
Java How to Program, 10/e

© Copyright 1992-2015 by Pearson Education, Inc. All Rights
Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

 Java collections framework

◦ Contains prebuilt generic data structures

 After reading Chapter 17, Java SE 8 Lambdas and

Streams, you’ll be able to reimplement many of

Chapter 16’s examples in a more concise and elegant

manner, and in a way that makes them easier to

parallelize to improve performance on today’s multi-

core systems.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

 A collection is a data structure—actually, an object—

that can hold references to other objects.

◦ Usually, collections contain references to objects of any type

that has the is-a relationship with the type stored in the

collection.

 Figure 16.1 lists some of the collections framework

interfaces.

 Package java.util.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

 Each primitive type has a corresponding type-wrapper

class (in package java.lang).

◦ Boolean, Byte, Character, Double, Float, Integer, Long and

Short.

 Each type-wrapper class enables you to manipulate

primitive-type values as objects.

 Collections cannot manipulate variables of primitive

types.

◦ They can manipulate objects of the type-wrapper classes,

because every class ultimately derives from Object.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

 Each of the numeric type-wrapper classes—Byte,

Short, Integer, Long, Float and Double—

extends class Number.

 The type-wrapper classes are final classes, so you

cannot extend them.

 Primitive types do not have methods, so the methods

related to a primitive type are located in the

corresponding type-wrapper class.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

 A boxing conversion converts a value of a primitive type to an
object of the corresponding type-wrapper class.

 An unboxing conversion converts an object of a type-wrapper
class to a value of the corresponding primitive type.

 These conversions are performed automatically—called
autoboxing and auto-unboxing.

 Example:
◦ // create integerArray
Integer[] integerArray = new Integer[5];

// assign Integer 10 to integerArray[0]
integerArray[0] = 10;

// get int value of Integer
int value = integerArray[0];

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

 Interface Collection contains bulk operations for adding, clearing
and comparing objects in a collection.

 A Collection can be converted to an array.
 Interface Collection provides a method that returns an
Iterator object, which allows a program to walk through the
collection and remove elements from the collection during the
iteration.

 Class Collections provides static methods that search, sort
and perform other operations on collections.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

 A List (sometimes called a sequence) is an ordered
Collection that can contain duplicate elements.

 List indices are zero based.
 In addition to the methods inherited from Collection,
List provides methods for manipulating elements via their
indices, manipulating a specified range of elements,
searching for elements and obtaining a ListIterator to access
the elements.

 Interface List is implemented by several classes,
including ArrayList, LinkedList and Vector.

 Autoboxing occurs when you add primitive-type values to
objects of these classes, because they store only references
to objects.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

 Class ArrayList and Vector are resizable-array implementations
of List.

 Inserting an element between existing elements of an ArrayList or
Vector is an inefficient operation.

 A LinkedList enables efficient insertion (or removal) of elements in
the middle of a collection, but is much less efficient than an
ArrayList for jumping to a specific element in the collection.

 We discuss the architecture of linked lists in Chapter 21.

 The primary difference between ArrayList and Vector is that
operations on Vectors are synchronized by default, whereas those on
ArrayLists are not.

 Unsynchronized collections provide better performance than
synchronized ones.

 For this reason, ArrayList is typically preferred over Vector in
programs that do not share a collection among threads.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

 List method add adds an item to the end of a list.

 List method size retursn the number of elements.

 List method get retrieves an individual element’s value from the
specified index.

 Collection method iterator gets an Iterator for a Collection.

 Iterator- method hasNext determines whether there are more elements
to iterate through.
◦ Returns true if another element exists and false otherwise.

 Iterator method next obtains a reference to the next element.

 Collection method contains determine whether a Collection
contains a specified element.

 Iterator method remove removes the current element from a
Collection.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

 Type Inference with the <> Notation
◦ Lines 14 and 21 specify the type stored in the ArrayList

(that is, String) on the left and right sides of the
initialization statements.

◦ Java SE 7 introduced type inferencing with the <>
notation—known as the diamond notation—in statements
that declare and create generic type variables and objects.
For example, line 14 can be written as:

List<String> list = new ArrayList<>();

◦ Java uses the type in angle brackets on the left of the
declaration (that is, String) as the type stored in the
ArrayList created on the right side of the declaration.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

 List method addAll appends all elements of a collection to the end
of a List.

 List method listIterator gets A List’s bidirectional iterator.

 String method toUpperCase gets an uppercase version of a
String.

 List-Iterator method set replaces the current element to which the
iterator refers with the specified object.

 String method toLowerCase returns a lowercase version of a
String.

 List method subList obtaina a portion of a List.
◦ This is a so-called range-view method, which enables the program to

view a portion of the list.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

 List method clear remove the elements of a List.

 List method size returns the number of items in the

List.

 ListIterator method hasPrevious determines whether

there are more elements while traversing the list

backward.

 ListIterator method previous gets the previous element

from the list.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

 Class Arrays provides static method asList to view an array
as a List collection.
◦ A List view allows you to manipulate the array as if it were a list.

◦ This is useful for adding the elements in an array to a collection and for
sorting array elements.

 Any modifications made through the List view change the
array, and any modifications made to the array change the List
view.

 The only operation permitted on the view returned by asList is
set, which changes the value of the view and the backing array.
◦ Any other attempts to change the view result in an
UnsupportedOperationException.

 List method toArray gets an array from a List collection.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

 LinkedList method addLast adds an element to the end

of a List.

 LinkedList method add also adds an element to the end

of a List.

 LinkedList method addFirst adds an element to the

beginning of a List.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

 Class Collections provides several high-

performance algorithms for manipulating collection

elements.

 The algorithms (Fig. 16.5) are implemented as

static methods.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

 Method sort sorts the elements of a List
◦ The elements must implement the Comparable interface.

◦ The order is determined by the natural order of the elements’

type as implemented by a compareTo method.

◦ Method compareTo is declared in interface Comparable
and is sometimes called the natural comparison method.

◦ The sort call may specify as a second argument a

Comparator object that determines an alternative ordering of

the elements.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

 The Comparator interface is used for sorting a

Collection’s elements in a different order.

 The static Collections method reverseOrder returns

a Comparator object that orders the collection’s

elements in reverse order.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

 Figure 16.8 creates a custom Comparator class, named
TimeComparator, that implements interface
Comparator to compare two Time2 objects.

 Class Time2, declared in Fig. 8.5, represents times with
hours, minutes and seconds.

 Class TimeComparator implements interface
Comparator, a generic type that takes one type argument.

 A class that implements Comparator must declare a
compare method that receives two arguments and returns
a negative integer if the first argument is less than the
second, 0 if the arguments are equal or a positive integer if
the first argument is greater than the second.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

 Method shuffle randomly orders a List’s elements.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

 Collections method reverse reverses the order of the
elements in a List

 Method fill overwrites elements in a List with a specified
value.

 Method copy takes two arguments—a destination List
and a source List.
◦ Each source List element is copied to the destination List.
◦ The destination List must be at least as long as the source List;

otherwise, an IndexOutOfBoundsException occurs.
◦ If the destination List is longer, the elements not overwritten are

unchanged.

 Methods min and max each operate on any Collection.
◦ Method min returns the smallest element in a Collection, and

method max returns the largest element in a Collection.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

 static Collections method binarySearch locates an
object in a List.
◦ If the object is found, its index is returned.

◦ If the object is not found, binarySearch returns a negative
value.

◦ Method binarySearch determines this negative value by
first calculating the insertion point and making its sign
negative.

◦ Then, binarySearch subtracts 1 from the insertion point to
obtain the return value, which guarantees that method
binarySearch returns positive numbers (>= 0) if and only
if the object is found.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

 Collections method addAll takes two arguments—a

Collection into which to insert the new element(s) and

an array that provides elements to be inserted.

 Collections method frequency takes two arguments—a

Collection to be searched and an Object to be

searched for in the collection.

◦ Method frequency returns the number of times that the second

argument appears in the collection.

 Collections method disjoint takes two Collections and

returns true if they have no elements in common.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

 Class Stack in the Java utilities package (java-.util) extends
class Vector to implement a stack data structure.

 Stack method push adds a Number object to the top of the
stack.

 Any integer literal that has the suffix L is a long value.
 An integer literal without a suffix is an int value.
 Any floating-point literal that has the suffix F is a float value.
 A floating-point literal without a suffix is a double value.
 Stack method pop removes the top element of the stack.
◦ If there are no elements in the Stack, method pop throws an
EmptyStackException, which terminates the loop.

 Method peek returns the top element of the stack without
popping the element off the stack.

 Method isEmpty determines whether the stack is empty.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

 Interface Queue extends interface Collection and provides
additional operations for inserting, removing and inspecting
elements in a queue.

 PriorityQueue orders elements by their natural ordering.
◦ Elements are inserted in priority order such that the highest-priority

element (i.e., the largest value) will be the first element removed from
the PriorityQueue.

 Common PriorityQueue operations are
◦ offer to insert an element at the appropriate location based on priority

order
◦ poll to remove the highest-priority element of the priority queue
◦ peek to get a reference to the highest-priority element of the priority

queue
◦ clear to remove all elements in the priority queue
◦ size to get the number of elements in the queue.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

 A Set is an unordered Collection of unique

elements (i.e., no duplicates).

 The collections framework contains several Set
implementations, including HashSet and TreeSet.

 HashSet stores its elements in a hash table, and

TreeSet stores its elements in a tree.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

 The collections framework also includes the SortedSet
interface (which extends Set) for sets that maintain their

elements in sorted order.

 Class TreeSet implements SortedSet.

 TreeSet method headSet gets a subset of the TreeSet in

which every element is less than the specified value.

 TreeSet method tailSet gets a subset in which each element

is greater than or equal to the specified value.

 SortedSet methods first and last get the smallest and largest

elements of the set, respectively.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

 Maps associate keys to values.

◦ The keys in a Map must be unique, but the associated values

need not be.

◦ If a Map contains both unique keys and unique values, it is said

to implement a one-to-one mapping.

◦ If only the keys are unique, the Map is said to implement a

many-to-one mapping—many keys can map to one value.

 Three of the several classes that implement interface

Map are Hashtable, HashMap and TreeMap.

 Hashtables and HashMaps store elements in hash

tables, and TreeMaps store elements in trees.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

 Interface SortedMap extends Map and maintains its keys in
sorted order—either the elements’ natural order or an order
specified by a Comparator.

 Class TreeMap implements SortedMap.

 Hashing is a high-speed scheme for converting keys into
unique array indices.

 A hash table’s load factor affects the performance of
hashing schemes.
◦ The load factor is the ratio of the number of occupied cells in the

hash table to the total number of cells in the hash table.

 The closer this ratio gets to 1.0, the greater the chance of
collisions.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

 Map method containsKey determines whether a key is in a
map.

 Map method put creates a new entry or replaces an existing
entry’s value.
◦ Method put returns the key’s prior associated value, or null if the

key was not in the map.

 Map method get obtain the specified key’s associated value
in the map.

 HashMap method keySet returns a set of the keys.
 Map method size returns the number of key/value pairs in

the Map.
 Map method isEmpty returns a boolean indicating

whether the Map is empty.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

 A Properties object is a persistent Hashtable that stores
key/value pairs of Strings—assuming that you use
methods setProperty and getProperty to manipulate the
table rather than inherited Hashtable methods put and
get.

 The Properties object’s contents can be written to an
output stream (possibly a file) and read back in through an
input stream.

 A common use of Properties objects in prior versions
of Java was to maintain application-configuration data or
user preferences for applications.
◦ [Note: The Preferences API (package java.util.prefs) is meant to

replace this use of class Properties.]

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

 Properties method store saves the object’s contents to
the OutputStream specified as the first argument.
The second argument, a String, is a description
written into the file.

 Properties method list, which takes a PrintStream
argument, is useful for displaying the list of properties.

 Properties method load restores the contents of a
Properties object from the InputStream
specified as the first argument (in this case, a
FileInputStream).

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

 Synchronization wrappers are used for collections that

might be accessed by multiple threads.

 A wrapper object receives method calls, adds thread

synchronization and delegates the calls to the wrapped

collection object.

 The CollectionsAPI provides a set of static
methods for wrapping collections as synchronized

versions.

 Method headers for the synchronization wrappers are

listed in Fig. 16.20.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

 The Collections class provides a set of static
methods that create unmodifiable wrappers for

collections.

 Unmodifiable wrappers throw

UnsupportedOperationExceptions if attempts

are made to modify the collection.

 In an unmodifiable collection, the references stored in

the collection are not modifiable, but the objects they

refer are modifiable unless they belong to an

immutable class like String.

 Headers for these methods are listed in Fig. 16.21.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

 The collections framework provides various abstract
implementations of Collection interfaces from which
you can quickly “flesh out” complete customized
implementations.

 These include
◦ a thin Collection implementation called an AbstractCollection
◦ a List implementation that allows array-like access to its elements

called an AbstractList
◦ a Map implementation called an AbstractMap
◦ a List implementation that allows sequential access (from

beginning to end) to its elements called an AbstractSequentialList
◦ a Set implementation called an AbstractSet
◦ a Queue implementation called AbstractQueue.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

	Slide 1: Chapter 16 Generic Collections
	Slide 2
	Slide 3
	Slide 4
	Slide 5: 16.1 Introduction
	Slide 6: 16.2 Collections Overview
	Slide 7
	Slide 8: 16.3 Type-Wrapper Classes
	Slide 9: 16.3 Type-Wrapper Classes (cont.)
	Slide 10
	Slide 11: 16.4 Autoboxing and Auto-Unboxing
	Slide 12: 16.5 Interface Collection and Class Collections
	Slide 13
	Slide 14
	Slide 15: 16.6 Lists
	Slide 16: 16.6 Lists (cont.)
	Slide 17
	Slide 18
	Slide 19: 16.6.1 ArrayList and Iterator
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25: 16.6.1 ArrayList and Iterator
	Slide 26: 16.6.2 LinkedList
	Slide 27: 16.6.2 LinkedList (cont.)
	Slide 28: 16.6.2 LinkedList (cont.)
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36: 16.6.2 LinkedList (cont.)
	Slide 37
	Slide 38: 16.7 Collections Methods
	Slide 39
	Slide 40
	Slide 41: 16.7.1 Method sort
	Slide 42
	Slide 43: 16.7.1 Method sort (cont.)
	Slide 44
	Slide 45
	Slide 46: 16.7.1 Method sort (cont.)
	Slide 47
	Slide 48
	Slide 49
	Slide 50: 16.7.2 Method shuffle
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56: 16.7.3 Methods reverse, fill, copy, max and min
	Slide 57
	Slide 58
	Slide 59
	Slide 60: 16.7.4 Method binarySearch
	Slide 61
	Slide 62
	Slide 63
	Slide 64: 16.7.5 Methods addAll, frequency and disjoint
	Slide 65
	Slide 66
	Slide 67
	Slide 68: 16.8 Stack Class of Package java.util
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74: 16.9 Class PriorityQueue and Interface Queue
	Slide 75
	Slide 76
	Slide 77: 16.10 Sets
	Slide 78
	Slide 79
	Slide 80: 16.10 Sets (cont.)
	Slide 81
	Slide 82
	Slide 83
	Slide 84: 16.11 Maps
	Slide 85: 16.11 Maps (Cont.)
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91
	Slide 92: 16.11 Maps (Cont.)
	Slide 93
	Slide 94: 16.12 Properties Class
	Slide 95: 16.12 Properties Class (cont.)
	Slide 96
	Slide 97
	Slide 98
	Slide 99
	Slide 100
	Slide 101
	Slide 102: 16.13 Synchronized Collections
	Slide 103
	Slide 104: 16.14 Unmodifiable Collections
	Slide 105
	Slide 106
	Slide 107: 16.15 Abstract Implementations

