
Java How to Program, 10/e

© Copyright 1992-2015 by Pearson Education, Inc. All Rights
Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

 Data stored in variables and arrays is temporary

▪ It’s lost when a local variable goes out of scope or when the

program terminates

 For long-term retention of data, computers use files.

 Computers store files on secondary storage devices

▪ hard disks, flash drives, DVDs and more.

 Data maintained in files is persistent data because it

exists beyond the duration of program execution.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

 Java views each file as a sequential stream of bytes

(Fig. 15.1).

 Every operating system provides a mechanism to

determine the end of a file, such as an end-of-file

marker or a count of the total bytes in the file that is

recorded in a system-maintained administrative data

structure.

 A Java program simply receives an indication from the

operating system when it reaches the end of the stream

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

 File streams can be used to input and output data as bytes or
characters.
▪ Byte-based streams output and input data in its binary format—a
char is two bytes, an int is four bytes, a double is eight bytes,
etc.

▪ Character-based streams output and input data as a sequence of
characters in which every character is two bytes—the number of
bytes for a given value depends on the number of characters in that
value.

 Files created using byte-based streams are referred to as
binary files.

 Files created using character-based streams are referred to
as text files. Text files can be read by text editors.

 Binary files are read by programs that understand the
specific content of the file and the ordering of that content.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

 A Java program opens a file by creating an object and
associating a stream of bytes or characters with it.
▪ Can also associate streams with different devices.

 Java creates three stream objects when a program begins
executing
▪ System.in (standard input stream) object normally inputs bytes

from the keyboard
▪ Object System.out (the standard output stream object) normally

outputs character data to the screen
▪ Object System.err (the standard error stream object) normally

outputs character-based error messages to the screen.

 Class System provides methods setIn, setOut and
setErr to redirect the standard input, output and error
streams, respectively.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

 Java programs perform file processing by using classes

from package java.io and the subpackages of

java.nio.

 Character-based input and output can be performed

with classes Scanner and Formatter.

▪ Class Scanner is used extensively to input data from the

keyboard. This class can also read data from a file.

▪ Class Formatter enables formatted data to be output to any

text-based stream in a manner similar to method

System.out.printf.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

Java SE 8 Adds Another Type of Stream

 Chapter 17, Java SE 8 Lambdas and Streams,

introduces a new type of stream that’s used to process

collections of elements (like arrays and ArrayLists),

rather than the streams of bytes we discuss in this

chapter’s file-processing examples.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

 Interfaces Path and DirectoryStream and classes
Paths and Files (all from package
java.nio.file) are useful for retrieving
information about files and directories on disk:
▪ Path interface—Objects of classes that implement this

interface represent the location of a file or directory. Path
objects do not open files or provide any file-processing
capabilities.

▪ Paths class—Provides static methods used to get a Path
object representing a file or directory location.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

▪ Files class—Provides static methods for common file
and directory manipulations, such as copying files; creating
and deleting files and directories; getting information about
files and directories; reading the contents of files; getting
objects that allow you to manipulate the contents of files and
directories; and more

▪ DirectoryStream interface—Objects of classes that
implement this interface enable a program to iterate through
the contents of a directory.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

 A file or directory’s path specifies its location on disk.
The path includes some or all of the directories leading
to the file or directory.

 An absolute path contains all directories, starting with
the root directory, that lead to a specific file or
directory.

 Every file or directory on a particular disk drive has the
same root directory in its path.

 A relative path is “relative” to another directory—for
example, a path relative to the directory in which the
application began executing.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

 An overloaded version of Files static method get uses a URI
object to locate the file or directory.

 A Uniform Resource Identifier (URI) is a more general form
of the Uniform Resource Locators (URLs) that are used to
locate websites.

 On Windows platforms, the URI
 file://C:/data.txt

 identifies the file data.txt stored in the root directory of
the C: drive. On UNIX/Linux platforms, the URI

 file:/home/student/data.txt

 identifies the file data.txt stored in the home directory of
the user student.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

 Figure 15.2 prompts the user to enter a file or directory name,
then uses classes Paths, Path, Files and
DirectoryStream to output information about that file or
directory.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

 A separator character is used to separate directories
and files in a path.
▪ On a Windows computer, the separator character is a

backslash (\).

▪ On a Linux or Mac OS X system, it’s a forward slash (/).

 Java processes both characters identically in a path
name.

 For example, if we were to use the path
 c:\Program Files\Java\jdk1.6.0_11\demo/jfc

 which employs each separator character, Java would
still process the path properly.



© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

 Sequential-access files store records in order by the

record-key field.

 Text files are human-readable files.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

 Java imposes no structure on a file

▪ Notions such as records do not exist as part of the Java

language.

▪ You must structure files to meet the requirements of your

applications.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

 Formatter outputs formatted Strings to the

specified stream.

 The constructor with one String argument receives

the name of the file, including its path.

▪ If a path is not specified, the JVM assumes that the file is in

the directory from which the program was executed.

 If the file does not exist, it will be created.

 If an existing file is opened, its contents are truncated.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

 A SecurityException occurs if the user does not

have permission to write data to the file.

 A FileNotFoundException occurs if the file

does not exist and a new file cannot be created.

 static method System.exit terminates an

application.

▪ An argument of 0 indicates successful program termination.

▪ A nonzero value, normally indicates that an error has occurred.

▪ The argument is useful if the program is executed from a batch

file on Windows or a shell script on UNIX/Linux/Mac OS X.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

 Scanner method hasNext determines whether the end-
of-file key combination has been entered.

 A NoSuchElementException occurs if the data being
read by a Scanner method is in the wrong format or if
there is no more data to input.

 Formatter method format works like
System.out.printf

 A FormatterClosedException occurs if the
Formatter is closed when you attempt to output.

 Formatter method close closes the file.
▪ If method close is not called explicitly, the operating sys-tem

normally will close the file when program execution terminates.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

 The application (Fig. 15.6) reads records from the file

"clients.txt" created by the application of

Section 15.4.1 and displays the record contents.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

 If a Scanner is closed before data is input, an

IllegalStateException occurs.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

 To retrieve data sequentially from a file, programs start

from the beginning of the file and read all the data

consecutively until the desired information is found.

 It might be necessary to process the file sequentially

several times (from the beginning of the file) during the

execution of a program.

 Class Scanner does not allow repositioning to the

beginning of the file.

▪ The program must close the file and reopen it.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

 The data in many sequential files cannot be modified

without the risk of destroying other data in the file.

 If the name “White” needed to be changed to

“Worthington,” the old name cannot simply be

overwritten, because the new name requires more space.

 Fields in a text file—and hence records—can vary in size.

 Records in a sequential-access file are not usually updated

in place. Instead, the entire file is rewritten.

 Rewriting the entire file is uneconomical to update just one

record, but reasonable if a substantial number of records

need to be updated.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

 To read an entire object from or write an entire object

to a file, Java provides object serialization.

 A serialized object is represented as a sequence of

bytes that includes the object’s data and its type

information.

 After a serialized object has been written into a file, it

can be read from the file and deserialized to recreate

the object in memory.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

 Classes ObjectInputStream and

ObjectOutputStream (package java.io).

which respectively implement the ObjectInput and

ObjectOutput interfaces, enable entire objects to be

read from or written to a stream.

 To use serialization with files, initialize

ObjectInputStream and

ObjectOutputStream objects that read from and

write to files.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

 ObjectOutput interface method writeObject takes

an Object as an argument and writes its information to an

OutputStream.

 A class that implements ObjectOuput (such as

ObjectOutputStream) declares this method and

ensures that the object being output implements

Serializable.

 ObjectInput interface method readObject reads and

returns a reference to an Object from an InputStream.

▪ After an object has been read, its reference can be cast to the object’s

actual type.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

 Objects of classes that implement interface

Serializable can be serialized and deserialized

with ObjectOutputStreams and

ObjectInputStreams.

 Interface Serializable is a tagging interface.

▪ It does not contain methods.

 A class that implements Serializable is tagged as

being a Serializable object.

 An ObjectOutputStream will not output an object

unless it is a Serializable object.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

 In a class that implements Serializable, every

variable must be Serializable.

 Any one that is not must be declared transient so it

will be ignored during the serialization process.

 All primitive-type variables are serializable.

 For reference-type variables, check the class’s

documentation (and possibly its superclasses) to ensure

that the type is Serializable.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

 The program in Fig. 15.11 reads records from a file

created by the program in Section 15.5.1 and displays

the contents.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

 ObjectInputStream method readObject reads

an Object from a file.

 Method readObject throws an EOFException if

an attempt is made to read beyond the end of the file.

 Method readObject throws a

ClassNotFoundException if the class for the

object being read cannot be located.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

 Class JFileChooser displays a dialog that enables the user

to easily select files or directories.

 To demonstrate JFileChooser, we enhance the example in

Section 15.3, as shown in Figs. 15.12–15.13.

 Call method setFileSelectionMode specifies what the

user can select from the fileChooser. For this program,

we use JFileChooser static constant

FILES_AND_DIRECTORIES to indicate that files and

directories can be selected. Other static constants include

FILES_ONLY (the default) and DIRECTORIES_ONLY.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

 This section overviews additional interfaces and classes

(from package java.io).

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

 InputStream and OutputStream are abstract
classes that declare methods for performing byte-based
input and output, respectively.

 Pipes are synchronized communication channels
between threads.
▪ PipedOutputStream (a subclass of OutputStream)

and PipedInputStream (a subclass of InputStream)
establish pipes between two threads in a program.

▪ One thread sends data to another by writing to a
PipedOutputStream.

▪ The target thread reads information from the pipe via a
PipedInputStream.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

 A FilterInputStream filters an InputStream,

and a FilterOutputStream filters an

OutputStream.

 Filtering means simply that the filter stream provides

additional functionality, such as aggregating bytes into

meaningful primitive-type units.

 FilterInputStream and

FilterOutputStream are typically used as

superclasses, so some of their filtering capabilities are

provided by their subclasses.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

 A PrintStream (a subclass of

FilterOutputStream) performs text output to the

specified stream.

 System.out and System.err are PrintStream
objects.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

 Usually, programs read data as aggregates of bytes that

form ints, floats, doubles and so on.

 Java programs can use several classes to input and

output data in aggregate form.

 Interface DataInput describes methods for reading

primitive types from an input stream.

 Classes DataInputStream and

RandomAccessFile each implement this interface

to read sets of bytes and process them as primitive-type

values.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

 Interface DataOutput describes a set of methods for

writing primitive types to an output stream.

 Classes DataOutputStream (a subclass of

FilterOutputStream) and

RandomAccessFile each implement this interface

to write primitive-type values as bytes.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

 Buffering is an I/O-performance-enhancement technique.

 With a BufferedOutputStream, each output operation
is directed to a buffer
▪ holds the data of many output operations

 Transfer to the output device is performed in one large
physical output operation each time the buffer fills.

 The output operations directed to the output buffer in
memory are often called logical output operations.

 A partially filled buffer can be forced out to the device at
any time by invoking the stream object’s flush method.

 Using buffering can greatly increase the performance of an
application.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

 With a BufferedInputStream, many “logical”

chunks of data from a file are read as one large

physical input operation into a memory buffer.

 As a program requests each new chunk of data, it’s

taken from the buffer.

 This procedure is sometimes referred to as a logical

input operation.

 When the buffer is empty, the next actual physical input

operation from the input device is performed.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

 Java stream I/O includes capabilities for inputting from

byte arrays in memory and outputting to byte arrays

in memory.

 A ByteArrayInputStream (a subclass of

InputStream) reads from a byte array in memory.

 A ByteArrayOutputStream (a subclass of

OutputStream) outputs to a byte array in memory.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

 A SequenceInputStream (a subclass of

InputStream) logically concatenates several

InputStreams

 The program sees the group as one continuous

InputStream.

 When the program reaches the end of one input stream,

that stream closes, and the next stream in the sequence

opens.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

 The Reader and Writer abstract classes are

Unicode two-byte, character-based streams.

 Most of the byte-based streams have corresponding

character-based concrete Reader or Writer classes.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

 Classes BufferedReader (a subclass of

abstract class Reader) and BufferedWriter
(a subclass of abstract class Writer) enable

buffering for character-based streams.

 Classes CharArrayReader and

CharArrayWriter read and write, respectively, a

stream of characters to a char array.

 A LineNumberReader (a subclass of Buffered-
Reader) is a buffered character stream that keeps

track of the number of lines read.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

 An InputStream can be converted to a Reader via
class InputStreamReader.

 An OuputStream can be converted to a Writer via
class OutputStreamWriter.

 Class File-Reader and class FileWriter read
characters from and write characters to a file.

 Class PipedReader and class PipedWriter
implement piped-character streams for transfering data
between threads.

 Class StringReader bStringWriter read characters
from and write characters to Strings.

 A PrintWriter writes characters to a stream.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

	Slide 1: Chapter 15 Files, Streams and Object Serialization
	Slide 2
	Slide 3
	Slide 4: 15.1 Introduction
	Slide 5: 15.2 Files and Streams
	Slide 6
	Slide 7: 15.2 Files and Streams (cont.)
	Slide 8: 15.2 Files and Streams (cont.)
	Slide 9: 15.2 Files and Streams (cont.)
	Slide 10: 15.2 Files and Streams (cont.)
	Slide 11: 15.3 Using NIO Classes and Interfaces to Get File and Directory Information
	Slide 12: 15.3 Using NIO Classes and Interfaces to Get File and Directory Information (Cont.)
	Slide 13: 15.3 Using NIO Classes and Interfaces to Get File and Directory Information (Cont.)
	Slide 14: 15.3 Using NIO Classes and Interfaces to Get File and Directory Information (Cont.)
	Slide 15: 15.3 Using NIO Classes and Interfaces to Get File and Directory Information (Cont.)
	Slide 16: 15.3 Using NIO Classes and Interfaces to Get File and Directory Information (Cont.)
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25: 15.4 Sequential-Access Text Files
	Slide 26: 15.4.1 Creating a Sequential-Access Text File
	Slide 27: 15.4.1 Creating a Sequential-Access Text File (cont.)
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33: 15.4.1 Creating a Sequential-Access Text File (cont.)
	Slide 34
	Slide 35: 15.4.1 Creating a Sequential-Access Text File (cont.)
	Slide 36
	Slide 37: 15.4.2 Reading Data from a Sequential-Access Text File
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42: 15.4.2 Reading Data from a Sequential-Access Text File
	Slide 43: 15.4.3 Case Study: A Credit-Inquiry Program
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53: 15.4.4 Updating Sequential-Access Files
	Slide 54: 15.5 Object Serialization
	Slide 55: 15.5 Object Serialization (cont.)
	Slide 56: 15.5 Object Serialization (cont.)
	Slide 57: 15.5.1 Creating a Sequential-Access File Using Object Serialization
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62: 15.5.1 Creating a Sequential-Access File Using Object Serialization (cont.)
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68: 15.5.2 Reading and Deserializing Data from a Sequential-Access File
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75: 15.5.2 Reading and Deserializing Data from a Sequential-Access File (cont.)
	Slide 76
	Slide 77: 15.6 Opening Files with JFileChooser
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85: 15.7 (Optional) Additional java.io Classes
	Slide 86: 15.7.1 Interfaces and Classes for Byte-Based Input and Output
	Slide 87: 15.7.1 Interfaces and Classes for Byte-Based Input and Output (cont.)
	Slide 88: 15.7.1 Interfaces and Classes for Byte-Based Input and Output (cont.)
	Slide 89: 15.7.1 Interfaces and Classes for Byte-Based Input and Output (cont.)
	Slide 90: 15.7.1 Interfaces and Classes for Byte-Based Input and Output (cont.)
	Slide 91: 15.7.1 Interfaces and Classes for Byte-Based Input and Output (cont.)
	Slide 92
	Slide 93: 15.7.1 Interfaces and Classes for Byte-Based Input and Output (cont.)
	Slide 94: 15.7.1 Interfaces and Classes for Byte-Based Input and Output (cont.)
	Slide 95: 15.7.1 Interfaces and Classes for Byte-Based Input and Output (cont.)
	Slide 96: 15.7.2 Interfaces and Classes for Character-Based Input and Output
	Slide 97: 15.7.2 Interfaces and Classes for Character-Based Input and Output (cont.)
	Slide 98: 15.7.2 Interfaces and Classes for Character-Based Input and Output (cont.)

