Chapter 17

Java SE 8 Lambdas and Streams
Java How to Program, 10/e

© Copyright 1992-2015 by Pearson Education, Inc. All Rights
Reserved.

OBJECTIVES
In this chapter you'll:

m Learn what functional programming is and how it complements object-oriented
programming.

m Use functional programming to simplify programming tasks you've performed with other
techniques.

m Write lambda expressions that implement functional interfaces.

m Learn what streams are and how stream pipelines are formed from stream sources,
intermediate operations and terminal operations.

m Perform operations on IntStreams, including forEach, count, min, max, sum,
average, reduce, filter and sorted.

m Perform operations on Streams, including filter, map. sorted, collect, forEach,
findFirst, distinct, mapToDouble and reduce.

m Create streams representing ranges of int values and random int values.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

17.1 Introduction

17.2 Functional Programming Technologies Overview

17.2.1 Functional Interfaces
17.2.2 Lambda Expressions
[7.23 Streams

17.3 IntStream Operations

17.3.1 Creating an IntStream and Displaying Its Values with the forEach Terminal Operation
17.3.2 Terminal Operations count, min, max, sum and average

1733 Terminal Operation reduce

1734 Intermediate Operations: Filtering and Sorting IntStream Values

17.3.5 Intermediate Operation: Mapping

173.6 Creating Streams of ints with IntStream Methods range and rangeClosed

17.4 Stream<Integer> Manipulations

17.4.1 Creating a Stream<Integer>

17.4.2 Sorting a Stream and Collecting the Results

17.4.3 Filtering a Stream and Storing the Results for Later Use
1744 Filtering and Sorting a Stream and Collecting the Results
17.4.5 Sorting Previously Collected Results

17.5 Stream<String> Manipulations

17.5.1 Mapping Strings to Uppercase Using a Method Reference
17.5.2 Filtering Strings Then Sorting Them in Case-Insensitive Ascending Order
17.5.3 Filtering Strings Then Sorting Them in Case-Insensitive Descending Order

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

17.6 Stream<EmpTloyee> Manipulations

17.6.1 Creating and Displaying a List<Employee>

17.6.2 Filtering Employees with Salaries in a Specified Range
17.6.3 Sorting EmpTloyees By Multiple Fields

17.6.4 Mapping EmpToyees to Unique Last Name Strings
17.6.5 Grouping EmpTloyees By Department

17.6.6 Counting the Number of Employees in Each Department
17.6.7 Summing and Averaging EmpTloyee Salaries

17.7 Creating a Stream<String> from a File

17.8 Generating Streams of Random Values

17.9 Lambda Event Handlers

17.10 Additional Notes on Java SE 8 Interfaces

I17.11 Java SE 8 and Functional Programming Resources
17.12Wrap-Up

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

17.1 Introduction

» Prior to Java SE 8, Java supported three programming
paradigms—procedural programming, object-oriented
programming and generic programming. Java SE 8
adds functional programming.

» The new language and library capabilities that support

functional programming were added to Java as part of
Project Lambda.

» This chapter presents many examples of functional
programming, often showing simpler ways to
Implement tasks that you programmed in earlier
chapters (Fig. 17.1).

© Copyright 1992-2012 by Pearson
Education, Inc. All Rights Reserved.

Chapter 7, Arrays and ArrayLists Sections 17.3-17.4 introduce basic lambda and streams capa-
bilities that process one-dimensional arrays.

Chapter 10, Object-Oriented Section 10.10 introduced the new Java SE 8 interface features
Programming: Polymorphism (default methods, static methods and the concept of func-
and Interfaces tional interfaces) that support functional programming.
Chapter 12, GUI Components: Section 17.9 shows how to use a lambda to implement a Swing
Part 1 event-listener functional interface.

Chapter 14, Strings, Characters Section 17.5 shows how to use lambdas and streams to process
and Regular Expressions collections of String objects.

Chapter 15, Files, Streams and Section 17.7 shows how to use lambdas and streams to process
Object Serialization lines of text from a file.

Fig. 17.1 | Java SE 8 lambdas and streams discussions and examples.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

Chapter 22, GUI Components: Discusses using lambdas to implement Swing event-listener
Parc 2 functional interfaces.
Chapter 23, Concurrency Shows that functional programs are easier to parallelize so that

they can take advantage of multi-core architectures to enhance
performance. Demonstrates parallel stream processing. Shows
that Arrays method parallelSort improves performance on
multi-core architectures when sorting large arrays.

Chapter 25, JavaFX GUI: Part 1 Discusses using lambdas to implement JavaFX event-listener
functional interfaces.

Fig. 17.1 | Java SE 8 lambdas and streams discussions and examples.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

17.2 Functional Programming
Technologies Overview

» Prior to functional programming, you typically
determined what you wanted to accomplish, then
specified the precise steps to accomplish that task.

» External iteration

> Using a loop to iterate over a collection of elements.
> Requires accessing the elements sequentially.
> Requires mutable variables.

© Copyright 1992-2012 by Pearson
Education, Inc. All Rights Reserved.

17.2 Functional Programming
Technologies Overview (Cont.)

» Functional programming

> Specify what you want to accomplish in a task, but not how to
accomplish it

» Internal 1teration

> Let the library determine how to iterate over a collection of
elements Is known as.

o Internal iteration is easier to parallelize.

» Functional programming focuses on immutability—not
modifying the data source being processed or any other
program state.

© Copyright 1992-2012 by Pearson
Education, Inc. All Rights Reserved.

(g

17.2.1 Functional Interfaces

» Functional interfaces are also known as single abstract
method (SAM) interfaces.

» Package java.util.function
o Six basic functional interfaces
> Figure 17.2 shows the six basic generic functional interfaces.

» Many specialized versions of the basic functional interfaces
> Use with 1nt, Tong and doub1e primitive values.

» Also generic customizations of Consumer,
Functionand Predicate

> for binary operations—methods that take two arguments.

© Copyright 1992-2012 by Pearson
Education, Inc. All Rights Reserved.

BinaryOperator<Ts> Contains method apply that takes two T arguments, performs an operation
on them (such as a calculation) and returns a value of type T. You'll see several
examples of BinaryOperators starting in Section 17.3.

Consumer<T> Contains method accept that takes a T argument and returns void. Performs
a task with it’s T argument, such as outputting the object, invoking a method
of the object, etc. You'll see several examples of Consumers starting in
Section 17.3.

Function<T,R> Contains method apply that takes a T argument and returns a value of type
R. Calls a method on the T argument and returns that method’s result. You'll
see several examples of Functions starting in Section 17.5.

Predicate<T> Conrtains method test that takes a T argument and returns a boolean. Tests
whether the T argument satisfies a condition. You'll see several examples of
Predicates starting in Section 17.3.

Fig. 17.2 | The six basic generic functional interfaces in package
java.util.function.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

Supplier<T> Conrtains method get that takes no arguments and produces a value of type
T. Often used to create a collection object in which a stream operation’s
results are placed. You'll see several examples of Suppliers starting in
Section 17.7.

UnaryOperator<T> Contains method get that takes no arguments and returns a value of type T.
You'll see several examples of UnaryOperators starting in Section 17.3.

Fig. 17.2 | The six basic generic functional interfaces in package
java.util.function.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

17.2.2 Lambda Expressions

» Lambda expression
> anonymous method
> shorthand notation for implementing a functional interface.
» The type of a lambda is the type of the functional
Interface that the lambda implements.

» Can be used anywhere functional interfaces are
expected.

© Copyright 1992-2012 by Pearson
Education, Inc. All Rights Reserved.

17.2.2 Lambda Expressions (Cont.)

' 4

» A lambda consists of a parameter list followed by the arrow
token and a body, as In:
o (parameterlList) -> {statements}

» For example, the following lambda receives two 1nts and
returns their sum:
o (intx, 1inty)->{returnx+y;}

» This lambda’s body 1s a statement block that may contain
one or more statements enclosed in curly braces.

» A lambda’s parameter types may be omitted, as in:
o (X,y)->{returnx +y;}

» In which case, the parameter and return types are
determined by the lambda’s context.

© Copyright 1992-2012 by Pearson
Education, Inc. All Rights Reserved.

17.2.2 Lambda Expressions (Cont.)

CY WY -
' 4

» A lambda with a one-expression body can be written as:
° (X y)->x+y

o In this case, the expression’s value 1s implicitly returned.

» When the parameter list contains only one parameter, the
parentheses may be omitted, as in:
> value -> System.out.printf("'%d ", value)

» A lambda with an empty parameter list is defined with ()
to the left of the arrow token (->), as In:
> () -> System.out.printin("we lcome to lambdas!")

» There are also specialized shorthand forms of lambdas that
are known as method references.

© Copyright 1992-2012 by Pearson
Education, Inc. All Rights Reserved.

4

—_

Yy 4

2.9 odlreams

» Streams are objects that implement interface Stream
(from the package java.util.stream
- Enable you to perform functional programming tasks

» Specialized stream interfaces for processing 1nt,
lTong or doube values

» Streams move elements through a sequence of
processing steps—known as a stream pipeline

> Pipeline begins with a data source, performs various
intermediate operations on the data source’s elements and ends
with a terminal operation.

» A stream pipeline is formed by chaining method calls.

© Copyright 1992-2012 by Pearson
Education, Inc. All Rights Reserved.

4 l—:/

17.2.3 Streams (Cont.)
» Streams do not have their own storage

> Once a stream Is processed, it cannot be reused, because it
does not maintain a copy of the original data source.

» An Intermediate operation specifies tasks to perform on
the stream’s elements and always results 1n a new

stream.
» Intermediate operations are lazy—they aren’t
performed until a terminal operation is invoked.

> Allows library developers to optimize stream-processing
performance.

© Copyright 1992-2012 by Pearson
Education, Inc. All Rights Reserved.

[S— S

17.2.3 Streams (Cont.)

Y 4

» Terminal operation
o initiates processing of a stream pipeline’s intermediate
operations

> produces a result
- Terminal operations are eager—they perform the requested
operation when they are called.

» Figure 17.3 shows some common intermediate
operations.
» Figure 17.4 shows some common terminal operations.

© Copyright 1992-2012 by Pearson
Education, Inc. All Rights Reserved.

filter
distinct

Timit

map

sorted

Results in a stream containing only the elements that satisfy a condition.
Results in a stream containing only the unique elements.

Results in a stream with the specified number of elements from the beginning
of the original stream.

Results in a stream in which each element of the original stream is mapped to
a new value (possibly of a different type)—e.g., mapping numeric values to
the squares of the numeric values. The new stream has the same number of
clements as the original stream.

Results in a stream in which the elements are in sorted order. The new stream
has the same number of elements as the original stream.

Fig. 17.3 | Common intermediate Stream operations.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

forEach Performs processing on every element in a stream (e.g., display each element).

Reduction operations— Take all values in the stream and return a single value

average Calculates the average of the elements in a numeric stream.

count Returns the number of elements in the stream.

max Locates the largest value in a numeric stream.

min Locates the smallest value in a numeric stream.

reduce Reduces the elements of a collection to a single value using an associative accu-

mulation function (e.g., a lambda that adds two elements).

Mutable reduction operations—Create a container (such as a collection or StringBuilder)

collect Creates a new collection of elements containing the results of the stream’s prior
operations.
toArray Creates an array containing the results of the stream’s prior operations.

Fig. 17.4 | Common terminal Stream operations.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

Search operations

findFirst Finds the firsz stream element based on the prior intermediate operations;
immediately terminates processing of the stream pipeline once such an element
is found.

findAny Finds any stream element based on the prior intermediate operations; immedi-
ately terminates processing of the stream pipeline once such an element is
found.

anyMatch Determines whether any stream elements match a specified condition; immedi-
ately terminates processing of the stream pipeline if an element matches.

allMatch Determines whether a// of the elements in the stream match a specified condi-
tion.

Fig. 17.4 | Common terminal Stream operations.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

17.3 IntStream Operations

» Figure 17.5 demonstrates operations on an
IntStream (package java.util.stream)—a
specialized stream for manipulating 1nt values.

» The technigues shown in this example also apply to
LongStreams and DoubleStreams for 1ong and
doub 1 e values, respectively.

© Copyright 1992-2012 by Pearson
Education, Inc. All Rights Reserved.

I // Fig. 17.5: IntStreamOperations.java

2 // Demonstrating IntStream operations.

3 dimport java.util.Arrays;

4 dimport java.util.stream.IntStream;

5

6 public class IntStreamOperations

7 {

8 public static void main(String[] args)

9 {

10 int[] values = {3, 10, 6, 1, 4, 8, 2, 5, 9, 7};
11

12 // display original values

13 System.out.print("Original values: ");
14 IntStream.of(values)

I5 .forEach(value -> System.out.printf("%d ", value));
16 System.out.printin();
17

Fig. 17.5 | Demonstrating IntStream operations. (Part | of 5.)

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

I8
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36

// count, min, max, sum and average of the values
System.out.printf("%nCount: %d%n", IntStream.of(values).count());
System.out.printf("Min: %d%n",

IntStream.of(values).min() .getAsInt());
System.out.printf("Max: %d%n’",

IntStream.of(values).max() .getAsInt());
System.out.printf("Sum: %d%n", IntStream.of(values).sum());
System.out.printf("Average: %.2f%n",

IntStream.of(values).average() .getAsDouble());

// sum of values with reduce method
System.out.printf("%nSum via reduce method: %d%n",
IntStream.of(values)
.reduce(0, (x, y) -> X + Yy));

// sum of squares of values with reduce method
System.out.printf("Sum of squares via reduce method: %d%n",
IntStream.of(values)
.reduce(0, (x, y) > X + VY * y));

Fig. 17.5 | Demonstrating IntStream operations. (Part 2 of 5.)

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

// product of values with reduce method
System.out.printf("Product via reduce method: %d%n",
IntStream.of(values)
.reduce(l, (x, y) -> X * y));

// even values displayed in sorted order
System.out.printf("%nEven values displayed in sorted order: ");
IntStream.of(values)

.filter(value -> value % 2 == 0)

.sorted()

.forEach(value -> System.out.printf("%d ", value));
System.out.printin();

// odd values multiplied by 10 and displayed in sorted order
System.out.printf(

"0Odd values multiplied by 10 displayed in sorted order: ");
IntStream.of(values)

.filter(value -> value % 2 != 0)
.map(value -> value * 10)
.sorted()

.forEach(value -> System.out.printf("%d ", value));
System.out.printin();

Fig. 17.5 | Demonstrating IntStream operations. (Part 3 of 5.)

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

61 // sum range of integers from 1 to 10, exlusive

62 System.out.printf("%nSum of integers from 1 to 9: %d%n",
63 IntStream.range(l, 10).sum());

64

65 // sum range of integers from 1 to 10, inclusive

66 System.out.printf("Sum of integers from 1 to 10: %d%n",
67 IntStream.rangeClosed(1l, 10).sum());

68 }

69 1} // end class IntStreamOperations

Fig. 17.5 | Demonstrating IntStream operations. (Part 4 of 5.)

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

original values: 3 10 6 148 2 5 97

Count: 10
Min: 1
Max: 10
Sum: 55

Average: 5.50

Sum via reduce method: 55
Sum of squares via reduce method: 385
Product via reduce method: 3628800

Even values displayed in sorted order: 2 4 6 8 10
odd values multiplied by 10 displayed in sorted order: 10 30 50 70 90

Sum of integers from 1 to 9: 45
Sum of integers from 1 to 10: 55

Fig. 17.5 | Demonstrating IntStream operations. (Part 5 of 5.)

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

<

—

17.3.1 C”eatmg an IntStream and Displaying
Its Values with the foreach Terminal Operation

» IntStream static method of receivesan int
array as an argument and returns an IntStream for
processing the array’s values.

» IntStream method forEach (a terminal-
operation) receives as Its argument an object that
Implements the IntConsumer functional interface
(package java.util.function). This interface’s
accept method receives one 1nt value and performs
a task with it.

© Copyright 1992-2012 by Pearson
Education, Inc. All Rights Reserved.

17.3.1 Creating an IntStream and Displaying lts
Values with the forEach Terminal Operation (Cont.)

» Compiler can infer the types of a lambda’s parameters
and the type returned by a lambda from the context in
which the lambda Is used.

> Determined by the lambda’s target type—the functional
interface type that’s expected where the lambda appears in the
code.

» Lambdas may use final local variables or effectively
final local variables.

» A lambda that refers to a local variable in the enclosing
lexical scope I1s known as a capturing lambda.

© Copyright 1992-2012 by Pearson
Education, Inc. All Rights Reserved.

IntStream and Displayi
vith the 1‘:01 Each Terminal Operation (Cont.)

» A lambda can use the outer class’s th1is reference
without qualifying it with the outer class’s name.

» The parameter names and variable names that you use
In lambdas cannot be the same as any other local
variables in the lambda’s lexical scope; otherwise, a
compilation error occurs.

© Copyright 1992-2012 by Pearson
Education, Inc. All Rights Reserved.

IR [[N

17.3.2 Terminal Operations count, min,
max, sum and average

» Class IntStream provides terminal operations for
common stream reductions
o count returns the number of elements
> min returns the smallest 1nt
> max returns the largest int
> sum returns the sum of all the 1nts
> average returns an OptionalDouble (package java.util)
containing the average of the 1nts as a value of type double
» Class OptionalDouble’s getAsDoub1e method
returns the doub1e in the object or throws a
NoSuchElementException.

> To prevent this exception, you can call method orelse, which
returns the OptionalDoub1e’s value if there is one, or the value
you pass to orEl se, otherwise.

© Copyright 1992-2012 by Pearson
Education, Inc. All Rights Reserved.

.

.

17.3.2 hrmmJ Operations count, min,
maXx, sum and average (Cont.)

» IntStream method summaryStatistics
performs the count, min, max, sumand average
operations in one pass of an IntStream’s elements
and returns the results as an
IntSummaryStatistics object (package
java.util).

© Copyright 1992-2012 by Pearson
Education, Inc. All Rights Reserved.

| —

17.3.3 Terminal Operation reduce

» You can define your own reductions for an
IntStream by calling its reduce method.

o First argument is a value that helps you begin the reduction
operation

> Second argument is an object that implements the
IntBinaryoOperator functional interface

» Method reduce’s first argument is formally called an
Identity value—a value that, when combined with any
stream element using the IntBinaryOperator
produces that element’s original value.

© Copyright 1992-2012 by Pearson
Education, Inc. All Rights Reserved.

» Filter elements to produce a stream of intermediate
results that match a predicate.

» IntStream method 1 1ter receives an object that
implements the IntPredicate functional interface
(package java.util.function).

» IntStream method sorted (a lazy operation)

orders the elements of the stream into ascending order
(by default).

o All prior intermediate operations in the stream pipeline must
be complete so that method sorted knows which elements to

© Copyright 1992-2012 by Pearson
Education, Inc. All Rights Reserved.

» Method f11ter a stateless intermediate operation—it
does not require any information about other elements
In the stream in order to test whether the current
element satisfies the predicate.

» Method sorted is a stateful intermediate operation
that requires information about all of the other elements
In the stream In order to sort them.

» Interface IntPredicate’s default method and
performs a logical AND operation with short-circuit
evaluation between the IntPredicate on which it’s
called and its IntPredicate argument.

© Copyright 1992-2012 by Pearson
Education, Inc. All Rights Reserved.

.4 Intermediate Operations: Filtering
and Sorting IntStream Values (Cont.)

» Interface IntPredicate’s default method
negate reverses the boolean value of the
IntPredicate on which it’s called.

» Interface IntPredicate default method or
performs a logical OR operation with short-circuit
evaluation between the IntPredicate on which it’s
called and its IntPredicate argument.

» You can use the interface IntPredicate default
methods to compose more complex conditions.

© Copyright 1992-2012 by Pearson
Education, Inc. All Rights Reserved.

\)

17.3.5 Intermediate Operation: Mapping

» Mapping Is an intermediate operation that transforms a
stream’s elements to new values and produces a stream
containing the resulting (possibly different type)
elements.

» IntStream method map (a stateless intermediate
operation) receives an object that implements the
IntUnaryoOperator functional interface (package
java-.util.function).

© Copyright 1992-2012 by Pearson
Education, Inc. All Rights Reserved.

a

(J

IntStream Methods range and ra ng eClose

» IntStream methods range and rangeClosed
each produce an ordered sequence of 1nt values.

> Both methods take two 1nt arguments representing the range
of values.

- Method range produces a sequence of values from its first
argument up to, but not including, its second argument.

- Method rangecClosed produces a sequence of values
Including both of its arguments.

© Copyright 1992-2012 by Pearson
Education, Inc. All Rights Reserved.

17.4 Stream<Integer> Manipulations

» Class Array’s stream method is used to create a
Stream from an array of objects.

© Copyright 1992-2012 by Pearson
Education, Inc. All Rights Reserved.

I // Fig. 17.6: ArraysAndStreams.java

2 // Demonstrating lambdas and streams with an array of Integers.
3 dimport java.util.Arrays;

4 dmport java.util.Comparator;

5 dimport java.util.List;

6 import java.util.stream.Collectors;

7

8 public class ArraysAndStreams

9 {

10 public static void main(String[] args)

11 {

12 Integer[] values = {2, 9, 5, 0, 3, 7, 1, 4, 8, 6};
13

14 // display original values

15 System.out.printf("Original values: %s%n", Arrays.asList(values));
16

17 // sort values in ascending order with streams

18 System.out.printf("Sorted values: %s%n",

19 Arrays.stream(values)
20 .sorted()
21 .collect(Collectors.toList()));
22

Fig. 17.6 | Demonstrating lambdas and streams with an array of Integers. (Part |

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

23 // values greater than 4

24 List<Integer> greaterThan4 =

25 Arrays.stream(values)

26 .filter(value -> value > 4)

27 .collect(Collectors.toList());

28 System.out.printf("Values greater than 4: %s%n", greaterThan4);
29

30 // filter values greater than 4 then sort the results

31 System.out.printf("Sorted values greater than 4: %s%n",

32 Arrays.stream(values)

33 .filter(value -> value > 4)

34 .sorted()

35 .collect(Collectors.toList()));

36

37 // greaterThan4 List sorted with streams

38 System.out.printf(

39 "Values greater than 4 (ascending with streams): %s%n",
40 greaterThan4.stream()

41 .sorted()

42 .collect(Collectors.toList()));

43 }

44 } // end class ArraysAndStreams

Fig. 17.6 | Demonstrating lambdas and streams with an array of Integers. (Part 2
of 3.)

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

Original values: [2, 9, 5, 0, 3, 7, 1, 4, 8, 6]

Sorted values: [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]

Values greater than 4: [9, 5, 7, 8, 6]

Sorted values greater than 4: [5, 6, 7, 8, 9]

Values greater than 4 (ascending with streams): [5, 6, 7, 8, 9]

Fig. 17.6 | Demonstrating lambdas and streams with an array of Integers. (Part 3
of 3.)

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

A

& Y 4 J ' !f\— of Lo E‘L', l'a >N C A | al \ B - n e
1/.4.1 Creating a Stream<lnteger>

» Interface Stream (package java.util.stream)
IS a generic interface for performing stream operations
on objects. The types of objects that are processed are
determined by the Stream’s source.

» Class Arrays provides overloaded stream methods
for creating IntStreams, LongStreams and
DoubleStreams from 1nt, longand double
arrays or from ranges of elements in the arrays.

© Copyright 1992-2012 by Pearson
Education, Inc. All Rights Reserved.

—

[y -
g A °)
/l. [e " .i

the Resul

o)

orting a Stream and Collecting

t
‘t
L

O

» Stream method sorted sorts a stream’s elements into
ascending order by default.

» To create a collection containing a stream pipeline’s results,
you can use Stream method col lect (aterminal
operation).
> As the stream pipeline is processed, method col1ect performs a

mutable reduction operation that places the results into an object,
suchasaList, Map or Set.

» Method col 1ect with one argument receives an object
that implements interface Col lector (package
java.util.stream), which specifies how to perform

the mutable reduction.

© Copyright 1992-2012 by Pearson
Education, Inc. All Rights Reserved.

» Class Col lectors (package
java.util.stream) provides static methods
that return predefined Co 1 1ector implementations.

» Col lectors method toL1st transforms a
Stream<T> into a L1st<T> collection.

© Copyright 1992-2012 by Pearson
Education, Inc. All Rights Reserved.

17.4.3 Filtering a Stream and Storing the

[‘\CS

-
—
@)
g
—
Q)
—
@
C
p)
D

» Stream method 1 1ter receives a Predicate and
results in a stream of objects that match the
Predicate.

» Predicate method test returns a boolean
Indicating whether the argument satisfies a condition.
Interface Predi cate also has methods and,
hegate and or.

© Copyright 1992-2012 by Pearson
Education, Inc. All Rights Reserved.

Py
cieaq

‘l)

17.4.4 Sorting Previously Coll

Result

n

» Once you place the results of a stream pipeline into a
collection, you can create a new stream from the

collection for performing additional stream operations
on the prior results.

© Copyright 1992-2012 by Pearson
Education, Inc. All Rights Reserved.

17.5 Stream<String> Manipulations

» Figure 17.7 performs some of the same stream
operations you learned in — but on a
Stream<String>.

© Copyright 1992-2012 by Pearson
Education, Inc. All Rights Reserved.

1 // Fig. 17.7: ArraysAndStreams2.java

2 // Demonstrating lambdas and streams with an array of Strings.
3 dimport java.util.Arrays;

4 import java.util.Comparator;

5 import java.util.stream.Collectors;

6

7 public class ArraysAndStreams?2

8 {

9 public static void main(String[] args)

10 {
11 String[] strings =

12 {"Red"”, "orange", "Yellow", "green", "Blue", "indigo", "Violet"};
13

14 // display original strings

15 System.out.printf("Original strings: %s%n", Arrays.asList(strings));
16

17 // strings in uppercase

18 System.out.printf('strings in uppercase: %s%n",

19 Arrays.stream(strings)
20 .map(String::toUpperCase)
21 .collect(Collectors.toList()));
22

Fig. 17.7 | Demonstrating lambdas and streams with an array of Strings. (Part | of

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

23 // strings less than "n" (case insensitive) sorted ascending

24 System.out.printf("strings greater than m sorted ascending: %s%n",
25 Arrays.stream(strings)

26 .filter(s -> s.compareToIgnoreCase('n") < 0)

27 .sorted(String.CASE_INSENSITIVE_ORDER)

28 .collect(Collectors.toList()));

29

30 // strings less than "n" (case insensitive) sorted descending

31 System.out.printf('strings greater than m sorted descending: %s%n'",
32 Arrays.stream(strings)

33 .filter(s -> s.compareTolIgnoreCase(''n") < 0)

34 .sorted(String.CASE_INSENSITIVE_ORDER. reversed())

35 .collect(Collectors.toList()));

36 3

37 } // end class ArraysAndStreams2

Original strings: [Red, orange, Yellow, green, Blue, indigo, Violet]
strings 1in uppercase: [RED, ORANGE, YELLOW, GREEN, BLUE, INDIGO, VIOLET]
strings greater than m sorted ascending: [orange, Red, Violet, Yellow]
strings greater than m sorted descending: [Yellow, Violet, Red, orange]

Fig. 17.7 | Demonstrating lambdas and streams with an array of Strings. (Part 2 of
2)

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

pr— 74 !

17.5.1 t\lapping Strings to Upperca
Usin
» Stream method map maps each element to a new

value and produces a new stream with the same number
of elements as the original stream.

» A method reference iIs a shorthand notation for a
lambda expression.

» ClassName: : instanceMethodName represents a
method reference for an instance method of a class.

(f‘a

e
\ &7

| a Method Reference

(Q

> Creates a one-parameter lambda that invokes the instance

method on the lambda’s argument and returns the method’s
result.

© Copyright 1992-2012 by Pearson
Education, Inc. All Rights Reserved.

n

o
O

(5|
Q)
@

17 | _‘ erca

Using a Mei nt.)

» objectName : : instanceMethodName represents a
method reference for an instance method that should be
called on a specific object. Creates a one-parameter
lambda that invokes the instance method on the
specified object—passing the lambda’s argument to the

Instance method—and returns the method’s result.
» ClassName: : staticMethodName represents a method
reference for a static method of a class. Creates a

one-parameter lambda in which the lambda’s argument
IS passed to the specified a static method and the

lambda returns the method’s result.

© Copyright 1992-2012 by Pearson
Education, Inc. All Rights Reserved.

l\élapp[ng Strings to Uppercase

-)

17
Ls ing a Method Reference (Cont.)

» ClassName: : new represents a constructor reference.

> Creates a lambda that invokes the no-argument constructor of
the specified class to create and initialize a new object of that
class.

» Figure 17.8 shows the four method reference types.

(_Q_s

© Copyright 1992-2012 by Pearson
Education, Inc. All Rights Reserved.

String: :toUpperCase Method reference for an instance method of a class. Creates a one-
parameter lambda that invokes the instance method on the lambda’s
argument and returns the method’s result. Used in Fig. 17.7.

System.out::println Method reference for an instance method that should be called on a
specific object. Creates a one-parameter lambda that invokes the
instance method on the specified object—passing the lambda’s argu-
ment to the instance method—and returns the method’s result. Used in
Fig. 17.10.

Math::sqrt Method reference for a static method of a class. Creates a one-param-
eter lambda in which the lambda’s argument is passed to the specified a
static method and the lambda returns the method’s result.

TreeMap: :new Constructor reference. Creates a lambda that invokes the no-argument
constructor of the specified class to create and initialize a new object of
that class. Used in Fig. 17.17.

Fig. 17.8 | Types of method references.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

<

17.5.2 Filtering Strings Then Sorting Them in
Case-Insensitive Ascending Ordel

» Stream method sorted can receive a
Comparator as an argument to specify how to
compare stream elements for sorting.

» By default, method sorted uses the natural order for
the stream’s element type.

» For Strings, the natural order is case sensitive, which
means that "Z" is less than "a"

o Passing the predefined Comparator
String.CASE_INSENSITIVE_ORDER performs a case-
Insensitive sort.

© Copyright 1992-2012 by Pearson
Education, Inc. All Rights Reserved.

<

17.5.3 Filtering Strings Then Sorting Them in
Case-Insensitive Descending Order
» Functional interface Comparator’s default

method reversed reverses an existing
Comparator’s ordering.

© Copyright 1992-2012 by Pearson
Education, Inc. All Rights Reserved.

17.6 Stream<Employee> Manipulations

» The example In Figs. 17.9-17.16 demonstrates various
lambda and stream capabilities using a
Stream<Employee>.

» Class Emp loyee (Fig. 17.9) represents an employee
with a first name, last name, salary and department and
provides methods for manipulating these values.

© Copyright 1992-2012 by Pearson
Education, Inc. All Rights Reserved.

I // Fig. 17.9: Employee.java

2 // Employee class.

3 public class Employee

4 {

5 private String firstName;

6 private String lastName;

7 private double salary;

8 private String department;

9

10 // constructor

11 public Employee(String firstName, String TlastName,
12 double salary, String department)
13 {

14 this.firstName = firstName;

15 this.lastName = lastName;

16 this.salary = salary;

17 this.department = department;

18 }

19
20 // set firstName
21 public void setFirstName(String firstName)
22 {
23 this.firstName = firstName;
24 }

Fig. 17.9 | Employee class for use in Figs. 17.10-17.16. (Part | of 4.)

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48

// get firstName
public String getFirstName()

{
}

return firstName;

// set TastName

public void setLastName(String TastName)

{
}

this.lastName = lastName;

// get TastName
public String getLastName()

{
}

return lastName;

// set salary
public void setSalary(double salary)
{

}

this.salary = salary;

Fig. 17.9 | Employee class for use in Figs. 17.10-17.16. (Part 2 of 4.)

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

49

50 // get salary

51 public double getSalary()

52 {

53 return salary;

54 }

55

56 // set department

57 public void setDepartment(String department)
58 {

59 this.department = department;

60 }

61

62 // get department

63 public String getDepartment()

64 {

65 return department;

66 }

67

68 // return Employee's first and last name combined
69 public String getName()

70 {

71 return String.format("%s %s", getFirstName(), getLastName());
72 }

Fig. 17.9 | Employee class for use in Figs. 17.10-17.16. (Part 3 of 4.)

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

73

74 // return a String containing the Employee's information

75 @Override

76 public String toString()

77 {

78 return String.format("%-8s %-8s %8.2f %s",

79 getFirstName(), getLastName(), getSalary(), getDepartment());
80 } // end method toString

81 } // end class Employee

Fig. 17.9 | Employee class for use in Figs. 17.10-17.16. (Part 4 of 4.)

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

» When the instance method reference
System.out: :println is passed to Stream method
forEeach, it’s converted by the compiler into an object that
Implements the Consumer functional interface.

o This interface’s accept method receives one argument and returns
void. In this case, the accept method passes the argument to the
System.out object’s printl1n instance method.

» Class ProcessingEmployees (Figs. 17.10-17.16) is
split into several figures so we can show you the lambda
and streams operations with their corresponding outputs.

© Copyright 1992-2012 by Pearson
Education, Inc. All Rights Reserved.

17.6.1 Creating and Displaying a
L1st<Employee> (Cont.)

» Figure 17.10 creates an array of Emp loyees and gets
its L1st view.

© Copyright 1992-2012 by Pearson
Education, Inc. All Rights Reserved.

I // Fig. 17.10: ProcessingEmployees.java

2 // Processing streams of Employee objects.

3 dimport java.util.Arrays;

4 import java.util.Comparator;

5 dimport java.util.List;

6 import java.util.Map;

7 import java.util.TreeMap;

8 import java.util.function.Function;

9 import java.util.function.Predicate;

I0 import java.util.stream.Collectors;

11

12 public class ProcessingEmployees

13 {

14 public static void main(String[] args)

I5 {

16 // initialize array of Employees

17 Employee[] employees = {

18 new Employee("Jason"”, "Red", 5000, "IT"),

19 new Employee("Ashley”™, "Green", 7600, "IT"),
20 new Employee("Matthew", "Indigo"™, 3587.5, "Sales"),
21 new Employee("James", "Indigo", 4700.77, "Marketing"),
22 new Employee("Luke", "Indigo"”, 6200, "IT"),
23 new Employee("Jason”, "Blue", 3200, "Sales"),
24 new Employee("Wendy", "Brown"™, 4236.4, "Marketing”)};

Fig. 17.10 | Creating an array of Employees, converting it to a List and displaying
ict (Part | of 7))

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

25

26 // get List view of the Employees

27 List<Employee> 1list = Arrays.asList(employees);
28

29 // display all Employees

30 System.out.printin("Complete Employee list:");
31 list.stream().forEach(System.out: :printin);

32

Complete Employee Tist:

Jason Red 5000.00 IT
Ashley Green 7600.00 IT
Matthew Indigo 3587.50 Sales
James Indigo 4700.77 Marketing

Luke Indigo 6200.00 IT
Jason Blue 3200.00 Sales
Wendy Brown 4236.40 Marketing

Fig. 17.10 | Creating an array of Employees, converting it to a List and displaying
the List. (Part 2 of 2.)

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

|_,-| "’\‘,.‘ . ,'_,.\ .
h Salaries

rlvl
—
D
-
(O
L!I
—
O O
@)
L
D
(D
“p
/
r”
('j

> Figure 17.11 demonstrates filtering Emp 1 oyees with
an object that implements the functional interface
Predicate<Employee>, which is defined with a
lambda

» To reuse a lambda, you can assign it to a variable of the
appropriate functional interface type.

» The Comparator interface’s static method
comparing receives a Function that’s used to
extract a value from an object in the stream for use In
comparisons and returns a Comparator object.

© Copyright 1992-2012 by Pearson
Education, Inc. All Rights Reserved.

33 // Predicate that returns true for salaries in the range $4000-%$6000

34 Predicate<Employee> fourToSixThousand =

35 e -> (e.getSalary() >= 4000 && e.getSalary() <= 6000);

36

37 // Display Employees with salaries in the range $4000-$6000

38 // sorted into ascending order by salary

39 System.out.printf(

40 "%nEmployees earning $4000-$6000 per month sorted by salary:%n");
41 Tist.stream()

42 .filter(fourToSixThousand)

43 .sorted(Comparator.comparing(Employee: :getSalary))

44 .forEach(System.out::println);

45

46 // Display first Employee with salary in the range $4000-$6000

47 System.out.printf("%nFirst employee who earns $4000-$6000:%n%s%n",
48 Tist.stream()

49 .filter(fourToSixThousand)

50 .findFirst(Q

51 .get());

52

Fig. 17.11 | Filtering Employees with salaries in the range $4000-$6000. (Part | of
2)

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

Employees earning $4000-$6000 per month sorted by salary:

Wendy Brown 4236.40 Marketing
James Indigo 4700.77 Marketing
Jason Red 5000.00 IT

First employee who earns $4000-$6000:
Jason Red 5000.00 IT

Fig. 17.11 | Filtering Employees with salaries in the range $4000-$6000. (Part 2 of
2.)

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

o; ees with Salaries
\

» A nice performance feature of lazy evaluation is the
ability to perform short circuit evaluation—that is, to
stop processing the stream pipeline as soon as the
desired result is available.

» Stream method findF1irst is a short-circuiting
terminal operation that processes the stream pipeline
and terminates processing as soon as the first object
from the stream pipeline is found.

> Returns an Optional containing the object that was found, if
any.

© Copyright 1992-2012 by Pearson
Education, Inc. All Rights Reserved.

» Figure 17.12 shows how to use streams to sort objects
by multiple fields.

» To sort objects by two fields, you create a
Comparator that uses two Functions.

» First you call Comparator method comparing to
create a Comparator with the first Function.

» On the resulting Comparator, you call method
thenComparing with the second Function.

» The resulting Comparator compares objects using
the first Function then, for objects that are equal,
compares them by the second Function.

© Copyright 1992-2012 by Pearson
Education, Inc. All Rights Reserved.

53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74

// Functions for getting first and last names from an Employee
Function<Employee, String> byFirstName = Employee::getFirstName;
Function<Employee, String> bylLastName = Employee::getlLastName;

// Comparator for comparing Employees by first name then last name
Comparator<Employee> lastThenFirst =
Comparator.comparing(byLastName) .thenComparing(byFirstName);

// sort employees by last name, then first name
System.out.printf(
"%nEmployees in ascending order by last name then first:%n');
list.stream()
.sorted(lastThenFirst)
.forEach(System.out::printin);

// sort employees 1in descending order by last name, then first name
System.out.printf(
"%nEmployees in descending order by last name then first:%n");
list.stream()
.sorted(lastThenFirst.reversed())
.forEach(System.out::printin);

Fig. 17.12 | Sorting Employees by last name then first name. (Part | of 2.)

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

Employees in ascending order by last name then first:

Jason Blue
Wendy Brown
Ashley Green
James Indigo
Luke Indigo
Matthew Indigo
Jason Red

3200.
4236.
7600.
4700.
6200.
3587.
5000.

00
40
00
77
00
50
00

Sales
Marketing
IT
Marketing
IT

Sales

IT

Employees in descending

Jason Red

Matthew Indigo
Luke Indigo
James Indigo
Ashley Green
Wendy Brown
Jason Blue

5000.
3587.
6200.
4700.
7600.
4236.
3200.

order by Tast name then first:

00
50
00
77
00
40
00

IT

Sales

IT
Marketing
IT
Marketing
Sales

Fig. 17.12 | Sorting Employees by last name then first name. (Part 2 of 2.)

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

» Figure 17.13 shows how to map objects of one type

(Emp loyee) to objects of a different type (String).

» You can map objects in a stream to different types to
produce another stream with the same number of
elements as the original stream.

» Stream method distinct eliminates duplicate
objects In a stream.

© Copyright 1992-2012 by Pearson
Education, Inc. All Rights Reserved.

75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90

// display unique employee last names sorted
System.out.printf("%nUnique employee last names:%n");
Tist.stream()

.map(Employee: :getLastName)

.distinct(Q

.sorted()

.forEach(System.out::println);

// display only first and last names
System.out.printf(
"%nEmployee names in order by last name then first name:%n');
list.stream()
.sorted(lastThenFirst)
.map(Employee: :getName)
.forEach(System.out::println);

Fig. 17.13 | Mapping Employee objects to last names and whole names. (Part | of
2)

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

Unique employee last names:
Blue

Brown

Green

Indigo

Red

Employee names in order by Tast name then first name:
Jason Blue

Wendy Brown

Ashley Green

James Indigo

Luke Indigo

Matthew Indigo

Jason Red

Fig. 17.13 | Mapping Employee objects to last names and whole names. (Part 2 of
2)

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

17.6.5 Grouping Emp loyees By
Department

» Figure 17.14 uses Stream method col lect to group
Employees by department.

» Collectors static method groupingBy with one
argument receives a Function that classifies objects in the
stream—the values returned by this function are used as the keys
In a Map.
> The corresponding values, by default, are L1 sts containing the stream

elements in a given category.

» Map method forEach performs an operation on each key—
value pair.
> Receives an object that implements functional interface BiConsumer.
- Bi1Consumer’s accept method has two parameters.
> For Maps, the first represents the key and the second the corresponding

© Copyright 1992-2012 by Pearson
Education, Inc. All Rights Reserved.

91 // group Employees by department

92 System.out.printf("%nEmployees by department:%n");

93 Map<String, List<Employee>> groupedByDepartment =

94 Tist.stream()

95 .collect(Collectors.groupingBy(Employee::getDepartment));
96 groupedByDepartment. forEach(

97 (department, employeesInDepartment) ->

98 {

99 System.out.println(department);

100 employeesInDepartment. forEach(

101 employee -> System.out.printf(” %s%n', employee));
102 }

103)

104

Fig. 17.14 | Grouping Employees by department. (Part | of 2.)

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

Employees by department:

Sales

Matthew Indigo

Jason
IT

Jason

Ashley

Luke
Marketing

James

Wendy

Blue

Red
Green
Indigo

Indigo
Brown

3587.
3200.

5000.
7600.
6200.

4700.
4236.

50
00

00
00
00

77
40

Sales
Sales

IT
IT
IT

Marketing
Marketing

Fig. 17.14 | Grouping EmpTloyees by department. (Part 2 of 2.)

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

[—] ~

17.6.6 Counting the Number of

Emp loyees in Each Department

» Figure 17.15 once again demonstrates Stream method
collectand Col lectors static method
groupingBy, but in this case we count the number of
Emp loyees in each department.

» Collectors static method groupingBy with two
arguments receives a Function that classifies the objects
in the stream and another Col lector (known as the
downstream Col lector).

» Collectors static method counting returns a
Col lector that counts the number of objects in a given
classification, rather than collecting them intoa L1st.

© Copyright 1992-2012 by Pearson
Education, Inc. All Rights Reserved.

105 // count number of Employees in each department

106 System.out.printf("%nCount of Employees by department:%n");
107 Map<String, Long> employeeCountByDepartment =

108 Tist.stream()

109 .collect(Collectors.groupingBy(Employee::getDepartment,
110 Collectors.counting()));

11 employeeCountByDepartment.forEach(

112 (department, count) -> System.out.printf(

113 "%s has %d employee(s)%n", department, count));

114

Count of Employees by department:
IT has 3 employee(s)

Marketing has 2 employee(s)

Sales has 2 employee(s)

Fig. 17.15 | Counting the number of Employees in each department.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

_/

[—

17.6.7 Summing and Averaging
Emp loyee Salaries

» Figure 17.16 demonstrates Stream method
mapToDoub1e, which maps objects to double
values and returns a Doub leStream.

» Stream method mapToDoub e maps objects to
doub1e values and returns a Doub 1eStream. The
method receives an object that implements the
functional interface ToDoub 1eFunction (package

java.util.function).

> This interface’s app 1 yYAsDoub 1 e method invokes an
instance method on an object and returns a doub 1 e value.

© Copyright 1992-2012 by Pearson
Education, Inc. All Rights Reserved.

115 // sum of Employee salaries with DoubleStream sum method

116 System.out.printf(

117 "%nSum of Employees' salaries (via sum method): %.2f%n",
118 Tist.stream()

119 .mapToDouble(Employee::getSalary)

120 .sum());

121

122 // calculate sum of Employee salaries with Stream reduce method
123 System.out.printf(

124 "Sum of Employees' salaries (via reduce method): %.2f%n",
125 Tist.stream()

126 .mapToDouble(Employee::getSalary)

127 .reduce(0, (valuel, value2) -> valuel + value2));

128

129 // average of Employee salaries with DoubleStream average method
130 System.out.printf("Average of Employees' salaries: %.2f%n",
131 Tist.stream()

132 .mapToDouble(Employee::getSalary)

133 .average()

134 .getAsDouble());

135 } // end main

136 } // end class ProcessingEmployees

Fig. 17.16 | Summing and averaging Employee salaries. (Part | of 2.)

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

Sum of Employees' salaries (via sum method): 34524.67
Sum of Employees' salaries (via reduce method): 34525.67
Average of Employees' salaries: 4932.10

Fig. 17.16 | Summing and averaging EmpTloyee salaries. (Part 2 of 2.)

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

17.7 Creating a Stream<String> from a File

» Figure 17.17 uses lambdas and streams to summarize the
number of occurrences of each word in a file then display a
summary of the words in alphabetical order grouped by
starting letter.

» Figure 17.18 shows the program’s output.

» F11es method 11nes creates a Stream<String> for
reading the lines of text from a file.

» Stream method f1atMap receives a Function that
maps an object into a stream—e.g., a line of text into words.

» Pattern method split-AsStream uses a regular
expression to tokenize a String.

© Copyright 1992-2012 by Pearson
Education, Inc. All Rights Reserved.

COO~NGOUNDLWN —

N =

13
14
15
16
17
18
19
20
21
22
23
24

// Fig
// Cou
import
import
import
import
import
import
import

public

{
pub

{

. 17.17: StreamOfLines.java

nting word occurrences in a text file.
java.io.IOException;
java.nio.file.Files;
java.nio.file.Paths;

java.util.Map;

java.util.TreeMap;
java.util.regex.Pattern;
java.util.stream.Collectors;

class StreamOfLines
1ic static void main(String[] args) throws IOException

// Regex that matches one or more consecutive whitespace characters
Pattern pattern = Pattern.compile("\\s+");

// count occurrences of each word in a Stream<String> sorted by word
Map<String, Long> wordCounts =
Files.lines(Paths.get("Chapter2Paragraph.txt"))
.map(line -> line.replaceATT(" (7! ")\\p{iP}", ""))
.flatMap(line -> pattern.splitAsStream(line))
.collect(Collectors.groupingBy(String::toLowerCase,
TreeMap: :new, Collectors.counting()));

Fig. 17.17 | Counting word occurrences in a text file. (Part | of 2.)

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

25

26 // display the words grouped by starting letter

27 wordCounts.entrySet()

28 .stream()

29 .collect(

30 Collectors.groupingBy(entry -> entry.getKey() .charAt(0),
31 TreeMap::new, Collectors.toList()))

32 .forEach((letter, wordList) ->

33 {

34 System.out.printf("%n%C%n", letter);

35 wordList.stream() .forEach(word -> System.out.printf(
36 "%13s: %d¥%n", word.getKey(), word.getValue()));
37 1)

38 }

39 1} // end class StreamOfLines

Fig. 17.17 | Counting word occurrences in a text file. (Part 2 of 2.)

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

a:

and:
application:
arithmetic:

begin:

C

calculates:
calculations:
chapter:
chapters:
commandline:
compares:
comparison:
compile:
computer:

= NWwWN

=

RPRRRPRRERRRR

inputs:
instruct:
introduces:

java:
jdk:

last:
Tater:
Tearn:

make :
messages:

N

result:
results:
run:

N

=

save:
screen:
show:
sum:

R RRe

that:
the:
their:
then:
this:
to:
tools:

= ANNNSNW

Fig. 17.18 | Output for the program of Fig. 17.17 arranged in three
columns.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

D numbers: 2 two: 2
decisions: 1
demonstrates: 1 U
display: 1 obtains: 1 use: 2
displays: 2 of: 1 user: 1
on: 1
E output: 1 W
example: 1 we: 2
examples: 1 with: 1
perform: 1
F present: 1 Y
for: 1 program: 1 you'll: 2
from: 1 programming: 1
programs: 2
H
how: 2

Fig. 17.18 | Output for the program of Fig. 17.17 arranged in three
columns.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

17.7 Creating a Stream<String> from a File
(Cont.)

» Collectors method groupingBy with three
arguments receives a classifier, a Map factory and a
downstream Col lector.
> The classifier is a Function that returns objects which are used as
keys in the resulting Map.

> The Map factory is an object that implements interface Supplier
and returns a new Map collection.

> The downstream Co1 1ector determines how to collect each
group’s elements.

» Map method entrySet returns a Set of Map.Entry
objects containing the Map’s key—value pairs.

» Set method stream returns a stream for processing the
Set’s elements.

© Copyright 1992-2012 by Pearson
Education, Inc. All Rights Reserved.

17.8 Generating Streams of Random
Values

» In Fig. 6.7, we demonstrated rolling a six-sided die
6,000,000 times and summarizing the frequencies of
each face using external iteration (a for loop) and a
sw1itch statement that determined which counter to

Increment.

» We then displayed the results using separate statements
that performed external iteration.

© Copyright 1992-2012 by Pearson
Education, Inc. All Rights Reserved.

17.8 Generating Streams of Random
Values (Cont.)

» In Fig. 7.7, we reimplemented Fig. 6.7, replacing the
entire sw1tch statement with a single statement that
Incremented counters in an array—that version of
rolling the die still used external iteration to produce

and summarize 6,000,000 random rolls and to display
the final results.

» Both prior versions of this example, used mutable
variables to control the external iteration and to
summarize the results.

© Copyright 1992-2012 by Pearson
Education, Inc. All Rights Reserved.

17.8 Generating Streams of Random
Values (Cont.)

» Figure 17.19 reimplements those programs with a
single statement that does it all, using lambdas,
streams, internal iteration and no mutable variables to
roll the die 6,000,000 times, calculate the frequencies
and display the results.

© Copyright 1992-2012 by Pearson
Education, Inc. All Rights Reserved.

|

2

3 import java.
4 import java.
5 import java.
6 import java.
7 import java.
8

9

10 {
11

12 {

13

14

15

16

17

18

19
20
21
22
23 }
24

// Fig. 17.19: RandomIntStream.java
// Rolling a die 6,000,000 times with streams

security.SecureRandom;
util.Map;
util.function.Function;
util.stream.IntStream;
util.stream.Collectors;

public class RandomIntStream
public static void main(String[] args)
SecureRandom random = new SecureRandom();
// roll a die 6,000,000 times and summarize the results

System.out.printf("%-6s%s%n", "Face", "Frequency");
random.ints(6_000_000, 1, 7)

.boxed()

.collect(Collectors.groupingBy(Function.identity(),
Collectors.counting()))

.forEach((face, frequency) ->
System.out.printf("%-6d%d%n", face, frequency));

} // end class RandomIntStream

Fig. 17.19 | Rolling a die 6,000,000 times with streams. (Part | of 2.)

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

Face Frequency
1 999339

2 999937

3 1000302

4 999323

5 1000183

6 1000916

Fig. 17.19 | Rolling a die 6,000,000 times with streams. (Part 2 of 2.)

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

17.8 Generating Streams of Random
Values (Cont.)

» Class SecureRandom’s methods 1nts, longs and
doub1es (inherited from class Random) return
IntStream, LongStreamand DoubleStream,
respectively, for streams of random numbers.

» Method 1nts with no arguments creates an
IntStream for an infinite stream of random 1nt
values.

» An Infinite- stream Is a stream with an unknown
number of elements—you use a short-circuiting
terminal operation to complete processing on an

Infinite stream.
e

© Copyright 1992-2012 by Pearson
Education, Inc. All Rights Reserved.

17.8 Generating Streams of Random
Values (Cont.)

» Method 1nts with a 1ong argument creates an
IntStreamwith the specified number of random
1nt values.

» Method 1nts with two 1nt arguments creates an
IntStream for an infinite stream of random 1nt
values In the range starting with the first argument and
up to, but not including, the second.

» Method 1nts witha long and two 1nt arguments
creates an IntStream with the specified number of
random 1nt values in the range starting with the first
argument and up to, but not including, the second.

© Copyright 1992-2012 by Pearson
Education, Inc. All Rights Reserved.

17.8 Generating Streams of Random
Values (Cont.)

» To convertan IntStreamtoaStream<Integer>
call IntStream method boxed.

» Function static method 1dentity creates a
Function that simply returns its argument.

© Copyright 1992-2012 by Pearson
Education, Inc. All Rights Reserved.

17.9 Lambda Event Handlers

» Some event-listener interfaces are functional interfaces.
For such interfaces, you can implement event handlers
with lambdas.

» For a simple event handler, a lambda significantly
reduces the amount of code you need to write.

© Copyright 1992-2012 by Pearson
Education, Inc. All Rights Reserved.

17.10 Additional Notes on Java SE 8
Interfaces

» Functional interfaces must contain only one
abstract method, but may also contain default-
methods and static methods that are fully
Implemented in the interface declarations.

» When a class implements an interface with default
methods and does not override them, the class inherits
the default methods’ implementations. An
interface’s designer can now evolve an interface by
adding new default and static methods without
breaking existing code that implements the interface.

© Copyright 1992-2012 by Pearson
Education, Inc. All Rights Reserved.

17.10 Additional Notes on Java SE 8
Interfaces (Cont.)

» If one class inherits the same default method from two
Interfaces, the class must override that method; otherwise,
the compiler will generate a compilation error.

» You can create your own functional interfaces by ensuring
that each contains only one abstract- method and zero
or more default or static methods.

» You can declare that an interface iIs a functional interface by
preceding it with the @FunctionalInterface
annotation. The compiler will then ensure that the interface
contains only one abstract- method; otherwise, it’ll
generate a compilation error.

AR

© Copyright 1992-2012 by Pearson
Education, Inc. All Rights Reserved.

	Slide 1: Chapter 17 Java SE 8 Lambdas and Streams
	Slide 2
	Slide 3
	Slide 4
	Slide 5: 17.1 Introduction
	Slide 6
	Slide 7
	Slide 8: 17.2 Functional Programming Technologies Overview
	Slide 9: 17.2 Functional Programming Technologies Overview (Cont.)
	Slide 10: 17.2.1 Functional Interfaces
	Slide 11
	Slide 12
	Slide 13: 17.2.2 Lambda Expressions
	Slide 14: 17.2.2 Lambda Expressions (Cont.)
	Slide 15: 17.2.2 Lambda Expressions (Cont.)
	Slide 16: 17.2.3 Streams
	Slide 17: 17.2.3 Streams (Cont.)
	Slide 18: 17.2.3 Streams (Cont.)
	Slide 19
	Slide 20
	Slide 21
	Slide 22: 17.3 IntStream Operations
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28: 17.3.1 Creating an IntStream and Displaying Its Values with the forEach Terminal Operation
	Slide 29: 17.3.1 Creating an IntStream and Displaying Its Values with the forEach Terminal Operation (Cont.)
	Slide 30: 17.3.1 Creating an IntStream and Displaying Its Values with the forEach Terminal Operation (Cont.)
	Slide 31: 17.3.2 Terminal Operations count, min, max, sum and average
	Slide 32: 17.3.2 Terminal Operations count, min, max, sum and average (Cont.)
	Slide 33: 17.3.3 Terminal Operation reduce
	Slide 34: 17.3.4 Intermediate Operations: Filtering and Sorting IntStream Values
	Slide 35: 17.3.4 Intermediate Operations: Filtering and Sorting IntStream Values (Cont.)
	Slide 36: 17.3.4 Intermediate Operations: Filtering and Sorting IntStream Values (Cont.)
	Slide 37: 17.3.5 Intermediate Operation: Mapping
	Slide 38: 17.3.6 Creating Streams of ints with IntStream Methods range and rangeClosed
	Slide 39: 17.4 Stream<Integer> Manipulations
	Slide 40
	Slide 41
	Slide 42
	Slide 43: 17.4.1 Creating a Stream<Integer>
	Slide 44: 17.4.2 Sorting a Stream and Collecting the Results
	Slide 45: 17.4.2 Sorting a Stream and Collecting the Results (Cont.)
	Slide 46: 17.4.3 Filtering a Stream and Storing the Results for Later Use
	Slide 47: 17.4.4 Sorting Previously Collected Results
	Slide 48: 17.5 Stream<String> Manipulations
	Slide 49
	Slide 50
	Slide 51: 17.5.1 Mapping Strings to Uppercase Using a Method Reference
	Slide 52: 17.5.1 Mapping Strings to Uppercase Using a Method Reference (Cont.)
	Slide 53: 17.5.1 Mapping Strings to Uppercase Using a Method Reference (Cont.)
	Slide 54
	Slide 55: 17.5.2 Filtering Strings Then Sorting Them in Case-Insensitive Ascending Order
	Slide 56: 17.5.3 Filtering Strings Then Sorting Them in Case-Insensitive Descending Order
	Slide 57: 17.6 Stream<Employee> Manipulations
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62: 17.6.1 Creating and Displaying a List<Employee>
	Slide 63: 17.6.1 Creating and Displaying a List<Employee> (Cont.)
	Slide 64
	Slide 65
	Slide 66: 17.6.2 Filtering Employees with Salaries in a Specified Range
	Slide 67
	Slide 68
	Slide 69: 17.6.2 Filtering Employees with Salaries in a Specified Range (Cont.)
	Slide 70: 17.6.3 Sorting Employees By Multiple Fields
	Slide 71
	Slide 72
	Slide 73: 17.6.4 Mapping Employees to Unique Last Name Strings
	Slide 74
	Slide 75
	Slide 76: 17.6.5 Grouping Employees By Department
	Slide 77
	Slide 78
	Slide 79: 17.6.6 Counting the Number of Employees in Each Department
	Slide 80
	Slide 81: 17.6.7 Summing and Averaging Employee Salaries
	Slide 82
	Slide 83
	Slide 84: 17.7 Creating a Stream<String> from a File
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89: 17.7 Creating a Stream<String> from a File (Cont.)
	Slide 90: 17.8 Generating Streams of Random Values
	Slide 91: 17.8 Generating Streams of Random Values (Cont.)
	Slide 92: 17.8 Generating Streams of Random Values (Cont.)
	Slide 93
	Slide 94
	Slide 95: 17.8 Generating Streams of Random Values (Cont.)
	Slide 96: 17.8 Generating Streams of Random Values (Cont.)
	Slide 97: 17.8 Generating Streams of Random Values (Cont.)
	Slide 98: 17.9 Lambda Event Handlers
	Slide 99: 17.10 Additional Notes on Java SE 8 Interfaces
	Slide 100: 17.10 Additional Notes on Java SE 8 Interfaces (Cont.)

