
Java How to Program, 10/e

© Copyright 1992-2015 by Pearson Education, Inc. All Rights 
Reserved.



© Copyright 1992-2015 by Pearson 
Education, Inc. All Rights Reserved.



© Copyright 1992-2015 by Pearson 
Education, Inc. All Rights Reserved.



 For some problems, it’s useful to have a method call 

itself. 

▪ Known as a recursive method. 

▪ Can call itself either directly or indirectly through another 

method. 

 Figure 18.1 summarizes the recursion examples and 

exercises in this book.
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 When a recursive method is called to solve a problem, it actually 
is capable of solving only the simplest case(s), or base case(s). 
▪ If the method is called with a base case, it returns a result. 

 If the method is called with a more complex problem, it divides 
the problem into two conceptual pieces
▪ a piece that the method knows how to do and 
▪ a piece that it does not know how to do. 

 To make recursion feasible, the latter piece must resemble the 
original problem, but be a slightly simpler or smaller version of 
it. 

 Because this new problem resembles the original problem, the 
method calls a fresh copy of itself to work on the smaller 
problem
▪ this is a recursive call
▪ also called the recursion step
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 The recursion step normally includes a return statement, 
because its result will be combined with the portion of the 
problem the method knew how to solve to form a result that 
will be passed back to the original caller. 

 The recursion step executes while the original method call 
is still active. 

 For recursion to eventually terminate, each time the method 
calls itself with a simpler version of the original problem, 
the sequence of smaller and smaller problems must 
converge on a base case. 
▪ When the method recognizes the base case, it returns a result to the 

previous copy of the method. 
▪ A sequence of returns ensues until the original method call returns 

the final result to the caller.

© Copyright 1992-2015 by Pearson 
Education, Inc. All Rights Reserved.



 A recursive method may call another method, which 

may in turn make a call back to the recursive method. 

▪ This is known as an indirect recursive call or indirect 

recursion. 
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 Factorial of a positive integer n, written n! (pronounced “n factorial”), 
which is the product
▪ n · (n – 1) · (n – 2) · … · 1 

 with 1! equal to 1 and 0! defined to be 1. 

 The factorial of integer number (where number  0) can be 
calculated iteratively (nonrecursively) using a for statement as 
follows:
▪ factorial = 1;
▪ for ( int counter = number; counter >= 1; counter-- )

factorial *= counter;

 Recursive declaration of the factorial calculation for integers greater 
than 1 is arrived at by observing the following relationship:
▪ n! = n ·  (n – 1)! 

 Figure 18.3 uses recursion to calculate and print the factorials of the 
integers from 0 through 21. 
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 We use type long so the program can calculate 

factorials greater than 12!. 

 The factorial method produces large values so 

quickly that we exceed the largest long value when 

we attempt to calculate 21!.

 Package java.math provides classes BigInteger and 

BigDecimal explicitly for arbitrary precision 

calculations that cannot be performed with primitive 

types. 
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 Figure 18.4 reimplements class 
FactorialCalculator using BigInteger
variables. 

 To demonstrate larger values than what long variables 
can store, we calculate the factorials of the numbers 0–
50. 
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 BigInteger method compareTo compares the 
BigInteger number that calls the method to the 
method’s BigInteger argument. 
▪ Returns -1 if the BigIteger that calls the method is less 

than the argument, 0 if they are equal or 1 if the 
BigInteger that calls the method is greater than the 
argument. 

 BigInteger constant ONE represents the integer 
value 1. 

 BigInteger methods multiply and subtract
implement multiplication and subtraction. Similar 
methods are provided for other arithmetic operations
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 The Fibonacci series, begins with 0 and 1 and has the 
property that each subsequent Fibonacci number is the sum 
of the previous two.

 0, 1, 1, 2, 3, 5, 8, 13, 21, …

 This series occurs in nature and describes a form of spiral. 

 The ratio of successive Fibonacci numbers converges on a 
constant value of 1.618…,
▪ called the golden ratio or the golden mean. 

 The Fibonacci series may be defined recursively as follows:
 fibonacci(0) = 0

fibonacci(1) = 1
fibonacci(n) = fibonacci(n – 1) + fibonacci(n – 2)
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 Two base cases for

▪ fibonacci(0) is defined to be 0

▪ fibonacci(1) to be 1 

 Fibonacci numbers tend to become large quickly.

▪ We use type BigInteger as the parameter type and the 

return type of method fibonacci.
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 BigInteger constants ZERO and ONE represent the 

values 0 and 1, respectively. 

 Iif number is greater than 1, the recursion step 

generates two recursive calls, each for a slightly smaller 

problem than the original call to fibonacci. 

 BigInteger methods add and subtract are used 

to help implement the recursive step. 
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 Figure 18.6 shows how method fibonacci evaluates 
fibonacci(3). 

 The Java language specifies that the order of evaluation of 
the operands is from left to right. 

 Thus, the call fibonacci(2) is made first and the call 
fibonacci(1) second.

 Each invocation of the fibonacci method that does not 
match one of the base cases (0 or 1) results in two more 
recursive calls to the fibonacci method. 

 Calculating the Fibonacci value of 20 with the program in 
Fig. 18.5 requires 21,891 calls to the fibonacci method; 
calculating the Fibonacci value of 30 requires 2,692,537 
calls! 
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 The method-call stack and stack frames keep track of 

recursive method calls.
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 Both iteration and recursion are based on a control 
statement: 
▪ Iteration uses a repetition statement (e.g., for, while or 
do…while)

▪ Recursion uses a selection statement (e.g., if, if…else or 
switch)

 Both iteration and recursion involve repetition: 
▪ Iteration explicitly uses a repetition statement

▪ Recursion achieves repetition through repeated method calls 

 Iteration and recursion each involve a termination test: 
▪ Iteration terminates when the loop-continuation condition fails

▪ Recursion terminates when a base case is reached.
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 Both iteration and recursion can occur infinitely: 

▪ An infinite loop occurs with iteration if the loop-continuation 

test never becomes false

▪ Infinite recursion occurs if the recursion step does not reduce 

the problem each time in a manner that converges on the base 

case, or if the base case is not tested.

© Copyright 1992-2015 by Pearson 
Education, Inc. All Rights Reserved.



© Copyright 1992-2015 by Pearson 
Education, Inc. All Rights Reserved.



© Copyright 1992-2015 by Pearson 
Education, Inc. All Rights Reserved.



 Recursion repeatedly invokes the mechanism, and 
consequently the overhead, of method calls. 
▪ Can be expensive in terms of both processor time and memory 

space. 

 Each recursive call causes another copy of the method 
(actually, only the method’s variables, stored in the 
activation record) to be created
▪ this set of copies can consume considerable memory space. 

 Since iteration occurs within a method, repeated 
method calls and extra memory assignment are 
avoided. 
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 Towers of Hanoi
▪ Move stack of disks from one peg to another under the constraints that 

exactly one disk is moved at a time and at no time may a larger disk be 
placed above a smaller disk. 

▪ Three pegs are provided, one being used for temporarily holding disks.

 Moving n disks can be viewed in terms of moving only n – 1 
disks (hence the recursion) as follows:
▪ 1.Move n – 1 disks from peg 1 to peg 2, using peg 3 as a temporary 

holding area.
▪ 2.Move the last disk (the largest) from peg 1 to peg 3.
▪ 3.Move n – 1 disks from peg 2 to peg 3, using peg 1 as a temporary 

holding area.

 The process ends when the last task involves moving n = 1 disk 
(i.e., the base case). This task is accomplished by moving the 
disk, without using a temporary holding area.
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 A fractal is a geometric figure that can be generated from a 
pattern repeated recursively (Fig. 18.12). 

 The figure is modified by recursively applying the pattern 
to each segment of the original figure. 

 Fractals have a self-similar property—when subdivided into 
parts, each resembles a reduced-size copy of the whole. 

 Many fractals yield an exact copy of the original when a 
portion of the fractal is magnified—such a fractal is said to 
be strictly self-similar. 

 See our Recursion Resource Center 
(www.deitel.com/recursion/) for websites that 
demonstrate fractals.

© Copyright 1992-2015 by Pearson 
Education, Inc. All Rights Reserved.



 Strictly self-similar Koch Curve fractal (Fig. 18.12). 
▪ It is formed by removing the middle third of each line in the drawing and 

replacing it with two lines that form a point, such that if the middle third 
of the original line remained, an equilateral triangle would be formed. 

 Formulas for creating fractals often involve removing all or part 
of the previous fractal image. 

 Start with a straight line (Fig. 18.12(a)) and apply the pattern, 
creating a triangle from the middle third (Fig. 18.12(b)). 

 Then apply the pattern again to each straight line, resulting in 
Fig. 18.12(c). 

 Each time the pattern is applied, the fractal is at a new level, or 
depth (sometimes the term order is also used). 

 After only a few iterations, this fractal begins to look like a 
portion of a snowflake (Fig. 18.12(e and f)). 
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 The Koch Snowflake fractal is similar to the Koch 

Curve but begins with a triangle rather than a line. 

 The same pattern is applied to each side of the triangle, 

resulting in an image that looks like an enclosed 

snowflake. 

© Copyright 1992-2015 by Pearson 
Education, Inc. All Rights Reserved.



 The “Lo Feather Fractal”
▪ Program to create a strictly self-similar fractal. 
▪ Named for Sin Han Lo, a Deitel & Associates colleague who created 

it. 

 The fractal will eventually resemble one-half of a feather 
(see the outputs in Fig. 18.19). 

 The base case, or fractal level of 0, begins as a line between 
two points, A and B (Fig. 18.13). 

 To create the next higher level, we find the midpoint (C) of 
the line. 

 To calculate the location of point C, use the following 
formula:

 xC = (xA + xB) / 2;
yC = (yA + yB) / 2;
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 To create this fractal, we also must find a point D that lies left of 
segment AC and creates an isosceles right triangle ADC. 

 To calculate point D’s location, use the following formulas:
 xD = xA + (xC - xA) / 2 - (yC - yA) / 2;
yD = yA + (yC - yA) / 2 + (xC - xA) / 2;

 We  now move from level 0 to level 1 as follows: First, add points C
and D (as in Fig. 18.14). 

 Then, remove the original line and add segments DA, DC and DB. 

 The remaining lines will curve at an angle, causing our fractal to look 
like a feather. 

 For the next level of the fractal, this algorithm is repeated on each of 
the three lines in level 1. 

 For each line, the formulas above are applied, where the former point D
is now considered to be point A, while the other end of each line is 
considered to be point B. 
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 Find a path through a maze, returning true if there is a possible solution 
to the maze. 

 Involves moving through the maze one step at a time, where moves can 
be made by going down, right, up or left.

 From the current location, for each possible direction, the move is 
made in that direction and a recursive call is made to solve the 
remainder of the maze from the new location. 
▪ When a dead end is reached, back up to the previous location and try to go in a 

different direction. 
▪ If no other direction can be taken, back up again. 

 Continue until you find a point in the maze where a move can be made 
in another direction. 
▪ Move in the new direction and continue with another recursive call to solve the 

rest of the maze.

 Using recursion to return to an earlier decision point is known as 
recursive backtracking. 
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