
Java How to Program, 10/e

© Copyright 1992-2015 by Pearson Education, Inc. All Rights
Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

 Prior to Java SE 8, Java supported three programming
paradigms—procedural programming, object-oriented
programming and generic programming. Java SE 8
adds functional programming.

 The new language and library capabilities that support
functional programming were added to Java as part of
Project Lambda.

 This chapter presents many examples of functional
programming, often showing simpler ways to
implement tasks that you programmed in earlier
chapters (Fig. 17.1).

© Copyright 1992-2012 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

 Prior to functional programming, you typically

determined what you wanted to accomplish, then

specified the precise steps to accomplish that task.

 External iteration

◦ Using a loop to iterate over a collection of elements.

◦ Requires accessing the elements sequentially.

◦ Requires mutable variables.

© Copyright 1992-2012 by Pearson
Education, Inc. All Rights Reserved.

 Functional programming

◦ Specify what you want to accomplish in a task, but not how to

accomplish it

 Internal iteration

◦ Let the library determine how to iterate over a collection of

elements is known as.

◦ Internal iteration is easier to parallelize.

 Functional programming focuses on immutability—not

modifying the data source being processed or any other

program state.

© Copyright 1992-2012 by Pearson
Education, Inc. All Rights Reserved.

 Functional interfaces are also known as single abstract
method (SAM) interfaces.

 Package java.util.function
◦ Six basic functional interfaces
◦ Figure 17.2 shows the six basic generic functional interfaces.

 Many specialized versions of the basic functional interfaces
◦ Use with int, long and double primitive values.

 Also generic customizations of Consumer,
Function and Predicate
◦ for binary operations—methods that take two arguments.

© Copyright 1992-2012 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

 Lambda expression

◦ anonymous method

◦ shorthand notation for implementing a functional interface.

 The type of a lambda is the type of the functional

interface that the lambda implements.

 Can be used anywhere functional interfaces are

expected.

© Copyright 1992-2012 by Pearson
Education, Inc. All Rights Reserved.

 A lambda consists of a parameter list followed by the arrow
token and a body, as in:
◦ (parameterList) -> {statements}

 For example, the following lambda receives two ints and
returns their sum:
◦ (int x, int y) -> {return x + y;}

 This lambda’s body is a statement block that may contain
one or more statements enclosed in curly braces.

 A lambda’s parameter types may be omitted, as in:
◦ (x, y) -> {return x + y;}

 in which case, the parameter and return types are
determined by the lambda’s context.

© Copyright 1992-2012 by Pearson
Education, Inc. All Rights Reserved.

 A lambda with a one-expression body can be written as:

◦ (x, y) -> x + y

◦ In this case, the expression’s value is implicitly returned.

 When the parameter list contains only one parameter, the

parentheses may be omitted, as in:

◦ value -> System.out.printf("%d ", value)

 A lambda with an empty parameter list is defined with ()
to the left of the arrow token (->), as in:

◦ () -> System.out.println("Welcome to lambdas!")

 There are also specialized shorthand forms of lambdas that

are known as method references.

© Copyright 1992-2012 by Pearson
Education, Inc. All Rights Reserved.

 Streams are objects that implement interface Stream
(from the package java.util.stream
◦ Enable you to perform functional programming tasks

 Specialized stream interfaces for processing int,
long or double values

 Streams move elements through a sequence of
processing steps—known as a stream pipeline
◦ Pipeline begins with a data source, performs various

intermediate operations on the data source’s elements and ends
with a terminal operation.

 A stream pipeline is formed by chaining method calls.

© Copyright 1992-2012 by Pearson
Education, Inc. All Rights Reserved.

 Streams do not have their own storage
◦ Once a stream is processed, it cannot be reused, because it

does not maintain a copy of the original data source.

 An intermediate operation specifies tasks to perform on
the stream’s elements and always results in a new
stream.

 Intermediate operations are lazy—they aren’t
performed until a terminal operation is invoked.
◦ Allows library developers to optimize stream-processing

performance.

© Copyright 1992-2012 by Pearson
Education, Inc. All Rights Reserved.

 Terminal operation

◦ initiates processing of a stream pipeline’s intermediate

operations

◦ produces a result

◦ Terminal operations are eager—they perform the requested

operation when they are called.

 Figure 17.3 shows some common intermediate

operations.

 Figure 17.4 shows some common terminal operations.

© Copyright 1992-2012 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

 Figure 17.5 demonstrates operations on an

IntStream (package java.util.stream)—a

specialized stream for manipulating int values.

 The techniques shown in this example also apply to

LongStreams and DoubleStreams for long and

double values, respectively.

© Copyright 1992-2012 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

 IntStream static method of receives an int
array as an argument and returns an IntStream for

processing the array’s values.

 IntStream method forEach (a terminal-

operation) receives as its argument an object that

implements the IntConsumer functional interface

(package java.util.function). This interface’s

accept method receives one int value and performs

a task with it.

© Copyright 1992-2012 by Pearson
Education, Inc. All Rights Reserved.

 Compiler can infer the types of a lambda’s parameters

and the type returned by a lambda from the context in

which the lambda is used.

◦ Determined by the lambda’s target type—the functional

interface type that’s expected where the lambda appears in the

code.

 Lambdas may use final local variables or effectively

final local variables.

 A lambda that refers to a local variable in the enclosing

lexical scope is known as a capturing lambda.

© Copyright 1992-2012 by Pearson
Education, Inc. All Rights Reserved.

 A lambda can use the outer class’s this reference

without qualifying it with the outer class’s name.

 The parameter names and variable names that you use

in lambdas cannot be the same as any other local

variables in the lambda’s lexical scope; otherwise, a

compilation error occurs.

© Copyright 1992-2012 by Pearson
Education, Inc. All Rights Reserved.

 Class IntStream provides terminal operations for
common stream reductions
◦ count returns the number of elements
◦ min returns the smallest int
◦ max returns the largest int
◦ sum returns the sum of all the ints
◦ average returns an OptionalDouble (package java.util)

containing the average of the ints as a value of type double

 Class OptionalDouble’s getAsDouble method
returns the double in the object or throws a
NoSuchElementException.
◦ To prevent this exception, you can call method orElse, which

returns the OptionalDouble’s value if there is one, or the value
you pass to orElse, otherwise.

© Copyright 1992-2012 by Pearson
Education, Inc. All Rights Reserved.

 IntStream method summaryStatistics
performs the count, min, max, sum and average
operations in one pass of an IntStream’s elements

and returns the results as an

IntSummaryStatistics object (package

java.util).

© Copyright 1992-2012 by Pearson
Education, Inc. All Rights Reserved.

 You can define your own reductions for an

IntStream by calling its reduce method.

◦ First argument is a value that helps you begin the reduction

operation

◦ Second argument is an object that implements the

IntBinaryOperator functional interface

 Method reduce’s first argument is formally called an

identity value—a value that, when combined with any

stream element using the IntBinaryOperator
produces that element’s original value.

© Copyright 1992-2012 by Pearson
Education, Inc. All Rights Reserved.

 Filter elements to produce a stream of intermediate

results that match a predicate.

 IntStream method filter receives an object that

implements the IntPredicate functional interface

(package java.util.function).

 IntStream method sorted (a lazy operation)

orders the elements of the stream into ascending order

(by default).

◦ All prior intermediate operations in the stream pipeline must

be complete so that method sorted knows which elements to

sort.

© Copyright 1992-2012 by Pearson
Education, Inc. All Rights Reserved.

 Method filter a stateless intermediate operation—it
does not require any information about other elements
in the stream in order to test whether the current
element satisfies the predicate.

 Method sorted is a stateful intermediate operation
that requires information about all of the other elements
in the stream in order to sort them.

 Interface IntPredicate’s default method and
performs a logical AND operation with short-circuit
evaluation between the IntPredicate on which it’s
called and its IntPredicate argument.

© Copyright 1992-2012 by Pearson
Education, Inc. All Rights Reserved.

 Interface IntPredicate’s default method

negate reverses the boolean value of the

IntPredicate on which it’s called.

 Interface IntPredicate default method or
performs a logical OR operation with short-circuit

evaluation between the IntPredicate on which it’s

called and its IntPredicate argument.

 You can use the interface IntPredicate default
methods to compose more complex conditions.

© Copyright 1992-2012 by Pearson
Education, Inc. All Rights Reserved.

 Mapping is an intermediate operation that transforms a

stream’s elements to new values and produces a stream

containing the resulting (possibly different type)

elements.

 IntStream method map (a stateless intermediate

operation) receives an object that implements the

IntUnaryOperator functional interface (package

java-.util.function).

© Copyright 1992-2012 by Pearson
Education, Inc. All Rights Reserved.

 IntStream methods range and rangeClosed
each produce an ordered sequence of int values.

◦ Both methods take two int arguments representing the range

of values.

◦ Method range produces a sequence of values from its first

argument up to, but not including, its second argument.

◦ Method rangeClosed produces a sequence of values

including both of its arguments.

© Copyright 1992-2012 by Pearson
Education, Inc. All Rights Reserved.

 Class Array’s stream method is used to create a

Stream from an array of objects.

© Copyright 1992-2012 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

 Interface Stream (package java.util.stream)

is a generic interface for performing stream operations

on objects. The types of objects that are processed are

determined by the Stream’s source.

 Class Arrays provides overloaded stream methods

for creating IntStreams, LongStreams and

DoubleStreams from int, long and double
arrays or from ranges of elements in the arrays.

© Copyright 1992-2012 by Pearson
Education, Inc. All Rights Reserved.

 Stream method sorted sorts a stream’s elements into
ascending order by default.

 To create a collection containing a stream pipeline’s results,
you can use Stream method collect (a terminal
operation).
◦ As the stream pipeline is processed, method collect performs a

mutable reduction operation that places the results into an object,
such as a List, Map or Set.

 Method collect with one argument receives an object
that implements interface Collector (package
java.util.stream), which specifies how to perform
the mutable reduction.

© Copyright 1992-2012 by Pearson
Education, Inc. All Rights Reserved.

 Class Collectors (package

java.util.stream) provides static methods

that return predefined Collector implementations.

 Collectors method toList transforms a

Stream<T> into a List<T> collection.

© Copyright 1992-2012 by Pearson
Education, Inc. All Rights Reserved.

 Stream method filter receives a Predicate and

results in a stream of objects that match the

Predicate.

 Predicate method test returns a boolean
indicating whether the argument satisfies a condition.

Interface Predicate also has methods and,

negate and or.

© Copyright 1992-2012 by Pearson
Education, Inc. All Rights Reserved.

 Once you place the results of a stream pipeline into a

collection, you can create a new stream from the

collection for performing additional stream operations

on the prior results.

© Copyright 1992-2012 by Pearson
Education, Inc. All Rights Reserved.

 Figure 17.7 performs some of the same stream

operations you learned in – but on a

Stream<String>.

© Copyright 1992-2012 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

 Stream method map maps each element to a new

value and produces a new stream with the same number

of elements as the original stream.

 A method reference is a shorthand notation for a

lambda expression.

 ClassName::instanceMethodName represents a

method reference for an instance method of a class.

◦ Creates a one-parameter lambda that invokes the instance

method on the lambda’s argument and returns the method’s

result.

© Copyright 1992-2012 by Pearson
Education, Inc. All Rights Reserved.

 objectName::instanceMethodName represents a
method reference for an instance method that should be
called on a specific object. Creates a one-parameter
lambda that invokes the instance method on the
specified object—passing the lambda’s argument to the
instance method—and returns the method’s result.

 ClassName::staticMethodName represents a method
reference for a static method of a class. Creates a
one-parameter lambda in which the lambda’s argument
is passed to the specified a static method and the
lambda returns the method’s result.

© Copyright 1992-2012 by Pearson
Education, Inc. All Rights Reserved.

 ClassName::new represents a constructor reference.

◦ Creates a lambda that invokes the no-argument constructor of

the specified class to create and initialize a new object of that

class.

 Figure 17.8 shows the four method reference types.

© Copyright 1992-2012 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

 Stream method sorted can receive a

Comparator as an argument to specify how to

compare stream elements for sorting.

 By default, method sorted uses the natural order for

the stream’s element type.

 For Strings, the natural order is case sensitive, which

means that "Z" is less than "a".

◦ Passing the predefined Comparator
String.CASE_INSENSITIVE_ORDER performs a case-

insensitive sort.

© Copyright 1992-2012 by Pearson
Education, Inc. All Rights Reserved.

 Functional interface Comparator’s default
method reversed reverses an existing

Comparator’s ordering.

© Copyright 1992-2012 by Pearson
Education, Inc. All Rights Reserved.

 The example in Figs. 17.9–17.16 demonstrates various
lambda and stream capabilities using a
Stream<Employee>.

 Class Employee (Fig. 17.9) represents an employee
with a first name, last name, salary and department and
provides methods for manipulating these values.

© Copyright 1992-2012 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

 When the instance method reference

System.out::println is passed to Stream method

forEach, it’s converted by the compiler into an object that

implements the Consumer functional interface.

◦ This interface’s accept method receives one argument and returns

void. In this case, the accept method passes the argument to the

System.out object’s println instance method.

 Class ProcessingEmployees (Figs. 17.10–17.16) is

split into several figures so we can show you the lambda

and streams operations with their corresponding outputs.

© Copyright 1992-2012 by Pearson
Education, Inc. All Rights Reserved.

 Figure 17.10 creates an array of Employees and gets

its List view.

© Copyright 1992-2012 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

 Figure 17.11 demonstrates filtering Employees with

an object that implements the functional interface

Predicate<Employee>, which is defined with a

lambda

 To reuse a lambda, you can assign it to a variable of the

appropriate functional interface type.

 The Comparator interface’s static method

comparing receives a Function that’s used to

extract a value from an object in the stream for use in

comparisons and returns a Comparator object.

© Copyright 1992-2012 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

 A nice performance feature of lazy evaluation is the

ability to perform short circuit evaluation—that is, to

stop processing the stream pipeline as soon as the

desired result is available.

 Stream method findFirst is a short-circuiting

terminal operation that processes the stream pipeline

and terminates processing as soon as the first object

from the stream pipeline is found.

◦ Returns an Optional containing the object that was found, if

any.

© Copyright 1992-2012 by Pearson
Education, Inc. All Rights Reserved.

 Figure 17.12 shows how to use streams to sort objects
by multiple fields.

 To sort objects by two fields, you create a
Comparator that uses two Functions.

 First you call Comparator method comparing to
create a Comparator with the first Function.

 On the resulting Comparator, you call method
thenComparing with the second Function.

 The resulting Comparator compares objects using
the first Function then, for objects that are equal,
compares them by the second Function.

© Copyright 1992-2012 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

 Figure 17.13 shows how to map objects of one type

(Employee) to objects of a different type (String).

 You can map objects in a stream to different types to

produce another stream with the same number of

elements as the original stream.

 Stream method distinct eliminates duplicate

objects in a stream.

© Copyright 1992-2012 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

 Figure 17.14 uses Stream method collect to group
Employees by department.

 Collectors static method groupingBy with one
argument receives a Function that classifies objects in the
stream—the values returned by this function are used as the keys
in a Map.
◦ The corresponding values, by default, are Lists containing the stream

elements in a given category.

 Map method forEach performs an operation on each key–
value pair.
◦ Receives an object that implements functional interface BiConsumer.

◦ BiConsumer’s accept method has two parameters.

◦ For Maps, the first represents the key and the second the corresponding
value.

© Copyright 1992-2012 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

 Figure 17.15 once again demonstrates Stream method

collect and Collectors static method

groupingBy, but in this case we count the number of

Employees in each department.

 Collectors static method groupingBy with two

arguments receives a Function that classifies the objects

in the stream and another Collector (known as the

downstream Collector).

 Collectors static method counting returns a

Collector that counts the number of objects in a given

classification, rather than collecting them into a List.

© Copyright 1992-2012 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

 Figure 17.16 demonstrates Stream method

mapToDouble, which maps objects to double
values and returns a DoubleStream.

 Stream method mapToDouble maps objects to

double values and returns a DoubleStream. The

method receives an object that implements the

functional interface ToDoubleFunction (package

java.util.function).

◦ This interface’s applyAsDouble method invokes an

instance method on an object and returns a double value.

© Copyright 1992-2012 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

 Figure 17.17 uses lambdas and streams to summarize the
number of occurrences of each word in a file then display a
summary of the words in alphabetical order grouped by
starting letter.

 Figure 17.18 shows the program’s output.

 Files method lines creates a Stream<String> for
reading the lines of text from a file.

 Stream method flatMap receives a Function that
maps an object into a stream—e.g., a line of text into words.

 Pattern method split-AsStream uses a regular
expression to tokenize a String.

© Copyright 1992-2012 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

 Collectors method groupingBy with three
arguments receives a classifier, a Map factory and a
downstream Collector.
◦ The classifier is a Function that returns objects which are used as

keys in the resulting Map.

◦ The Map factory is an object that implements interface Supplier
and returns a new Map collection.

◦ The downstream Collector determines how to collect each
group’s elements.

 Map method entrySet returns a Set of Map.Entry
objects containing the Map’s key–value pairs.

 Set method stream returns a stream for processing the
Set’s elements.

© Copyright 1992-2012 by Pearson
Education, Inc. All Rights Reserved.

 In Fig. 6.7, we demonstrated rolling a six-sided die

6,000,000 times and summarizing the frequencies of

each face using external iteration (a for loop) and a

switch statement that determined which counter to

increment.

 We then displayed the results using separate statements

that performed external iteration.

© Copyright 1992-2012 by Pearson
Education, Inc. All Rights Reserved.

 In Fig. 7.7, we reimplemented Fig. 6.7, replacing the

entire switch statement with a single statement that

incremented counters in an array—that version of

rolling the die still used external iteration to produce

and summarize 6,000,000 random rolls and to display

the final results.

 Both prior versions of this example, used mutable

variables to control the external iteration and to

summarize the results.

© Copyright 1992-2012 by Pearson
Education, Inc. All Rights Reserved.

 Figure 17.19 reimplements those programs with a

single statement that does it all, using lambdas,

streams, internal iteration and no mutable variables to

roll the die 6,000,000 times, calculate the frequencies

and display the results.

© Copyright 1992-2012 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

 Class SecureRandom’s methods ints, longs and

doubles (inherited from class Random) return

IntStream, LongStream and DoubleStream,

respectively, for streams of random numbers.

 Method ints with no arguments creates an

IntStream for an infinite stream of random int
values.

 An infinite- stream is a stream with an unknown

number of elements—you use a short-circuiting

terminal operation to complete processing on an

infinite stream.

© Copyright 1992-2012 by Pearson
Education, Inc. All Rights Reserved.

 Method ints with a long argument creates an
IntStream with the specified number of random
int values.

 Method ints with two int arguments creates an
IntStream for an infinite stream of random int
values in the range starting with the first argument and
up to, but not including, the second.

 Method ints with a long and two int arguments
creates an IntStream with the specified number of
random int values in the range starting with the first
argument and up to, but not including, the second.

© Copyright 1992-2012 by Pearson
Education, Inc. All Rights Reserved.

 To convert an IntStream to a Stream<Integer>
call IntStream method boxed.

 Function static method identity creates a

Function that simply returns its argument.

© Copyright 1992-2012 by Pearson
Education, Inc. All Rights Reserved.

 Some event-listener interfaces are functional interfaces.

For such interfaces, you can implement event handlers

with lambdas.

 For a simple event handler, a lambda significantly

reduces the amount of code you need to write.

© Copyright 1992-2012 by Pearson
Education, Inc. All Rights Reserved.

 Functional interfaces must contain only one

abstract method, but may also contain default-
methods and static methods that are fully

implemented in the interface declarations.

 When a class implements an interface with default
methods and does not override them, the class inherits

the default methods’ implementations. An

interface’s designer can now evolve an interface by

adding new default and static methods without

breaking existing code that implements the interface.

© Copyright 1992-2012 by Pearson
Education, Inc. All Rights Reserved.

 If one class inherits the same default method from two

interfaces, the class must override that method; otherwise,

the compiler will generate a compilation error.

 You can create your own functional interfaces by ensuring

that each contains only one abstract- method and zero

or more default or static methods.

 You can declare that an interface is a functional interface by

preceding it with the @FunctionalInterface
annotation. The compiler will then ensure that the interface

contains only one abstract- method; otherwise, it’ll

generate a compilation error.

© Copyright 1992-2012 by Pearson
Education, Inc. All Rights Reserved.

	Slide 1: Chapter 17 Java SE 8 Lambdas and Streams
	Slide 2
	Slide 3
	Slide 4
	Slide 5: 17.1 Introduction
	Slide 6
	Slide 7
	Slide 8: 17.2 Functional Programming Technologies Overview
	Slide 9: 17.2 Functional Programming Technologies Overview (Cont.)
	Slide 10: 17.2.1 Functional Interfaces
	Slide 11
	Slide 12
	Slide 13: 17.2.2 Lambda Expressions
	Slide 14: 17.2.2 Lambda Expressions (Cont.)
	Slide 15: 17.2.2 Lambda Expressions (Cont.)
	Slide 16: 17.2.3 Streams
	Slide 17: 17.2.3 Streams (Cont.)
	Slide 18: 17.2.3 Streams (Cont.)
	Slide 19
	Slide 20
	Slide 21
	Slide 22: 17.3 IntStream Operations
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28: 17.3.1 Creating an IntStream and Displaying Its Values with the forEach Terminal Operation
	Slide 29: 17.3.1 Creating an IntStream and Displaying Its Values with the forEach Terminal Operation (Cont.)
	Slide 30: 17.3.1 Creating an IntStream and Displaying Its Values with the forEach Terminal Operation (Cont.)
	Slide 31: 17.3.2 Terminal Operations count, min, max, sum and average
	Slide 32: 17.3.2 Terminal Operations count, min, max, sum and average (Cont.)
	Slide 33: 17.3.3 Terminal Operation reduce
	Slide 34: 17.3.4 Intermediate Operations: Filtering and Sorting IntStream Values
	Slide 35: 17.3.4 Intermediate Operations: Filtering and Sorting IntStream Values (Cont.)
	Slide 36: 17.3.4 Intermediate Operations: Filtering and Sorting IntStream Values (Cont.)
	Slide 37: 17.3.5 Intermediate Operation: Mapping
	Slide 38: 17.3.6 Creating Streams of ints with IntStream Methods range and rangeClosed
	Slide 39: 17.4 Stream<Integer> Manipulations
	Slide 40
	Slide 41
	Slide 42
	Slide 43: 17.4.1 Creating a Stream<Integer>
	Slide 44: 17.4.2 Sorting a Stream and Collecting the Results
	Slide 45: 17.4.2 Sorting a Stream and Collecting the Results (Cont.)
	Slide 46: 17.4.3 Filtering a Stream and Storing the Results for Later Use
	Slide 47: 17.4.4 Sorting Previously Collected Results
	Slide 48: 17.5 Stream<String> Manipulations
	Slide 49
	Slide 50
	Slide 51: 17.5.1 Mapping Strings to Uppercase Using a Method Reference
	Slide 52: 17.5.1 Mapping Strings to Uppercase Using a Method Reference (Cont.)
	Slide 53: 17.5.1 Mapping Strings to Uppercase Using a Method Reference (Cont.)
	Slide 54
	Slide 55: 17.5.2 Filtering Strings Then Sorting Them in Case-Insensitive Ascending Order
	Slide 56: 17.5.3 Filtering Strings Then Sorting Them in Case-Insensitive Descending Order
	Slide 57: 17.6 Stream<Employee> Manipulations
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62: 17.6.1 Creating and Displaying a List<Employee>
	Slide 63: 17.6.1 Creating and Displaying a List<Employee> (Cont.)
	Slide 64
	Slide 65
	Slide 66: 17.6.2 Filtering Employees with Salaries in a Specified Range
	Slide 67
	Slide 68
	Slide 69: 17.6.2 Filtering Employees with Salaries in a Specified Range (Cont.)
	Slide 70: 17.6.3 Sorting Employees By Multiple Fields
	Slide 71
	Slide 72
	Slide 73: 17.6.4 Mapping Employees to Unique Last Name Strings
	Slide 74
	Slide 75
	Slide 76: 17.6.5 Grouping Employees By Department
	Slide 77
	Slide 78
	Slide 79: 17.6.6 Counting the Number of Employees in Each Department
	Slide 80
	Slide 81: 17.6.7 Summing and Averaging Employee Salaries
	Slide 82
	Slide 83
	Slide 84: 17.7 Creating a Stream<String> from a File
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89: 17.7 Creating a Stream<String> from a File (Cont.)
	Slide 90: 17.8 Generating Streams of Random Values
	Slide 91: 17.8 Generating Streams of Random Values (Cont.)
	Slide 92: 17.8 Generating Streams of Random Values (Cont.)
	Slide 93
	Slide 94
	Slide 95: 17.8 Generating Streams of Random Values (Cont.)
	Slide 96: 17.8 Generating Streams of Random Values (Cont.)
	Slide 97: 17.8 Generating Streams of Random Values (Cont.)
	Slide 98: 17.9 Lambda Event Handlers
	Slide 99: 17.10 Additional Notes on Java SE 8 Interfaces
	Slide 100: 17.10 Additional Notes on Java SE 8 Interfaces (Cont.)

