows:
▪ factorial = 1;
▪ for ( int counter = number; counter >= 1; counter-- )

factorial *= counter;

 Recursive declaration of the factorial calculation for integers greater 
than 1 is arrived at by observing the following relationship:
▪ n! = n ·  (n – 1)! 

 Figure 18.3 uses recursion to calculate and print the factorials of the 
integers from 0 through 21. 

© Copyright 1992-2015 by Pearson 
Education, Inc. All Rights Reserved.



© Copyright 1992-2015 by Pearson 
Education, Inc. All Rights Reserved.



© Copyright 1992-2015 by Pearson 
Education, Inc. All Rights Reserved.



© Copyright 1992-2015 by Pearson 
Education, Inc. All Rights Reserved.



© Copyright 1992-2015 by Pearson 
Education, Inc. All Rights Reserved.



 We use type long so the program can calculate 

factorials greater than 12!. 

 The factorial method produces large values so 

quickly that we exceed the largest long value when 

we attempt to calculate 21!.

 Package java.math provides classes BigInteger and 

BigDecimal explicitly for arbitrary precision 

calculations that cannot be performed with primitive 

types. 
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 Figure 18.4 reimplements class 
FactorialCalculator using BigInteger
variables. 

 To demonstrate larger values than what long variables 
can store, we calculate the factorials of the numbers 0–
50. 
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 BigInteger method compareTo compares the 
BigInteger number that calls the method to the 
method’s BigInteger argument. 
▪ Returns -1 if the BigIteger that calls the method is less 

than the argument, 0 if they are equal or 1 if the 
BigInteger that calls the method is greater than the 
argument. 

 BigInteger constant ONE represents the integer 
value 1. 

 BigInteger methods multiply and subtract
implement multiplication and subtraction. Similar 
methods are provided for other arithmetic operations
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 The Fibonacci series, begins with 0 and 1 and has the 
property that each subsequent Fibonacci number is the sum 
of the previous two.

 0, 1, 1, 2, 3, 5, 8, 13, 21, …

 This series occurs in nature and describes a form of spiral. 

 The ratio of successive Fibonacci numbers converges on a 
constant value of 1.618…,
▪ called the golden ratio or the golden mean. 

 The Fibonacci series may be defined recursively as follows:
 fibonacci(0) = 0

fibonacci(1) = 1
fibonacci(n) = fibonacci(n – 1) + fibonacci(n – 2)
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 Two base cases for

▪ fibonacci(0) is defined to be 0

▪ fibonacci(1) to be 1 

 Fibonacci numbers tend to become large quickly.

▪ We use type BigInteger as the parameter type and the 

return type of method fibonacci.
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 BigInteger constants ZERO and ONE represent the 

values 0 and 1, respectively. 

 Iif number is greater than 1, the recursion step 

generates two recursive calls, each for a slightly smaller 

problem than the original call to fibonacci. 

 BigInteger methods add and subtract are used 

to help implement the recursive step. 
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 Figure 18.6 shows how method fibonacci evaluates 
fibonacci(3). 

 The Java language specifies that the order of evaluation of 
the operands is from left to right. 

 Thus, the call fibonacci(2) is made first and the call 
fibonacci(1) second.

 Each invocation of the fibonacci method that does not 
match one of the base cases (0 or 1) results in two more 
recursive calls to the fibonacci method. 

 Calculating the Fibonacci value of 20 with the program in 
Fig. 18.5 requires 21,891 calls to the fibonacci method; 
calculating the Fibonacci value of 30 requires 2,692,537 
calls! 
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 The method-call stack and stack frames keep track of 

recursive method calls.
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 Both iteration and recursion are based on a control 
statement: 
▪ Iteration uses a repetition statement (e.g., for, while or 
do…while)

▪ Recursion uses a selection statement (e.g., if, if…else or 
switch)

 Both iteration and recursion involve repetition: 
▪ Iteration explicitly uses a repetition statement

▪ Recursion achieves repetition through repeated method calls 

 Iteration and recursion each involve a termination test: 
▪ Iteration terminates when the loop-continuation condition fails

▪ Recursion terminates when a base case is reached.
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 Both iteration and recursion can occur infinitely: 

▪ An infinite loop occurs with iteration if the loop-continuation 

test never becomes false

▪ Infinite recursion occurs if the recursion step does not reduce 

the problem each time in a manner that converges on the base 

case, or if the base case is not tested.
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 Recursion repeatedly invokes the mechanism, and 
consequently the overhead, of method calls. 
▪ Can be expensive in terms of both processor time and memory 

space. 

 Each recursive call causes another copy of the method 
(actually, only the method’s variables, stored in the 
activation record) to be created
▪ this set of copies can consume considerable memory space. 

 Since iteration occurs within a method, repeated 
method calls and extra memory assignment are 
avoided. 
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 Towers of Hanoi
▪ Move stack of disks from one peg to another under the constraints that 

exactly one disk is moved at a time and at no time may a larger disk be 
placed above a smaller disk. 

▪ Three pegs are provided, one being used for temporarily holding disks.

 Moving n disks can be viewed in terms of moving only n – 1 
disks (hence the recursion) as follows:
▪ 1.Move n – 1 disks from peg 1 to peg 2, using peg 3 as a temporary 

holding area.
▪ 2.Move the last disk (the largest) from peg 1 to peg 3.
▪ 3.Move n – 1 disks from peg 2 to peg 3, using peg 1 as a temporary 

holding area.

 The process ends when the last task involves moving n = 1 disk 
(i.e., the base case). This task is accomplished by moving the 
disk, without using a temporary holding area.
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 A fractal is a geometric figure that can be generated from a 
pattern repeated recursively (Fig. 18.12). 

 The figure is modified by recursively applying the pattern 
to each segment of the original figure. 

 Fractals have a self-similar property—when subdivided into 
parts, each resembles a reduced-size copy of the whole. 

 Many fractals yield an exact copy of the original when a 
portion of the fractal is magnified—such a fractal is said to 
be strictly self-similar. 

 See our Recursion Resource Center 
(www.deitel.com/recursion/) for websites that 
demonstrate fractals.
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 Strictly self-similar Koch Curve fractal (Fig. 18.12). 
▪ It is formed by removing the middle third of each line in the drawing and 

replacing it with two lines that form a point, such that if the middle third 
of the original line remained, an equilateral triangle would be formed. 

 Formulas for creating fractals often involve removing all or part 
of the previous fractal image. 

 Start with a straight line (Fig. 18.12(a)) and apply the pattern, 
creating a triangle from the middle third (Fig. 18.12(b)). 

 Then apply the pattern again to each straight line, resulting in 
Fig. 18.12(c). 

 Each time the pattern is applied, the fractal is at a new level, or 
depth (sometimes the term order is also used). 

 After only a few iterations, this fractal begins to look like a 
portion of a snowflake (Fig. 18.12(e and f)). 
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 The Koch Snowflake fractal is similar to the Koch 

Curve but begins with a triangle rather than a line. 

 The same pattern is applied to each side of the triangle, 

resulting in an image that looks like an enclosed 

snowflake. 
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 The “Lo Feather Fractal”
▪ Program to create a strictly self-similar fractal. 
▪ Named for Sin Han Lo, a Deitel & Associates colleague who created 

it. 

 The fractal will eventually resemble one-half of a feather 
(see the outputs in Fig. 18.19). 

 The base case, or fractal level of 0, begins as a line between 
two points, A and B (Fig. 18.13). 

 To create the next higher level, we find the midpoint (C) of 
the line. 

 To calculate the location of point C, use the following 
formula:

 xC = (xA + xB) / 2;
yC = (yA + yB) / 2;
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 To create this fractal, we also must find a point D that lies left of 
segment AC and creates an isosceles right triangle ADC. 

 To calculate point D’s location, use the following formulas:
 xD = xA + (xC - xA) / 2 - (yC - yA) / 2;
yD = yA + (yC - yA) / 2 + (xC - xA) / 2;

 We  now move from level 0 to level 1 as follows: First, add points C
and D (as in Fig. 18.14). 

 Then, remove the original line and add segments DA, DC and DB. 

 The remaining lines will curve at an angle, causing our fractal to look 
like a feather. 

 For the next level of the fractal, this algorithm is repeated on each of 
the three lines in level 1. 

 For each line, the formulas above are applied, where the former point D
is now considered to be point A, while the other end of each line is 
considered to be point B. 
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 Find a path through a maze, returning true if there is a possible solution 
to the maze. 

 Involves moving through the maze one step at a time, where moves can 
be made by going down, right, up or left.

 From the current location, for each possible direction, the move is 
made in that direction and a recursive call is made to solve the 
remainder of the maze from the new location. 
▪ When a dead end is reached, back up to the previous location and try to go in a 

different direction. 
▪ If no other direction can be taken, back up again. 

 Continue until you find a point in the maze where a move can be made 
in another direction. 
▪ Move in the new direction and continue with another recursive call to solve the 

rest of the maze.

 Using recursion to return to an earlier decision point is known as 
recursive backtracking. 
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