Chapter 16
Generic Collections

Java How to Program, 10/e

© Copyright 1992-2015 by Pearson Education, Inc. All Rights
Reserved.



OBJECTIVES
In this chapter you'll:

m Learn what collections are.
m Use class Arrays for array manipulations.

m Learn the type-wrapper classes that enable programs to process primitive data values as
objects.

m Use prebuilt generic data structures from the collections framework.
m Use iterators to “walk through™ a collection.
m Use persistent hash tables manipulated with objects of class Properties.

m Learn about synchronization and modifiability wrappers.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.




16.1 Introduction

16.2 Collections Overview

16.3 Type-Wrapper Classes

16.4 Autoboxing and Auto-Unboxing

16.5 Interface Collection and Class Collections
16.6 Lists

[6.6.1 ArrayList and Iterator
16.6.2 LinkedList

16.7 Collections Methods

16.7.1 Method sort

16.7.2 Method shuffle

[6.7.3 Methods reverse, fi11, copy, max and min
16.7.4 Method binarySearch

16.7.5 Methods addA11, frequency and disjoint

16.8 Stack Class of Package java.util

16.9 Class PriorityQueue and Interface Queue
16.10 Sets

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.




16.11 Maps
16.12Properties Class
16.13 Synchronized Collections
16.14 Unmodifiable Collections
16.15Abstract Implementations
16.16 Wrap-Up

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.




16.1 Introduction

» Java collections framework
> Contains prebuilt generic data structures

» After reading Chapter 17, Java SE 8 Lambdas and
Streams, you’ll be able to reimplement many of
Chapter 16’s examples in a more concise and elegant
manner, and in a way that makes them easier to
parallelize to improve performance on today’s multi-

core systems.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.




16.2 Collections Overview

» A collection is a data structure—actually, an object—

that can hold references to other objects.

- Usually, collections contain references to objects of any type
that has the is-a relationship with the type stored in the
collection.

» Figure 16.1 lists some of the collections framework
Interfaces.
» Package java.util.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.




Collection
Set
List

Map

Queue

The root interface in the collections hierarchy from which interfaces Set,
Queue and List are derived.

A collection that does 7ot contain duplicates.
An ordered collection that can contain duplicate elements.

A collection that associates keys to values and cannot contain duplicate keys.
Map does not derive from Collection.

Typically a first-in, first-out collection that models a waiting line; other orders
can be specified.

Fig. 16.1 | Some collections-framework interfaces.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.




16.3 Type-Wrapper Classes

» Each primitive type has a corresponding type-wrapper
class (in package java. lang).
> Boolean, Byte, Character, Double, Float, Integer, Long and
Short.
» Each type-wrapper class enables you to manipulate
primitive-type values as objects.

» Collections cannot manipulate variables of primitive
types.

> They can manipulate objects of the type-wrapper classes,
because every class ultimately derives from Object.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.




16.3 Type-Wrapper Classes (cont.)

» Each of the numeric type-wrapper classes—Byte,
Short, Integer, Long, Float and Double
extends class Number.

» The type-wrapper classes are Tinal classes, so you
cannot extend them.

» Primitive types do not have methods, so the methods
related to a primitive type are located in the
corresponding type-wrapper class.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.




, Good Programming Practice 16.1

| Avoid reinventing the wheel—rather than building your
own data structures, use the interfaces and collections
from the Java collections framework, which have been
carefully tested and tuned to meet most application re-
quirements.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.




<

16.4 Autoboxing and Auto-Unboxing

» A boxing conversion converts a value of a primitive type to an
object of the corresponding type-wrapper class.

» An unboxing conversion converts an object of a type-wrapper
class to a value of the corresponding primitive type.

» These conversions are performed automatically—called
autoboxing and auto-unboxing.
b Example

- // create integerArray
Integer[] integerArray = new Integer[5];

// assign Integer 10 to integerArray[ O ]
integerArray[ O?

// get_int value of Integer
int value = integerArray[0];

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.




16.5 Interface Collection and Class

Collections

» Interface Collection contains bulk operations for adding, clearing
and comparing objects in a collection.

» ACollection can be converted to an array.

» Interface Col lection provides a method that returns an
Iterator object, which allows a program to walk through the
collection and remove elements from the collection during the
Iteration.

» Class Collections provides static methods that search, sort
and perform other operations on collections.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.




Nz Software Engineering Observation 16. 1

e . Collection is used commonly as a parameter type in
methods to allow polymorphic processing of all objects
that implement interface Collection.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.




hgg Software Engineering Observation 16.2

8 Most collection implementations provide a constructor
that takes a Collection argument, thereby allowing a
new collection to be constructed containing the elements

of the specified collection.

s

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.




16.6 Lists

» AL1st (sometimes called a sequence) is an ordered
Col lection that can contain duplicate elements.

» L1st indices are zero based.

» In addition to the methods inherited from Col lection,
L1 st provides methods for manipulating elements via their
Indices, manipulating a specified range of elements,
searching for elements and obtaining a Listlterator to access
the elements.

» Interface L1st is implemented by several classes,
Including ArrayList, LinkedList and Vector.

» Autoboxing occurs when you add primitive-type values to
objects of these classes, because they store only references
to objects.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.




16.6 Lists (cont.)

» Class ArrayList and Vector are resizable-array implementations
of L1st.

» Inserting an element between existing elements of an ArrayList or
Vector is an inefficient operation.

» ALinkedL1st enables efficient insertion (or removal) of elements in
the middle of a collection, but is much less efficient than an
ArrayList for jumping to a specific element in the collection.

» We discuss the architecture of linked lists in Chapter 21.

» The primary difference between ArrayList and Vector is that
operations on Vectors are synchronized by default, whereas those on
ArrayLists are not.

» Unsynchronized collections provide better performance than
synchronized ones.

» For this reason, ArrayL1ist is typically preferred over Vector in
programs that do not share a collection among threads.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.




<55 Performance Tip 16.1
rZ2| ArrayLists behave like Vectors without synchroniza-

tion and therefore execute faster than Vectors, because
ArraylLists do not have the overhead of thread syn-

chronization.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.




hgg Software Engineering Observation 16.3

SBX LinkedL1ists can be used to create stacks, queues and
deques (double-ended queues, pronounced “decks”). The
collections framework provides implementations of some
of these data structures.

s

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.




16.6.1 ArrayLi1stand Iterator

» List method add adds an item to the end of a list.
» List method size retursn the number of elements.

» List method get retrieves an individual element’s value from the
specified index.

» Collection method iterator gets an Iterator foraCollection.

» Iterator- method hasNext determines whether there are more elements

to iterate through.
o Returns true if another element exists and false otherwise.

» Iterator method next obtains a reference to the next element.

» Collection method contains determine whether a Col lection
contains a specified element.

» Iterator method remove removes the current element from a
Collection.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.




I // Fig. 16.2: CollectionTest.java

2 // Collection interface demonstrated via an ArraylList object.
3 dimport java.util.List;

4 dimport java.util.ArraylList;

5 dmport java.util.Collection;

6 import java.util.Iterator;

7

8 public class CollectionTest

9 {
10 public static void main(String[] args)
11 {
12 // add elements in colors array to list

13 String[] colors = {"MAGENTA", "RED", "WHITE", "BLUE", "CYAN"};
14 List<String> list = new ArraylList<String>();

15

16 for (String color : colors)

17 Tist.add(color); // adds color to end of Tist

18

19 // add elements in removeColors array to removelist
20 String[] removeColors = {"RED", "WHITE", "BLUE"};
21 List<String> removelList = new ArraylList<String>(Q);
22
23 for (String color : removeColors)
24 removelList.add(color);

Fig. 16.2 | Collection interface demonstrated via an ArrayList object. (Part | of

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.




25
26
27
28
29
30
3
32
33
34
35
36
37
38
39
40
41

// output 1ist contents
System.out.printin("Arraylist: ");

for (int count = 0; count < list.size(); count++)
System.out.printf("%s ", list.get(count));

// remove from list the colors contained in removelist
removeColors(list, removelList);

// output 1ist contents
System.out.printf("%n%nArraylList after calling removeColors:%n");

for (String color : Tlist)
System.out.printf("%s ", color);

Fig. 16.2 | Collection interface demonstrated via an ArrayList object. (Part 2 of
3.)

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.




42 // remove colors specified in collection2 from collectionl

43 private static void removeColors(Collection<String> collectionl,
44 Collection<String> collection2)

45 {

46 // get iterator

47 Iterator<String> iterator = collectionl.iterator();
48

49 // loop while collection has items

50 while (iterator.hasNext())

51 {

52 if (collection2.contains(iterator.next()))

53 iterator.remove(); // remove current element
54 }

55 }

56 1} // end class CollectionTest

ArraylList:
MAGENTA RED WHITE BLUE CYAN

ArraylList after calling removeColors:
MAGENTA CYAN

Fig. 16.2 | Collection interface demonstrated via an ArrayList object. (Part 3 of
3.)

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.




o

Common Programming Error 16. 1

If a collection is modified by one of its methods after an
iterator is created for that collection, the iterator imme-
diately becomes invalid—any operation performed with
the iterator fails immediate and throws a Concurrent-
Mod1ificationException. For this reason, iterators
are said to be “fail fast.” Fail-fast iterators help ensure
that a modifiable collection is not manipulated by two or
more threads at the same time, which could corrupt the
collection. In Chapter 23, Concurrency, you'll learn
about concurrent collections (package
java.util.concurrent) that can be safely manipu-
lated by multiple concurrent threads.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.




ez Software Engineering Observation 16.4

k>

B We refer to the ArrayLists in this example via List
variables. This makes our code more flexible and easier
to modify—if we later determine that LinkedL1sts
would be more appropriate, only the lines where we
created the ArrayList objects (lines 14 and 21) need to
be modified. In general, when you create a collection
object, refer to that object with a variable of the
corresponding collection interface type.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.




16.6.1 ArrayLi1stand Iterator

» Type Inference with the <> Notation

> Lines 14 and 21 specify the type stored in the ArrayList
(that is, String) on the left and right sides of the
initialization statements.

- Java SE 7 introduced type inferencing with the <>
notation—known as the diamond notation—in statements
that declare and create generic type variables and objects.
For example, line 14 can be written as:

List<String> 1list = new ArraylList<>();

> Java uses the type in angle brackets on the left of the
declaration (that is, String) as the type stored in the
ArrayList created on the right side of the declaration.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.



16.6.2 LinkedL1ist

» List method addAll appends all elements of a collection to the end
ofaList.

» List method listlterator gets A L1 st’s bidirectional iterator.

» String method toUpperCase gets an uppercase version of a
String.

» List-Iterator method set replaces the current element to which the
Iterator refers with the specified object.

» String method toLowerCase returns a lowercase version of a
String.

» List method sublList obtaina a portion of a L1st.

> This is a so-called range-view method, which enables the program to
view a portion of the list.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.




16.6.2 L1nkedL1st (cont.)

» List method clear remove the elements of a L1st.
» List method size returns the number of items in the
List.

» Listlterator method hasPrevious determines whether
there are more elements while traversing the list
backward.

» Listlterator method previous gets the previous element
from the list.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.




16.6.2 L1nkedL1st (cont.)

» Class Arrays provides static method asList to view an array
as a List collection.
> AL1st view allows you to manipulate the array as if it were a list.

o This is useful for adding the elements in an array to a collection and for
sorting array elements.

» Any modifications made through the L1 st view change the

array, and any modifications made to the array change the L1st
View.

» The only operation permitted on the view returned by asList is
set, which changes the value of the view and the backing array.

> Any other attempts to change the view result in an
UnsupportedOperationException.

» List method toArray gets an array from a L1 st collection.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.




1 // Fig. 16.3: ListTest.java

2 // Lists, LinkedLists and ListIterators.

3 dimport java.util.List;

4 import java.util.LinkedList;

5 dmport java.util.ListIterator;

6

7 public class ListTest

8 {

9 public static void main(String[] args)

10 {

11 // add colors elements to listl

12 String[] colors =

13 {"black", "yellow", "green", "blue", "violet", "silver"};
14 List<String> 1listl = new LinkedList<>();
15

16 for (String color : colors)

17 Tistl.add(color);

18

19 // add colors2 elements to 1list2
20 String[] colors2 =
21 {"gold", "white", "brown", "blue", "gray", "silver"};
22 List<String> 1list2 = new LinkedList<>();
23

Fig. 16.3 | Lists, LinkedLists and ListIterators. (Part | of 5.)

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.




24 for (String color : colors2)

25 Tist2.add(color);

26

27 Tistl.addA11(1ist2); // concatenate 1ists

28 Tist2 = null; // release resources

29 printList(listl); // print listl elements

30

31 convertToUppercaseStrings(listl); // convert to uppercase string
32 printList(listl); // print listl elements

33

34 System.out.printf("%nDeleting elements 4 to 6...");

35 removeltems(listl, 4, 7); // remove items 4-6 from list
36 printList(1listl); // print Tistl elements

37 printReversedList(1listl); // print Tist in reverse order
38 }

39

Fig. 16.3 | Lists, LinkedLists and ListIterators. (Part2 of5.)

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.




40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62

// output List contents
private static void printList(List<String> list)

{
System.out.printf("%nlist:%n");
for (String color : list)
System.out.printf("%s ", color);
System.out.println();
3

// Tocate String objects and convert to uppercase
private static void convertToUppercaseStrings(List<String> Tist)

{

ListIterator<String> iterator = list.listlterator();

while (iterator.hasNext())
{

String color = iterator.next(); // get item
jterator.set(color.toUpperCase()); // convert to upper case

Fig. 16.3 | Lists, LinkedLists and ListIterators. (Part3 of 5.)

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.




63 // obtain sublist and use clear method to delete sublist 1items

64 private static void removeltems(List<String> list,

65 int start, int end)

66 {

67 list.subList(start, end).clear(); // remove 1items

68 }

69

70 // print reversed list

71 private static void printReversedList(List<String> Tist)
72 {

73 ListIterator<String> iterator = list.listlterator(list.size());
74

75 System.out.printf("%nReversed List:%n");

76

77 // print list in reverse order

78 while (iterator.hasPrevious())

79 System.out.printf("%s ", diterator.previous());

80 }
81 1} // end class ListTest

Fig. 16.3 | Lists, LinkedLists and ListIterators. (Part4 of5.)

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.




Tist:
black yellow green blue violet silver gold white brown blue gray silver

Tist:
BLACK YELLOW GREEN BLUE VIOLET SILVER GOLD WHITE BROWN BLUE GRAY SILVER

Deleting elements 4 to 6...
Tist:
BLACK YELLOW GREEN BLUE WHITE BROWN BLUE GRAY SILVER

Reversed List:
SILVER GRAY BLUE BROWN WHITE BLUE GREEN YELLOW BLACK

Fig. 16.3 | Lists, LinkedLists and ListIterators. (Part5 of5.)

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.




I // Fig. 16.4: UsingToArray.java
2 // Viewing arrays as Lists and converting Lists to arrays.
3 dimport java.util.LinkedList;
4 dimport java.util.Arrays;
5
6 public class UsingToArray
7 {
8 // creates a LinkedList, adds elements and converts to array
9 public static void main(String[] args)
10 {
11 String[] colors = {"black”, "blue", "yellow"};
12 LinkedList<String> links = new LinkedList<>(Arrays.aslList(colors));
13
14 links.addLast("red"); // add as last item
15 Tinks.add("pink"); // add to the end
16 Tinks.add(3, "green"); // add at 3rd index
17 Tinks.addFirst("cyan"); // add as first item
18
19 // get LinkedList elements as an array
20 colors = links.toArray(new String[links.size()]);
21

Fig. 16.4 | Viewing arrays as Lists and converting Lists to arrays. (Part | of 2.)

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.




22 System.out.println("colors: ");
23

24 for (String color : colors)

25 System.out.println(color);
26 }

27 1} // end class UsingToArray

colors:
cyan
black
blue
yvel low
green
red
pink

Fig. 16.4 | Viewing arrays as Lists and converting Lists to arays. (Part 2 of 2.)

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.




16.6.2 L1nkedL1st (cont.)

» LinkedList method addLast adds an element to the end
ofaList.

» LinkedList method add also adds an element to the end
ofalList.

» LinkedList method addFirst adds an element to the
beginning of a L1st.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.




Common Programming Error 16.2

Passing an array that contains data to toArray can
cause logic errors. If the number of elements in the array
is smaller than the number of elements in the list on
which toArray is called, a new array is allocated to
store the list’s elements—without preserving the array
argument’s elements. If the number of elements in the
array is greater than the number of elements in the list,
the elements of the array (starting at index zero) are over-
written with the list’s elements. Array elements that are
not overwritten retain their values.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.




16.7 Collections Methods

» Class Collections provides several high-
performance algorithms for manipulating collection
elements.

» The algorithms (Fig. 16.5) are implemented as
static methods.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.




sort

binarySearch

reverse
shuffle
fill

copy

min

max
addAll
frequency

disjoint

Sorts the elements of a List.

Locates an object in a List, using the high-performance binary search algo-
rithm which we introduced in Section 7.15 and discuss in detail in
Section 19.4.

Reverses the elements of a List.

Randomly orders a List’s elements.

Sets every List element to refer to a specified object.

Copies references from one List into another.

Returns the smallest element in a Collection.

Returns the largest element in a Collection.

Appends all elements in an array to a Collection.

Calculates how many collection elements are equal to the specified element.

Determines whether two collections have no elements in common.

Fig. 16.5 | Collections methods.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.




Nz Software Engineering Observation 16.5
B . The collections framework methods are polymorphic.

That is, each can operate on objects that implement
specific interfaces, regardless of the underlying

implementations.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.




16.7.1 Method sort

» Method sort sorts the elements of a L1st
> The elements must implement the Comparable interface.

> The order i1s determined by the natural order of the elements’
type as implemented by a compareTo method.

- Method compareTo is declared in interface Comparable
and Is sometimes called the natural comparison method.

> The sort call may specify as a second argument a
Comparator object that determines an alternative ordering of
the elements.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.




I // Fig. 16.6: Sortl.java

2 // Collections method sort.

3 dimport java.util.List;

4 dimport java.util.Arrays;

5 dmport java.util.Collections;

6

7 public class Sortl

8 {

9 public static void main(String[] args)
10 {
11 String[] suits = {"Hearts", "Diamonds", "Clubs", "Spades"};
12
13 // Create and display a list containing the suits array elements
14 List<String> list = Arrays.asList(suits);
15 System.out.printf("Unsorted array elements: %s%n", 1list);
16
17 Collections.sort(list); // sort ArraylList
18 System.out.printf("Sorted array elements: %s%n", Tist);
19 }

20 } // end class Sortl

Unsorted array elements: [Hearts, Diamonds, Clubs, Spades]
Sorted array elements: [Clubs, Diamonds, Hearts, Spades]

Fig. 16.6 | Collections method sort.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.




16.7.1 Method sort (cont.)

» The Comparator interface iIs used for sorting a
Collection’s elements in a different order.

» The static Collections method reverseOrder returns
a Comparator object that orders the collection’s
elements In reverse order.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.




I // Fig. 16.7: Sort2.java

2 // Using a Comparator object with method sort.

3 dimport java.util.List;

4 dimport java.util.Arrays;

5 dmport java.util.Collections;

6

7 public class Sort2

8 {

9 public static void main(String[] args)

10 {

11 String[] suits = {"Hearts", "Diamonds”™, "Clubs", "Spades"};
12

13 // Create and display a list containing the suits array elements
14 List<String> list = Arrays.aslList(suits); // create List
15 System.out.printf("Unsorted array elements: %s%n", 1list);
16

17 // sort in descending order using a comparator

18 Collections.sort(list, Collections.reverseOrder());

19 System.out.printf("Sorted lTist elements: %s%n", 1ist);
20 }

21 } // end class Sort2

Fig. 16.7 | Collections method sort with a Comparator object. (Part | of 2.)

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.




Unsorted array elements: [Hearts, Diamonds, Clubs, Spades]
Sorted 1list elements: [Spades, Hearts, Diamonds, Clubs]

Fig. 16.7 | Collections method sort with a Comparator object. (Part 2 of 2.)

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.




16.7.1 Method sort (cont.)

» Figure 16.8 creates a custom Comparator class, named
TimeComparator, that implements interface
Comparator to compare two T1me2 objects.

» Class T1me2, declared in Fig. 8.5, represents times with
hours, minutes and seconds.

» Class TimeComparator implements interface
Comparator, a generic type that takes one type argument.

» A class that implements Comparator must declare a
compare method that receives two arguments and returns
a negative integer if the first argument is less than the
second, O If the arguments are equal or a positive integer if
the first argument is greater than the second.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.




1 // Fig. 16.8: TimeComparator.java

2 // Custom Comparator class that compares two Time2 objects.

3 dimport java.util.Comparator;

4

5 public class TimeComparator implements Comparator<TimeZ2>

6 {

7 @verride

8 public int compare(Time2 timel, Time2 time2)

9 {

10 int hourDifference = timel.getHour() - time2.getHour();
11

12 if (hourDifference !'= 0) // test the hour first

13 return hourCompare;

14

15 int minuteDifference = timel.getMinute() - time2.getMinute();
16

17 if (minuteDifference '= 0) // then test the minute

I8 return minuteDifference;

19
20 int secondDifference = timel.getSecond() - time2.getSecond();
21 return secondDifference;
22 }

23 1} // end class TimeComparator

Fig. 16.8 | Custom Comparator class that compares two Time2 objects.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.




1 // Fig. 16.9: Sort3.java

2 // Collections method sort with a custom Comparator object.
3 dimport java.util.List;

4 import java.util.ArraylList;

5 dmport java.util.Collections;

6

7 public class Sort3

8 {

9 public static void main(String[] args)

10 {

11 List<Time2> list = new ArraylList<>(); // create List
12

13 Tist.add(new Time2(6, 24, 34));

14 Tist.add(new Time2(18, 14, 58));

15 Tist.add(nhew Time2(6, 05, 34));

16 Tist.add(new Time2(12, 14, 58));

17 Tist.add(new Time2(6, 24, 22));

18

19 // output List elements
20 System.out.printf("Unsorted array elements:%n%s%n", 1ist);
21

Fig. 16.9 | Collections method sort with a custom Comparator object. (Part |
of 2.)

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.




22 // sort in order using a comparator

23 Collections.sort(list, new TimeComparator());

24

25 // output List elements

26 System.out.printf("Sorted list elements:%n%s%n", 1ist);
27 }

28 1} // end class Sort3

Unsorted array elements:

[6:24:34 AM, 6:14:58 PM, 6:05:34 AM, 12:14:58 PM, 6:24:22 AM]
Sorted list elements:

[6:05:34 AM, 6:24:22 AM, 6:24:34 AM, 12:14:58 PM, 6:14:58 PM]

Fig. 16.9 | Collections method sort with a custom Comparator object. (Part 2
of 2.)

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.




16.7.2 Method shuffle

» Method shuffle randomly orders a L1Sst’s elements.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.




1 // Fig. 16.10: DeckOfCards.java

2 // Card shuffling and dealing with Collections method shuffle.
3 dimport java.util.List;

4 import java.util.Arrays;

5 dmport java.util.Collections;

6

7 // class to represent a Card in a deck of cards

8 <class Card

9 {

10 public static enum Face {Ace, Deuce, Three, Four, Five, Six,
11 Seven, Eight, Nine, Ten, Jack, Queen, King };

12 public static enum Suit {Clubs, Diamonds, Hearts, Spades};
13

14 private final Face face;

15 private final Suit suit;

16

17 // constructor

I8 public Card(Face face, Suit suit)

19 {
20 this.face = face;
21 this.suit = suit;
22 }
23

Fig. 16.10 | Card shuffling and dealing with Collections method shuffle. (Part
| of 5.)

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.




24 // return face of the card

25 public Face getFace()

26 {

27 return face;

28 }

29

30 // return suit of Card

31 public Suit getSuit()

32 {

33 return suit;

34 }

35

36 // return String representation of Card
37 public String toString()

38 {

39 return String.format("%s of %s", face, suit);
40 }

41 } // end class Card

42

Fig. 16.10 | Card shuffling and dealing with Collections method shuffle. (Part
2 0f5.)

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.




43 // class DeckOfCards declaration
44 public class DeckOfCards

45 {

46 private List<Card> Tist; // declare List that will store Cards
47

48 // set up deck of Cards and shuffle

49 public DeckOfCards()

50 {

51 Card[] deck = new Card[52];

52 int count = 0; // number of cards

53

54 // populate deck with Card objects

55 for (Card.Suit suit: Card.Suit.values())
56 {

57 for (Card.Face face: Card.Face.values())
58 {

59 deck[count] = new Card(face, suit);
60 ++count;

61 }

62 }

63

Fig. 16.10 | Card shuffling and dealing with Collections method shuffle. (Part
3of5.)

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.




64 Tist = Arrays.aslList(deck); // get List

65 Collections.shuffle(list); // shuffle deck
66 } // end DeckOfCards constructor

67

68 // output deck

69 public void printCards()

70 {

71 // display 52 cards in two columns

72 for (int i = 0; i < list.size(); i++)

73 System.out.printf("%-19s%s", list.get(i),
74 (G + 1) %4 ==0) ?"%" = "");

75 }

76

77 public static void main(String[] args)

78 {

79 DeckOfCards cards = new DeckOfCards();

80 cards.printCards();

81 }

82 } // end class DeckOfCards

Fig. 16.10 | Card shuffling and dealing with Collections method shuffle. (Part
4 0f5.)

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.




Deuce of Clubs
Three of Diamonds
Three of Spades
Ten of Spades
Nine of Clubs

Ten of Clubs
Queen of Diamonds
Ace of Spades
Seven of Diamonds
Seven of Spades
Eight of Clubs
Six of Clubs

Five of Spades

Six of Spades
Five of Clubs
Six of Diamonds
King of Diamonds
Ten of Diamonds
Five of Hearts
Ace of Diamonds
Deuce of Spades
Three of Hearts
King of Hearts
Three of Clubs
Nine of Spades
King of Spades

Nine of Diamonds
Deuce of Diamonds
King of Clubs
Eight of Spades
Eight of Diamonds
Ace of Clubs

Four of Clubs

Ace of Hearts
Four of Spades
Seven of Hearts
Queen of Clubs
Four of Hearts
Jack of Spades

Ten of Hearts
Seven of Clubs
Jack of Hearts
Six of Hearts
Eight of Hearts
Deuce of Hearts
Nine of Hearts
Jack of Diamonds
Four of Diamonds
Five of Diamonds
Queen of Spades
Jack of Clubs
Queen of Hearts

Fig. 16.10 | Card shuffling and dealing with Collections method shuffle. (Part
50f5.)

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.




16.7.3 Methods reverse, f111, copy, max

and min

>

Collections method reverse reverses the order of the
elementsinaL1st

<

Method fill overwrites elements in a L1 st with a specified

value.

Method copy takes two arguments—a destination L1st
and a source L1St.
> Each source L1st element is copied to the destination L1st.

> The destination L1st must be at least as long as the source L1st;
otherwise, an IndexOutOfBoundsException occurs.

> |f the destination L1 st is longer, the elements not overwritten are
unchanged.

Methods min and max each operate on any Col lection.

> Method m1n returns the smallest element ina Collection, and
method max returns the largest element ina Collection.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.




1 // Fig. 16.11: Algorithmsl.java

2 // Collections methods reverse, fill, copy, max and min.

3 dimport java.util.List;

4 import java.util.Arrays;

5 dmport java.util.Collections;

6

7 public class Algorithmsl

8 {

9 public static void main(String[] args)

10 {

11 // create and display a List<Character>

12 Character[] letters = {'P", 'C'", "M'};

13 List<Character> Tist = Arrays.asList(letters); // get List
14 System.out.println("list contains: ");

15 output(list);

16

17 // reverse and display the List<Character>

I8 Collections.reverse(list); // reverse order the elements
19 System.out.printf("%nAfter calling reverse, list contains:%n");
20 output(list);
21

Fig. 16.11 | Collections methods reverse, fi11, copy, max and min. (Part | of
3.)

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.




22 // create copyList from an array of 3 Characters

23 Character[] lettersCopy = new Character[3];

24 List<Character> copylList = Arrays.asList(lettersCopy);
25

26 // copy the contents of list into copylist

27 Collections.copy(copylList, list);

28 System.out.printf("%nAfter copying, copylList contains:%n");
29 output(copylList);

30

31 // fill Tist with Rs

32 Collections.fill(list, 'R");

33 System.out.printf("%nAfter calling fill, list contains:%n");
34 output(list);

35 }

36

37 // output List information

38 private static void output(List<Character> TistRef)

39 {

40 System.out.print("The Tist is: ");

41

42 for (Character element : 1listRef)

43 System.out.printf("%s ", element);

44

Fig. 16.11 | Collections methods reverse, fi11, copy, max and min. (Part 2 of
3.)

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.




45 System.out.printf("%nMax: %s", Collections.max(1listRef));
46 System.out.printf(" Min: %s%n", Collections.min(listRef));

47 }
48 } // end class Algorithmsl

1ist contains:
The 14ist is: PCM
Max: P Min: C

After calling reverse, list contains:
The T1ist is: M C P
Max: P Min: C

After copying, copylList contains:
The 1list is: M CP
Max: P Min: C

After calling fill, 1ist contains:
The 1ist is: R R R
Max: R Min: R

Fig. 16.11 | Collections methods reverse, fi11, copy, max and min. (Part 3 of
3.)

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.




16.7.4 Method b1narySearch

» static Collections method binarySearch locates an
objectina List.

> If the object is found, its index is returned.

> |f the object is not found, binarySearch returns a negative
value.

- Method binarySearch determines this negative value by

first calculating the insertion point and making its sign
negative.

> Then, binarySearch subtracts 1 from the insertion point to
obtain the return value, which guarantees that method
binarySearch returns positive numbers (>= 0) if and only
If the object is found.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.




1 // Fig. 16.12: BinarySearchTest.java

2 // Collections method binarySearch.

3 dimport java.util.List;

4 import java.util.Arrays;

5 dmport java.util.Collections;

6 import java.util.ArraylList;

7

8 public class BinarySearchTest

9 {

10 public static void main(String[] args)

11 {

12 // create an ArrayList<String> from the contents of colors array
13 String[] colors = {"red"”, "white", "blue", "black", "yellow",
l4 llpurp'|e||’ "tan”, llp_in|<|T};

15 List<String> list =

16 new ArraylList<>(Arrays.asList(colors));

17

I8 Collections.sort(list); // sort the ArraylList

19 System.out.printf("Sorted ArraylList: %s%n", Tist);
20

Fig. 16.12 | Collections method binarySearch. (Part | of 3.)

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.




21 // search 1list for various values

22 printSearchResults(list, "black™); // first item

23 printSearchResults(list, "red"); // middle item

24 printSearchResults(list, "pink™); // last dtem

25 printSearchResults(list, "aqua"™); // below lowest
26 printSearchResults(list, "gray"); // does not exist
27 printSearchResults(list, "teal"); // does not exist
28 }

29

30 // perform search and display result

31 private static void printSearchResults(

32 List<String> list, String key)

33 {

34 int result = 0;

35

36 System.out.printf("%nSearching for: %s%n", key);

37 result = Collections.binarySearch(list, key);

38

39 if (result >= 0)

40 System.out.printf("Found at index %d%n", result);
41 else

42 System.out.printf("Not Found (%d)%n",result);

43 }

44 } // end class BinarySearchTest

Fig. 16.12 | Collections method binarySearch. (Part 2 of 3.)

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.




Sorted ArraylList: [black, blue, pink, purple, red, tan, white, yellow]

Searching for: black
Found at index O

Searching for: red
Found at index 4

Searching for: pink
Found at index 2

Searching for: aqua
Not Found (-1)

Searching for: gray
Not Found (-3)

Searching for: teal
Not Found (-7)

Fig. 16.12 | Collections method binarySearch. (Part 3 of 3.)

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.




16.7.5 Methods addAl1, frequency and
disjoint

» Collections method addAll takes two arguments—a
Col lection into which to insert the new element(s) and
an array that provides elements to be inserted.

» Collections method frequency takes two arguments—a
Collection to be searched and an Object to be

searched for in the collection.

- Method frequency returns the number of times that the second
argument appears in the collection.

» Collections method disjoint takes two Col lections and
returns true if they have no elements in common.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.




OO~ bh WN =

// Fig. Fig. 16.13: Algorithms2.java

// Collections methods addAll, frequency and disjoint.
import java.util.ArraylList;

import java.util.List;

import java.util.Arrays;

import java.util.Collections;

public class Algorithms2
{
public static void main(String[] args)
{
// initialize Tistl and Tist2
String[] colors = {"red", "white", "vyellow", "blue"};
List<String> 1listl = Arrays.aslList(colors);
ArrayList<String> list2 = new ArraylList<>();

Tist2.add("black™); // add "black” to the end of 1list2
Tist2.add("red"); // add "red" to the end of Tist2
Tist2.add("green"); // add "green" to the end of 1list2

System.out.print("Before addAll, list2 contains: ");

Fig. 16.13 | Collections methods addA11, frequency and disjoint. (Part | of
3.)

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.




23 // display elements in Tist2

24 for (String s : list2)

25 System.out.printf("%s ", s);

26

27 Collections.addA11(14ist2, colors); // add colors Strings to list2
28

29 System.out.printf("%nAfter addAll, 1ist2 contains: ");
30

31 // display elements in 1list2

32 for (String s : Tist2)

33 System.out.printf("%s ", s);

34

35 // get frequency of "red"

36 int frequency = Collections.frequency(list2, "red");

37 System.out.printf(

38 "%nFrequency of red in list2: %d%n", frequency);

39

40 // check whether 1listl and list2 have elements in common
41 boolean disjoint = Collections.disjoint(listl, Tlist2);
42

43 System.out.printf("listl and list2 %s elements in common¥%n",
44 (disjoint ? "do not have” : "have"));

45 }

46 } // end class Algorithms2

Fig. 16.13 | Collections methods addA11, frequency and disjoint. (Part 2 of

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.




Before addAl1l, 1list2 contains: black red green

After addAll, 1ist2 contains: black red green red white yellow blue
Frequency of red in list2: 2

Tistl and Tist2 have elements in common

Fig. 16.13 | Collections methods addA11, frequency and disjoint. (Part 3 of
3.)

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.




<

16.8 Stack Class of Package java.util

Class Stack in the Java utilities package (Java-.ut11) extends
class Vector to implement a stack data structure.

Stack method push adds a Number object to the top of the
stack.

Any integer literal that has the suffix L is a 1ong value.

An integer literal without a suffix is an 1nt value.

Any floating-point literal that has the suffix F is a f1oat value.
A floating-point literal without a suffix is a doub1e value.

Stack method pop removes the top element of the stack.

> If there are no elements in the Stack, method pop throws an
EmptyStackException, which terminates the loop.

Method peek returns the top element of the stack without
popping the element off the stack.

Method isEmpty determines whether the stack is empty.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.



OO~ bh WN =

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

// Fig. 16.14: StackTest.java

// Stack class of package java.util.
import java.util.Stack;

import java.util.EmptyStackException;

public class StackTest

{

public static void main(String[] args)

{

Stack<Number> stack = new Stack<>(); // create a Stack

// use push method

stack.push(12L); // push long value 12L
System.out.println("Pushed 12L");
printStack(stack);

stack.push(34567); // push int value 34567
System.out.println("Pushed 34567");
printStack(stack);

stack.push(1.0F); // push float value 1.0F
System.out.println("Pushed 1.0F");
printStack(stack);

stack.push(1234.5678); // push double value 1234.5678
System.out.println("Pushed 1234.5678 ");
printStack(stack);

Fig. 16.14 | Stackclass of package java.util. (Part | of 4.)

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.




25

26 // remove items from stack

27 try

28 {

29 Number removedObject = null;

30

31 // pop elements from stack

32 while (true)

33 {

34 removedObject = stack.pop(); // use pop method
35 System.out.printf("Popped %s%n", removedObject);
36 printStack(stack);

37 3

38 h

39 catch (EmptyStackException emptyStackException)

40 {

41 emptyStackException.printStackTrace();

42 }

43 }

44

Fig. 16.14 | Stack class of package java.util. (Part 2 of 4.)

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.




45 // display Stack contents

46 private static void printStack(Stack<Number> stack)

47 {

48 if (stack.isEmpty())

49 System.out.printf("stack is empty%n#n"); // the stack is empty
50 else // stack is not empty

51 System.out.printf("stack contains: %s (top)%n", stack);

52 }

53 1} // end class StackTest

Fig. 16.14 | Stack class of package java.util. (Part 3 of 4.)

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.




Pushed 12L

stack contains: [12]
Pushed 34567

stack contains: [12,
Pushed 1.0F

stack contains: [12,
Pushed 1234.5678
stack contains: [12,
Popped 1234.5678
stack contains: [12,
Popped 1.0

stack contains: [12,
Popped 34567

stack contains: [12]
Popped 12

stack is empty

(top)

34567] (top)

34567, 1.0] (top)

34567, 1.0, 1234.5678] (top)
34567, 1.0] (top)

34567] (top)

(top)

java.util.EmptyStackException

at java.util
at java.util

.Stack.peek(Unknown Source)
.Stack.pop(Unknown Source)

at StackTest.main(StackTest.java:34)

Fig. 16.14 | Stackclass of package java.util. (Part 4 of 4.)

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.




Error-Prevention Tip 16.1

Because Stack extends Vector, all public Vector
methods can be called on Stack objects, even if the
methods do not represent conventional stack operations.
For example, Vector method add can be used to insert
an element anywhere in a stack—an operation that
could “corrupt” the stack. When manipulating a Stack,
only methods push and pop should be used to add ele-
ments to and remove elements from the Stack, respec-
tively. In Section 21.5, we create a Stack class using
composition so that the Stack provides in its public
interface only the capabilities that should be allowed by
a Stack.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.




<

16.9 Class PriorityQueue and Interface
Queue

» Interface Queue extends interface Col Tection and provides
additional operations for inserting, removing and inspecting
elements in a queue.

» PriorityQueue orders elements by their natural ordering.

> Elements are inserted in priority order such that the highest-priority
element (i.e., the largest value) will be the first element removed from
the PriorityQueue.
» Common PriorityQueue operations are
o offer to insert an element at the appropriate location based on priority
order
> poll to remove the highest-priority element of the priority queue

> peek to get a reference to the highest-priority element of the priority
queue

o clear to remove all elements in the priority queue
o size to get the number of elements in the queue.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.




1 // Fig. 16.15: PriorityQueueTest.java

2 // PriorityQueue test program.

3 dimport java.util.PriorityQueue;

4

5 public class PriorityQueueTest

6 {

7 public static void main(String[] args)

8 {

9 // queue of capacity 11

10 PriorityQueue<Double> queue = new PriorityQueue<>();
11

12 // insert elements to queue

13 queue.offer(3.2);

14 queue.offer(9.8);

15 queue.offer(5.4);

16

17 System.out.print("Polling from queue: ");
18

Fig. 16.15 | PriorityQueue test program. (Part | of 2.)

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.




19 // display elements in queue

20 while (queue.size() > 0)

21 {

22 System.out.printf("%.1f ", queue.peek()); // view top element
23 queue.pol1(Q); // remove top element

24 }

25 }

26 } // end class PriorityQueueTest

Polling from queue: 3.2 5.4 9.8

Fig. 16.15 | PriorityQueue test program. (Part 2 of 2.)

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.




16.10 Sets

» A Set is an unordered Col1lection of unique
elements (i.e., no duplicates).

» The collections framework contains several Set
Implementations, including HashSet and TreeSet.

» HashSet stores its elements in a hash table, and
TreeSet stores Its elements In a tree.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.




1 // Fig. 16.16: SetTest.java

2 // HashSet used to remove duplicate values from array of strings.
3 dimport java.util.List;

4 import java.util.Arrays;

5 dimport java.util.HashSet;

6 import java.util.Set;

7 dimport java.util.Collection;

8

9 public class SetTest

10 {

11 public static void main(String[] args)

12 {

13 // create and display a List<String>

14 String[] colors = {"red", "white", "blue", "green", "gray",
15 "orange", "tan", "white", "cyan", "peach", "gray", "orange"};
16 List<String> list = Arrays.aslList(colors);

17 System.out.printf("List: %s%n", Tist);

18

19 // eliminate duplicates then print the unique values
20 printNonDuplicates(list);
21 }
22

Fig. 16.16 | HashSet used to remove duplicate values from an array of strings. (Part
| of 2.)

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.




23 // create a Set from a Collection to eliminate duplicates

24 private static void printNonDuplicates(Collection<String> values)
25 {

26 // create a HashSet

27 Set<String> set = new HashSet<>(values);

28

29 System.out.printf("%nNonduplicates are: ");
30

31 for (String value : set)

32 System.out.printf("%s ", value);

33

34 System.out.println();

35 3

36 1} // end class SetTest

List: [red, white, blue, green, gray, orange, tan, white, cyan, peach, gray,
orangel]

Nonduplicates are: orange green white peach gray cyan red blue tan

Fig. 16.16 | HashSet used to remove duplicate values from an array of strings. (Part
20f2)

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.




16.10 Sets (cont.)

» The collections framework also includes the SortedSet
Interface (which extends Set) for sets that maintain their
elements In sorted order.

» Class TreeSet implements SortedSet.

» TreeSet method headSet gets a subset of the TreeSet iIn
which every element is less than the specified value.

» TreeSet method tailSet gets a subset in which each element
IS greater than or equal to the specified value.

» SortedSet methods first and last get the smallest and largest
elements of the set, respectively.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.




I // Fig. 16.17: SortedSetTest.java

2 // Using SortedSets and TreeSets.

3 dimport java.util.Arrays;

4 import java.util.SortedSet;

5 dmport java.util.TreeSet;

6

7 public class SortedSetTest

8 {

9 public static void main(String[] args)
10 {
11 // create TreeSet from array colors

12 String[] colors = {"yellow", "green”, "black"™, "tan", "grey",
13 "white", "orange", "red", "green"};

14 SortedSet<String> tree = new TreeSet<>(Arrays.aslList(colors));
15

16 System.out.print("sorted set: ");

17 printSet(tree);

18

19 // get headSet based on "orange"
20 System.out.print("headSet (\"orange\"): ");
21 printSet(tree.headSet("orange™) );
22

Fig. 16.17 | Using SortedSets and TreeSets. (Part | of 3.)

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.




23 // get tailSet based upon "orange"

24 System.out.print("tailSet (\"orange\"): ");

25 printSet(tree.tailSet("orange”) );

26

27 // get first and last elements

28 System.out.printf("first: %s%n", tree.first());
29 System.out.printf("last : %s%n", tree.last());
30 }

31

32 // output SortedSet using enhanced for statement
33 private static void printSet(SortedSet<String> set)
34 {

35 for (String s : set)

36 System.out.printf("%s ", s);

37

38 System.out.printin();

39 }

40 1} // end class SortedSetTest

Fig. 16.17 | Using SortedSets and TreeSets. (Part 2 of 3.)

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.




sorted set: black green grey orange red tan white yellow
headSet ("orange"): black green grey

tailSet ("orange"): orange red tan white yellow

first: black

Tast : yellow

Fig. 16.17 | Using SortedSets and TreeSets. (Part 3 of 3.)

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.




16.11 Maps

» Maps assoclate keys to values.

> The keys in a Map must be unique, but the associated values
need not be.

o |f a Map contains both unique keys and unique values, it is said
to implement a one-to-one mapping.

> If only the keys are unique, the Map is said to implement a
many-to-one mapping—many keys can map to one value.

» Three of the several classes that implement interface
Map are Hashtable, HashMap and TreeMap.

» Hashtab1es and HashMaps store elements in hash
tables, and TreeMaps store elements in trees.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.



16.11 Maps (Cont.)

» Interface SortedMap extends Map and maintains its keys in
sorted order—either the elements’ natural order or an order
specified by a Comparator.

» Class TreeMap implements Sortedmap.

» Hashing is a high-speed scheme for converting keys into
unique array indices.
» A hash table’s load factor affects the performance of

hashing schemes.

> The load factor is the ratio of the number of occupied cells in the
hash table to the total number of cells in the hash table.

» The closer this ratio gets to 1.0, the greater the chance of
collisions.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.




=55 Performance Tip 16.2

The load factor in a hash table is a classic example of a
memory-spacelexecution-time trade-off: By increasing
the load factor, we get better memory utilization, but the
program runs slower, due to increased hashing collisions.
By decreasing the load factor, we get better program
speed, because of reduced hashing collisions, but we get
poorer memory utilization, because a larger portion of
the hash table remains empty.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.




1 // Fig. 16.18: WordTypeCount.java

2 // Program counts the number of occurrences of each word in a String.
3 dimport java.util.Map;

4 import java.util.HashMap;

5 dmport java.util.Set;

6 import java.util.TreeSet;

7 dimport java.util.Scanner;

8

9 public class WordTypeCount

10 {

11 public static void main(String[] args)

12 {

13 // create HashMap to store String keys and Integer values
14 Map<String, Integer> myMap = new HashMap<>();

15

16 createMap(myMap); // create map based on user input

17 displayMap(myMap); // display map content

18 }

19

Fig. 16.18 | Program counts the number of occurrences of each word in a String.
(Part I of 5.)

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.




20 // create map from user input

21 private static void createMap(Map<String, Integer> map)

22 {

23 Scanner scanner = new Scanner(System.in); // create scanner
24 System.out.println("Enter a string:"); // prompt for user input
25 String input = scanner.nextLine();

26

27 // tokenize the input

28 String[] tokens = dinput.split(" ");

29

30 // processing input text

31 for (String token : tokens)

32 {

33 String word = token.tolLowerCase(); // get lowercase word
34

Fig. 16.18 | Program counts the number of occurrences of each word in a String.
(Part 2 of 5.)

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.




35 // if the map contains the word

36 if (map.containsKey(word)) // is word in map

37 {

38 int count = map.get(word); // get current count
39 map.put(word, count + 1); // increment count
40 }

41 else

42 map.put(word, 1); // add new word with a count of 1 to map
43 }

44 }

45

46 // display map content

47 private static void displayMap(Map<String, Integer> map)
48 {

49 Set<String> keys = map.keySet(); // get keys

50

51 // sort keys

52 TreeSet<String> sortedKeys = new TreeSet<>(keys);

53

54 System.out.printf("%nMap contains:%nKey\t\tValuen");
55

Fig. 16.18 | Program counts the number of occurrences of each word in a String.
(Part 3 of 5.)

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.




56 // generate output for each key in map

57 for (String key : sortedKeys)

58 System.out.printf("%-10s%10s%n", key, map.get(key));

59

60 System.out.printf(

61 "%nsize: %d%nisEmpty: %b%n", map.size(), map.isEmpty());
62 }

63 } // end class WordTypeCount

Fig. 16.18 | Program counts the number of occurrences of each word in a String.
(Part 4 of 5.)

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.




Enter a string:
this is a sample sentence with several words this is another sample
sentence with several different words

Map contains:
Key Value
a

another
different
is

sample
sentence
several
this

with
words

NMNMNNNMNNNRE R

size: 10
isEmpty: false

Fig. 16.18 | Program counts the number of occurrences of each word in a String.
(Part 5 of 5.)

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.




16.11 Maps (Cont.)

>

Map method containsKey determines whether a key is in a
map.
Map method put creates a new entry or replaces an existing

entry’s value.
> Method put returns the key’s prior associated value, or nul 1 if the
key was not in the map.

Map method get obtain the specified key’s associated value
In the map.

HashMap method keySet returns a set of the keys.

Map method size returns the number of key/value pairs in
the Map.

Map method isEmpty returns a boolean indicating
whether the Map Is empty.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.



Error-Prevention Tip 16.2

Always use immutable keys with a Map. The key
determines where the corresponding value is placed. If
the key has changed since the insert operation, when you
subsequently attempt to retrieve that value, it might not

be found. In this chapter’s examples, we use Strings as
keys and Strings are immutable.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.




16.12 Properties Class

» A Properties object is a persistent Hashtab 1 e that stores
key/value pairs of Strings—assuming that you use
methods setProperty and getProperty to manipulate the
table rather than inherited Hashtab 1e methods put and
get.

» The Properties object’s contents can be written to an
output stream (possibly a file) and read back in through an
Input stream.

» A.common use of Properties objects in prior versions
of Java was to maintain application-configuration data or
user preferences for applications.

> [Note: The Preferences API (package java.util.prefs) is meant to
replace this use of class Properties.]

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.




16.12 Properties Class (cont.)

» Properties method store saves the object’s contents to
the OutputStream specified as the first argument.
The second argument, a String, is a description
written into the file.

» Properties method list, which takes a PrintStream
argument, is useful for displaying the list of properties.

» Properties method load restores the contents of a
Properties object from the InputStream
specified as the first argument (in this case, a
F1leInputStream).

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.




I // Fig. 16.19: PropertiesTest.java

2 // Demonstrates class Properties of the java.util package.
3 dimport java.io.FileQutputStream;

4 import java.io.FilelnputStream;

5 dimport java.io.IOException;

6 import java.util.Properties;

7 dimport java.util.Set;

8

9 public class PropertiesTest
10 {
11 public static void main(String[] args)
12 {

13 Properties table = new Properties();
14

15 // set properties

16 table.setProperty("color”™, "blue™);
17 table.setProperty("width", "200");
18

19 System.out.println("After setting properties");
20 TistProperties(table);
21
22 // replace property value
23 table.setProperty('color”, "red");
24

Fig. 16.19 | Properties class of package java.util. (Part | of 6.)

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.




25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46

System.out.println("After replacing properties”);
TistProperties(table);

saveProperties(table);
table.clear(); // empty table

System.out.println("After clearing properties"”);
TistProperties(table);

ToadProperties(table);

// get value of property color
Object value = table.getProperty("color”);

// check if value is in table
if (value !'= null)

System.out.printf("Property color's value is %s%n", value);
else

System.out.println("Property color is not in table");

Fig. 16.19 | Properties class of package java.util. (Part 2 of 6.)

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.




47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64

// save properties to a file
private static void saveProperties(Properties props)

{

// save contents of table

try

{
FileQutputStream output = new FileOutputStream('props.dat"™);
props.store(output, "Sample Properties"); // save properties
output.close();
System.out.println("After saving properties™);
TistProperties(props);

}
catch (IOException ioException)
{
ioException.printStackTrace();
}

Fig. 16.19 | Properties class of package java.util. (Part 3 of 6.)

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.




65
66
67
68
69
70
71
72
73
74
75
76
7
78
79
80
81
82

// load properties from a file
private static void loadProperties(Properties props)

{

// load contents of table

try

{
FilelnputStream input = new FilelnputStream("props.dat"”);
props.load(input); // load properties
input.close();
System.out.println("After loading properties”);
TistProperties(props);

}
catch (IOException ioException)
{
ioException.printStackTrace();
}

Fig. 16.19 | Properties class of package java.util. (Part 4 of 6.)

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.




83 // output property values

84 private static void TistProperties(Properties props)

85 {

86 Set<Object> keys = props.keySet(); // get property names
87

88 // output name/value pairs

89 for (Object key : keys)

90 System.out.printf(

91 "%s\t%s%n'", key, props.getProperty((String) key));
92

93 System.out.printin();

94 }

95 1} // end class PropertiesTest

Fig. 16.19 | Properties class of package java.util. (Part 5 of 6.)

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.




After setting properties
color blue
width 200

After replacing properties
color red
width 200

After saving properties
color red

width 200

After clearing properties
After loading properties
color red

width 200

Property color's value is red

Fig. 16.19 | Properties class of package java.util. (Part 6 of 6.)

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.




16.13 Synchronized Collections

» Synchronization wrappers are used for collections that
might be accessed by multiple threads.

» A wrapper object receives method calls, adds thread
synchronization and delegates the calls to the wrapped
collection object.

» The Col lections API provides a set of static
methods for wrapping collections as synchronized
Versions.

» Method headers for the synchronization wrappers are
listed in Fig. 16.20.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.




<T> Collection<T> synchronizedCollection(Collection<T> c)

<T> List<T> synchronizedList(List<T> alList)

<T> Set<T> synchronizedSet(Set<T> s)

<T> SortedSet<T> synchronizedSortedSet(SortedSet<T> s)

<K, V> Map<K, V> synchronizedMap(Map<K, V> m)

<K, V> SortedMap<K, V> synchronizedSortedMap(SortedMap<K, V> m)

Fig. 16.20 | Synchronization wrapper methods.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.




16.14 Unmodifiable Collections

» The Col lections class provides a set of static
methods that create unmodifiable wrappers for
collections.

» Unmodifiable wrappers throw
UnsupportedOperationExceptions if attempts
are made to modify the collection.

» In an unmodifiable collection, the references stored In
the collection are not modifiable, but the objects they
refer are modifiable unless they belong to an
immutable class like String.

» Headers for these methods are listed in Fig. 16.21.
AN

BN © Copyright 1992-2015 by Pearson
; \\\ Education, Inc. All Rights Reserved.




'\nv’ Software Engineering Observation 16.6
2R You can use an unmodifiable wrapper to create a

collection that offers read-only access to others, while
allowing read—write access to yourself. You do this simply
by giving others a reference to the unmodifiable wrapper
while retaining for yourself a reference to the original
collection.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.




<T> Collection<T> unmodifiableCollection(Collection<T> c)

<T> List<T> unmodifiableList(List<T> alList)

<T> Set<T> unmodifiableSet(Set<T> s)

<T> SortedSet<T> unmodifiableSortedSet(SortedSet<T> s)

<K, V> Map<K, V> unmodifiableMap(Map<K, V> m)

<K, V> SortedMap<K, V> unmodifiableSortedMap(SortedMap<K, V> m)

Fig. 16.21 | Unmodifiable wrapper methods.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.




16.15 Abstract Implementations

» The collections framework provides various abstract
implementations of Col lection interfaces from which
you can quickly “flesh out” complete customized
Implementations.

» These include
> athin Col lection implementation called an AbstractCollection

a L1st implementation that allows array-like access to its elements
called an AbstractList

a Map implementation called an AbstractMap

a L1st implementation that allows sequential access (from
beginning to end) to its elements called an AbstractSequentiallList

a Set implementation called an AbstractSet
a Queue implementation called AbstractQueue.

o

(¢]

o

(¢]

o

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.




	Slide 1: Chapter 16 Generic Collections
	Slide 2
	Slide 3
	Slide 4
	Slide 5: 16.1  Introduction
	Slide 6: 16.2  Collections Overview
	Slide 7
	Slide 8: 16.3  Type-Wrapper Classes
	Slide 9: 16.3  Type-Wrapper Classes (cont.)
	Slide 10
	Slide 11: 16.4  Autoboxing and Auto-Unboxing
	Slide 12: 16.5  Interface Collection and Class Collections
	Slide 13
	Slide 14
	Slide 15: 16.6  Lists
	Slide 16: 16.6  Lists (cont.)
	Slide 17
	Slide 18
	Slide 19: 16.6.1 ArrayList and Iterator 
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25: 16.6.1 ArrayList and Iterator 
	Slide 26: 16.6.2 LinkedList 
	Slide 27: 16.6.2 LinkedList (cont.)
	Slide 28: 16.6.2 LinkedList (cont.)
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36: 16.6.2 LinkedList (cont.)
	Slide 37
	Slide 38: 16.7  Collections Methods
	Slide 39
	Slide 40
	Slide 41: 16.7.1 Method sort 
	Slide 42
	Slide 43: 16.7.1 Method sort (cont.)
	Slide 44
	Slide 45
	Slide 46: 16.7.1 Method sort (cont.)
	Slide 47
	Slide 48
	Slide 49
	Slide 50: 16.7.2 Method shuffle
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56: 16.7.3 Methods reverse, fill, copy, max and min 
	Slide 57
	Slide 58
	Slide 59
	Slide 60: 16.7.4 Method binarySearch 
	Slide 61
	Slide 62
	Slide 63
	Slide 64: 16.7.5 Methods addAll, frequency and disjoint
	Slide 65
	Slide 66
	Slide 67
	Slide 68: 16.8  Stack Class of Package java.util 
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74: 16.9  Class PriorityQueue and Interface Queue 
	Slide 75
	Slide 76
	Slide 77: 16.10  Sets
	Slide 78
	Slide 79
	Slide 80: 16.10  Sets (cont.)
	Slide 81
	Slide 82
	Slide 83
	Slide 84: 16.11  Maps
	Slide 85: 16.11  Maps (Cont.)
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91
	Slide 92: 16.11  Maps (Cont.)
	Slide 93
	Slide 94: 16.12  Properties Class 
	Slide 95: 16.12  Properties Class (cont.)
	Slide 96
	Slide 97
	Slide 98
	Slide 99
	Slide 100
	Slide 101
	Slide 102: 16.13  Synchronized Collections
	Slide 103
	Slide 104: 16.14  Unmodifiable Collections
	Slide 105
	Slide 106
	Slide 107: 16.15  Abstract Implementations

