
Java How to Program, 10/e

© Copyright 1992-2015 by Pearson Education, Inc. All Rights
Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

 Data stored in variables and arrays is temporary

▪ It’s lost when a local variable goes out of scope or when the

program terminates

 For long-term retention of data, computers use files.

 Computers store files on secondary storage devices

▪ hard disks, flash drives, DVDs and more.

 Data maintained in files is persistent data because it

exists beyond the duration of program execution.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

 Java views each file as a sequential stream of bytes

(Fig. 15.1).

 Every operating system provides a mechanism to

determine the end of a file, such as an end-of-file

marker or a count of the total bytes in the file that is

recorded in a system-maintained administrative data

structure.

 A Java program simply receives an indication from the

operating system when it reaches the end of the stream

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

 File streams can be used to input and output data as bytes or
characters.
▪ Byte-based streams output and input data in its binary format—a
char is two bytes, an int is four bytes, a double is eight bytes,
etc.

▪ Character-based streams output and input data as a sequence of
characters in which every character is two bytes—the number of
bytes for a given value depends on the number of characters in that
value.

 Files created using byte-based streams are referred to as
binary files.

 Files created using character-based streams are referred to
as text files. Text files can be read by text editors.

 Binary files are read by programs that understand the
specific content of the file and the ordering of that content.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

 A Java program opens a file by creating an object and
associating a stream of bytes or characters with it.
▪ Can also associate streams with different devices.

 Java creates three stream objects when a program begins
executing
▪ System.in (standard input stream) object normally inputs bytes

from the keyboard
▪ Object System.out (the standard output stream object) normally

outputs character data to the screen
▪ Object System.err (the standard error stream object) normally

outputs character-based error messages to the screen.

 Class System provides methods setIn, setOut and
setErr to redirect the standard input, output and error
streams, respectively.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

 Java programs perform file processing by using classes

from package java.io and the subpackages of

java.nio.

 Character-based input and output can be performed

with classes Scanner and Formatter.

▪ Class Scanner is used extensively to input data from the

keyboard. This class can also read data from a file.

▪ Class Formatter enables formatted data to be output to any

text-based stream in a manner similar to method

System.out.printf.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

Java SE 8 Adds Another Type of Stream

 Chapter 17, Java SE 8 Lambdas and Streams,

introduces a new type of stream that’s used to process

collections of elements (like arrays and ArrayLists),

rather than the streams of bytes we discuss in this

chapter’s file-processing examples.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

 Interfaces Path and DirectoryStream and classes
Paths and Files (all from package
java.nio.file) are useful for retrieving
information about files and directories on disk:
▪ Path interface—Objects of classes that implement this

interface represent the location of a file or directory. Path
objects do not open files or provide any file-processing
capabilities.

▪ Paths class—Provides static methods used to get a Path
object representing a file or directory location.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

▪ Files class—Provides static methods for common file
and directory manipulations, such as copying files; creating
and deleting files and directories; getting information about
files and directories; reading the contents of files; getting
objects that allow you to manipulate the contents of files and
directories; and more

▪ DirectoryStream interface—Objects of classes that
implement this interface enable a program to iterate through
the contents of a directory.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

 A file or directory’s path specifies its location on disk.
The path includes some or all of the directories leading
to the file or directory.

 An absolute path contains all directories, starting with
the root directory, that lead to a specific file or
directory.

 Every file or directory on a particular disk drive has the
same root directory in its path.

 A relative path is “relative” to another directory—for
example, a path relative to the directory in which the
application began executing.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

 An overloaded version of Files static method get uses a URI
object to locate the file or directory.

 A Uniform Resource Identifier (URI) is a more general form
of the Uniform Resource Locators (URLs) that are used to
locate websites.

 On Windows platforms, the URI
 file://C:/data.txt

 identifies the file data.txt stored in the root directory of
the C: drive. On UNIX/Linux platforms, the URI

 file:/home/student/data.txt

 identifies the file data.txt stored in the home directory of
the user student.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

 Figure 15.2 prompts the user to enter a file or directory name,
then uses classes Paths, Path, Files and
DirectoryStream to output information about that file or
directory.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

 A separator character is used to separate directories
and files in a path.
▪ On a Windows computer, the separator character is a

backslash (\).

▪ On a Linux or Mac OS X system, it’s a forward slash (/).

 Java processes both characters identically in a path
name.

 For example, if we were to use the path
 c:\Program Files\Java\jdk1.6.0_11\demo/jfc

 which employs each separator character, Java would
still process the path properly.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

 Sequential-access files store records in order by the

record-key field.

 Text files are human-readable files.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

 Java imposes no structure on a file

▪ Notions such as records do not exist as part of the Java

language.

▪ You must structure files to meet the requirements of your

applications.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

 Formatter outputs formatted Strings to the

specified stream.

 The constructor with one String argument receives

the name of the file, including its path.

▪ If a path is not specified, the JVM assumes that the file is in

the directory from which the program was executed.

 If the file does not exist, it will be created.

 If an existing file is opened, its contents are truncated.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

 A SecurityException occurs if the user does not

have permission to write data to the file.

 A FileNotFoundException occurs if the file

does not exist and a new file cannot be created.

 static method System.exit terminates an

application.

▪ An argument of 0 indicates successful program termination.

▪ A nonzero value, normally indicates that an error has occurred.

▪ The argument is useful if the program is executed from a batch

file on Windows or a shell script on UNIX/Linux/Mac OS X.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

 Scanner method hasNext determines whether the end-
of-file key combination has been entered.

 A NoSuchElementException occurs if the data being
read by a Scanner method is in the wrong format or if
there is no more data to input.

 Formatter method format works like
System.out.printf

 A FormatterClosedException occurs if the
Formatter is closed when you attempt to output.

 Formatter method close closes the file.
▪ If method close is not called explicitly, the operating sys-tem

normally will close the file when program execution terminates.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

 The application (Fig. 15.6) reads records from the file

"clients.txt" created by the application of

Section 15.4.1 and displays the record contents.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

 If a Scanner is closed before data is input, an

IllegalStateException occurs.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

 To retrieve data sequentially from a file, programs start

from the beginning of the file and read all the data

consecutively until the desired information is found.

 It might be necessary to process the file sequentially

several times (from the beginning of the file) during the

execution of a program.

 Class Scanner does not allow repositioning to the

beginning of the file.

▪ The program must close the file and reopen it.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

 The data in many sequential files cannot be modified

without the risk of destroying other data in the file.

 If the name “White” needed to be changed to

“Worthington,” the old name cannot simply be

overwritten, because the new name requires more space.

 Fields in a text file—and hence records—can vary in size.

 Records in a sequential-access file are not usually updated

in place. Instead, the entire file is rewritten.

 Rewriting the entire file is uneconomical to update just one

record, but reasonable if a substantial number of records

need to be updated.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

 To read an entire object from or write an entire object

to a file, Java provides object serialization.

 A serialized object is represented as a sequence of

bytes that includes the object’s data and its type

information.

 After a serialized object has been written into a file, it

can be read from the file and deserialized to recreate

the object in memory.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

 Classes ObjectInputStream and

ObjectOutputStream (package java.io).

which respectively implement the ObjectInput and

ObjectOutput interfaces, enable entire objects to be

read from or written to a stream.

 To use serialization with files, initialize

ObjectInputStream and

ObjectOutputStream objects that read from and

write to files.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

 ObjectOutput interface method writeObject takes

an Object as an argument and writes its information to an

OutputStream.

 A class that implements ObjectOuput (such as

ObjectOutputStream) declares this method and

ensures that the object being output implements

Serializable.

 ObjectInput interface method readObject reads and

returns a reference to an Object from an InputStream.

▪ After an object has been read, its reference can be cast to the object’s

actual type.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

 Objects of classes that implement interface

Serializable can be serialized and deserialized

with ObjectOutputStreams and

ObjectInputStreams.

 Interface Serializable is a tagging interface.

▪ It does not contain methods.

 A class that implements Serializable is tagged as

being a Serializable object.

 An ObjectOutputStream will not output an object

unless it is a Serializable object.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

 In a class that implements Serializable, every

variable must be Serializable.

 Any one that is not must be declared transient so it

will be ignored during the serialization process.

 All primitive-type variables are serializable.

 For reference-type variables, check the class’s

documentation (and possibly its superclasses) to ensure

that the type is Serializable.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

 The program in Fig. 15.11 reads records from a file

created by the program in Section 15.5.1 and displays

the contents.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

 ObjectInputStream method readObject reads

an Object from a file.

 Method readObject throws an EOFException if

an attempt is made to read beyond the end of the file.

 Method readObject throws a

ClassNotFoundException if the class for the

object being read cannot be located.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

 Class JFileChooser displays a dialog that enables the user

to easily select files or directories.

 To demonstrate JFileChooser, we enhance the example in

Section 15.3, as shown in Figs. 15.12–15.13.

 Call method setFileSelectionMode specifies what the

user can select from the fileChooser. For this program,

we use JFileChooser static constant

FILES_AND_DIRECTORIES to indicate that files and

directories can be selected. Other static constants include

FILES_ONLY (the default) and DIRECTORIES_ONLY.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

 This section overviews additional interfaces and classes

(from package java.io).

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

 InputStream and OutputStream are abstract
classes that declare methods for performing byte-based
input and output, respectively.

 Pipes are synchronized communication channels
between threads.
▪ PipedOutputStream (a subclass of OutputStream)

and PipedInputStream (a subclass of InputStream)
establish pipes between two threads in a program.

▪ One thread sends data to another by writing to a
PipedOutputStream.

▪ The target thread reads information from the pipe via a
PipedInputStream.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

 A FilterInputStream filters an InputStream,

and a FilterOutputStream filters an

OutputStream.

 Filtering means simply that the filter stream provides

additional functionality, such as aggregating bytes into

meaningful primitive-type units.

 FilterInputStream and

FilterOutputStream are typically used as

superclasses, so some of their filtering capabilities are

provided by their subclasses.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

 A PrintStream (a subclass of

FilterOutputStream) performs text output to the

specified stream.

 System.out and System.err are PrintStream
objects.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

 Usually, programs read data as aggregates of bytes that

form ints, floats, doubles and so on.

 Java programs can use several classes to input and

output data in aggregate form.

 Interface DataInput describes methods for reading

primitive types from an input stream.

 Classes DataInputStream and

RandomAccessFile each implement this interface

to read sets of bytes and process them as primitive-type

values.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

 Interface DataOutput describes a set of methods for

writing primitive types to an output stream.

 Classes DataOutputStream (a subclass of

FilterOutputStream) and

RandomAccessFile each implement this interface

to write primitive-type values as bytes.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

 Buffering is an I/O-performance-enhancement technique.

 With a BufferedOutputStream, each output operation
is directed to a buffer
▪ holds the data of many output operations

 Transfer to the output device is performed in one large
physical output operation each time the buffer fills.

 The output operations directed to the output buffer in
memory are often called logical output operations.

 A partially filled buffer can be forced out to the device at
any time by invoking the stream object’s flush method.

 Using buffering can greatly increase the performance of an
application.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

 With a BufferedInputStream, many “logical”

chunks of data from a file are read as one large

physical input operation into a memory buffer.

 As a program requests each new chunk of data, it’s

taken from the buffer.

 This procedure is sometimes referred to as a logical

input operation.

 When the buffer is empty, the next actual physical input

operation from the input device is performed.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

 Java stream I/O includes capabilities for inputting from

byte arrays in memory and outputting to byte arrays

in memory.

 A ByteArrayInputStream (a subclass of

InputStream) reads from a byte array in memory.

 A ByteArrayOutputStream (a subclass of

OutputStream) outputs to a byte array in memory.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

 A SequenceInputStream (a subclass of

InputStream) logically concatenates several

InputStreams

 The program sees the group as one continuous

InputStream.

 When the program reaches the end of one input stream,

that stream closes, and the next stream in the sequence

opens.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

 The Reader and Writer abstract classes are

Unicode two-byte, character-based streams.

 Most of the byte-based streams have corresponding

character-based concrete Reader or Writer classes.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

 Classes BufferedReader (a subclass of

abstract class Reader) and BufferedWriter
(a subclass of abstract class Writer) enable

buffering for character-based streams.

 Classes CharArrayReader and

CharArrayWriter read and write, respectively, a

stream of characters to a char array.

 A LineNumberReader (a subclass of Buffered-
Reader) is a buffered character stream that keeps

track of the number of lines read.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

 An InputStream can be converted to a Reader via
class InputStreamReader.

 An OuputStream can be converted to a Writer via
class OutputStreamWriter.

 Class File-Reader and class FileWriter read
characters from and write characters to a file.

 Class PipedReader and class PipedWriter
implement piped-character streams for transfering data
between threads.

 Class StringReader bStringWriter read characters
from and write characters to Strings.

 A PrintWriter writes characters to a stream.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

	Slide 1: Chapter 15 Files, Streams and Object Serialization
	Slide 2
	Slide 3
	Slide 4: 15.1 Introduction
	Slide 5: 15.2 Files and Streams
	Slide 6
	Slide 7: 15.2 Files and Streams (cont.)
	Slide 8: 15.2 Files and Streams (cont.)
	Slide 9: 15.2 Files and Streams (cont.)
	Slide 10: 15.2 Files and Streams (cont.)
	Slide 11: 15.3 Using NIO Classes and Interfaces to Get File and Directory Information
	Slide 12: 15.3 Using NIO Classes and Interfaces to Get File and Directory Information (Cont.)
	Slide 13: 15.3 Using NIO Classes and Interfaces to Get File and Directory Information (Cont.)
	Slide 14: 15.3 Using NIO Classes and Interfaces to Get File and Directory Information (Cont.)
	Slide 15: 15.3 Using NIO Classes and Interfaces to Get File and Directory Information (Cont.)
	Slide 16: 15.3 Using NIO Classes and Interfaces to Get File and Directory Information (Cont.)
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25: 15.4 Sequential-Access Text Files
	Slide 26: 15.4.1 Creating a Sequential-Access Text File
	Slide 27: 15.4.1 Creating a Sequential-Access Text File (cont.)
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33: 15.4.1 Creating a Sequential-Access Text File (cont.)
	Slide 34
	Slide 35: 15.4.1 Creating a Sequential-Access Text File (cont.)
	Slide 36
	Slide 37: 15.4.2 Reading Data from a Sequential-Access Text File
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42: 15.4.2 Reading Data from a Sequential-Access Text File
	Slide 43: 15.4.3 Case Study: A Credit-Inquiry Program
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53: 15.4.4 Updating Sequential-Access Files
	Slide 54: 15.5 Object Serialization
	Slide 55: 15.5 Object Serialization (cont.)
	Slide 56: 15.5 Object Serialization (cont.)
	Slide 57: 15.5.1 Creating a Sequential-Access File Using Object Serialization
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62: 15.5.1 Creating a Sequential-Access File Using Object Serialization (cont.)
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68: 15.5.2 Reading and Deserializing Data from a Sequential-Access File
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75: 15.5.2 Reading and Deserializing Data from a Sequential-Access File (cont.)
	Slide 76
	Slide 77: 15.6 Opening Files with JFileChooser
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85: 15.7 (Optional) Additional java.io Classes
	Slide 86: 15.7.1 Interfaces and Classes for Byte-Based Input and Output
	Slide 87: 15.7.1 Interfaces and Classes for Byte-Based Input and Output (cont.)
	Slide 88: 15.7.1 Interfaces and Classes for Byte-Based Input and Output (cont.)
	Slide 89: 15.7.1 Interfaces and Classes for Byte-Based Input and Output (cont.)
	Slide 90: 15.7.1 Interfaces and Classes for Byte-Based Input and Output (cont.)
	Slide 91: 15.7.1 Interfaces and Classes for Byte-Based Input and Output (cont.)
	Slide 92
	Slide 93: 15.7.1 Interfaces and Classes for Byte-Based Input and Output (cont.)
	Slide 94: 15.7.1 Interfaces and Classes for Byte-Based Input and Output (cont.)
	Slide 95: 15.7.1 Interfaces and Classes for Byte-Based Input and Output (cont.)
	Slide 96: 15.7.2 Interfaces and Classes for Character-Based Input and Output
	Slide 97: 15.7.2 Interfaces and Classes for Character-Based Input and Output (cont.)
	Slide 98: 15.7.2 Interfaces and Classes for Character-Based Input and Output (cont.)

