Chapter 15
Files, Streams and

Object Serialization
Java How to Program, 10/e

© Copyright 1992-2015 by Pearson Education, Inc. All Rights
Reserved.

OBJECTIVES
In this chapter you'll:

m Create, read, write and update files.

m Retrieve information about files and directories using features of the NIO.2 APIs.
m Learn the differences between text files and binary files.

m Use class Formatter to output text to a file.

m Use class Scanner to input text from a file.

m Write objects to and read objects from a file using object serialization, interface
Serializable and classes ObjectOutputStreamand ObjectInputStream.

m Use a JFiTleChooser dialog to allow users to select files or directories on disk.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

I5.1 Introduction
15.2 Files and Streams
15.3 Using NIO Classes and Interfaces to Get File and Directory Information

15.4 Sequential-Access Text Files

I54.1 Creating a Sequential-Access Text File
1542 Reading Data from a Sequential-Access Text File
1543 Case Study: A Credit-Inquiry Program
1544 Updating Sequential-Access Files
I5.5 Object Serialization

[5.5.1 Creating a Sequential-Access File Using Object Serialization
15.5.2 Reading and Deserializing Data from a Sequential-Access File

15.6 Opening Files with JFileChooser

15.7 (Optional) Additional java.io Classes

[5.7.1 Interfaces and Classes for Byte-Based Input and Output
[5.7.2 Interfaces and Classes for Character-Based Input and Output

15.8 Wrap-Up

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

15.1 Introduction

» Data stored In variables and arrays Is temporary

= It’s lost when a local variable goes out of scope or when the
program terminates

» For long-term retention of data, computers use files.

» Computers store files on secondary storage devices
= hard disks, flash drives, DVDs and more.

» Data maintained in files iIs persistent data because it
exists beyond the duration of program execution.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

15.2 Files and Streams

» Java views each file as a sequential stream of bytes
(Fig. 15.1).

» Every operating system provides a mechanism to
determine the end of a file, such as an end-of-file
marker or a count of the total bytes in the file that Is
recorded in a system-maintained administrative data
structure.

» A Java program simply receives an indication from the
operating system when it reaches the end of the stream

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

end-of-file marker

Fig. 15.1 | Java's view of a file of n bytes.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

15.2 Files and Streams (cont.)

» File streams can be used to input and output data as bytes or

characters.

- BKte-based streams output and input data In its binary format—a
char is two bytes, an 1nt is four bytes, a doub1e is eight bytes,

etc.

= Character-based streams output and input data as a sequence of
characters in which every character is two bytes—the number of
bytes for a given value depends on the number of characters in that

value.
» Files created using byte-based streams are referred to as

binary files.
» Files created using character-based streams are referred to
as text files. Text files can be read by text editors.

» Binary files are read by programs that understand the
specific content of the file and the ordering of that content.

AR

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

15.2 Files and Streams (cont.)

» A Java program opens a file by creating an object and
assoclating a stream of bytes or characters with it.
= Can also associate streams with different devices.

» Java creates three stream objects when a program begins

executing

= System. 1n (standard input stream) object normally inputs bytes
from the keyboard

= Object System.out (the standard output stream object) normally
outputs character data to the screen

= Object System. err (the standard error stream object) normally
outputs character-based error messages to the screen.

» Class System provides methods setIn, setOut and
setErr to redirect the standard input, output and error
streams, respectively.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

15.2 Files and Streams (cont.)

» Java programs perform file processing by using classes
from package java. 10 and the subpackages of
java.nio.

» Character-based input and output can be performed
with classes Scanner and Formatter.

= Class Scanner is used extensively to input data from the
keyboard. This class can also read data from a file.
= Class Formatter enables formatted data to be output to any

text-based stream In a manner similar to method
System.out.printf.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

15.2 Files and Streams (cont.)

Java SE 8 Adds Another Type of Stream

» Chapter 17, Java SE 8 Lambdas and Streams,
introduces a new type of stream that’s used to process
collections of elements (like arrays and ArrayL1sts),
rather than the streams of bytes we discuss In this
chapter’s file-processing examples.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

<

15.3 Using NIO Classes and Interfaces to
Get File and Directory Information

» Interfaces Path and D1rectoryStream and classes

Paths and F11es (all from package
java.nio. 1 1e)are useful for retrieving
Information about files and directories on disk:

= Path interface—Obijects of classes that implement this
interface represent the location of a file or directory. Path
objects do not open files or provide any file-processing
capabilities.

= Paths class—Provides static methods used to get a Path
object representing a file or directory location.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

<

15.3 Using NIO Classes and Interfaces to
Get File and Directory Information (Cont.)

= F1 les class—Provides static methods for common file
and directory manipulations, such as copying files; creating
and deleting files and directories; getting information about
files and directories; reading the contents of files; getting
objects that allow you to manipulate the contents of files and
directories; and more

= DirectoryStream interface—Objects of classes that
Implement this interface enable a program to iterate through
the contents of a directory.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

<

15.3 Using NIO Classes and Interfaces to
Get File and Directory Information (Cont.)

» A file or directory’s path specifies its location on disk.
The path includes some or all of the directories leading
to the file or directory.

» An absolute path contains all directories, starting with
the root directory, that lead to a specific file or
directory.

» Every file or directory on a particular disk drive has the
same root directory In its path.

» A relative path is “relative” to another directory—for
example, a path relative to the directory in which the
application began executing.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

15.3 Using NIO Classes and Interfaces to

<

Get File and Directory Information (Cont.)

4

An overloaded version of Files static method get uses a URI
object to locate the file or directory.

A Uniform Resource Identifier (URI) is a more general form
of the Uniform Resource Locators (URLS) that are used to
locate websites.

On Windows platforms, the URI
- file://C:/data.txt

identifies the file data. txt stored in the root directory of
the C: drive. On UNIX/Linux platforms, the URI
- file:/home/student/data. txt

identifies the file data. txt stored in the home directory of
the user student.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

<

15.3 Using NIO Classes and Interfaces to
Get File and Directory Information (Cont.)

» Figure 15.2 prompts the user to enter a file or directory name,
then uses classes Paths, Path, F1les and
DirectoryStreamto output information about that file or
directory.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

<

15.3 Using NIO Classes and Interfaces to
Get File and Directory Information (Cont.)

» A separator character is used to separate directories
and files in a path.

= On a Windows computer, the separator character is a
backslash (\).

" On a Linux or Mac OS X system, 1t’s a forward slash (/).
» Java processes both characters identically in a path
name.
» For example, If we were to use the path
- c:\Program Files\Java\jdkl.6.0_11\demo/jfc

» which employs each separator character, Java would
still process the path properly.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

1 // Fig. 15.2: FileAndDirectoryInfo.java

2 // File class used to obtain file and directory information.
3 import java.io.IOException;

4 dmport java.nio.file.DirectoryStream;

5 dmport java.nio.file.Files;

6 import java.nio.file.Path;

7 dimport java.nio.file.Paths;

8 import java.util.Scanner;

9

10 public class FileAndDirectoryInfo

11 {

12 public static void main(String[] args) throws IOException
13 {

14 Scanner input = new Scanner(System.in);

15

16 System.out.printin("Enter file or directory name:");
17

18 // create Path object based on user 1input

19 Path path = Paths.get(input.nextLine());
20

Fig. 15.2 | File class used to obtain file and directory information. (Part I of 5.)

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

if (Files.exists(path)) // if path exists, output info about it

{

// display file (or directory) information
System.out.printf("%n%s exists%n”, path.getFileName());
System.out.printf("%s a directory%n”,

Files.isDirectory(path) ? "Is" : "Is not");
System.out.printf("%s an absolute path%n",
path.isAbsolute() ? "Is" : "Is not");

System.out.printf("Last modified: %s¥%n",
Files.getlLastModifiedTime(path));

System.out.printf("'Size: %s%n", Files.size(path));

System.out.printf("Path: %s%n", path);

System.out.printf("Absolute path: %s%n", path.toAbsolutePath());

if (Files.isDirectory(path)) // output directory listing

{
System.out.printf("%nDirectory contents:%n");

// object for iterating through a directory's contents
DirectoryStream<Path> directoryStream =
Files.newDirectoryStream(path) ;

Fig. 15.2 | File class used to obtain file and directory information. (Part 2 of 5.)

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

43 for (Path p : directoryStream)

44 System.out.println(p);

45 }

46 }

47 else // not file or directory, output error message
48 {

49 System.out.printf("%s does not exist%n", path);
50 }

51 } // end main

52 } // end class FileAndDirectoryInfo

Fig. 15.2 | File class used to obtain file and directory information. (Part 3 of 5.)

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

Enter file or directory name:
c:\examples\chl5

chl5 exists

Is a directory

Is an absolute path

Last modified: 2013-11-08T19:50:00.8382567
Size: 4096

Path: c:\examples\chl5

Absolute path: c:\examples\chl5

Directory contents:
C:\examples\ch1l5\figl5_02
C:\examples\ch15\figl5_12_13
C:\examples\chl5\SerializationApps
C:\examples\chl5\TextFileApps

Fig. 15.2 | File class used to obtain file and directory information. (Part 4 of 5.)

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

Enter file or directory name:
C:\examples\chl5\figl5_02\FileAndDirectoryInfo.java

FileAndDirectoryInfo.java exists

Is not a directory

Is an absolute path

Last modified: 2013-11-08T19:59:01.848255Z2

Size: 2952

Path: C:\examples\chl5\figl5_02\FileAndDirectoryInfo.java

Absolute path: C:\examples\chl5\f1gl5_02\FileAndDirectoryInfo.java

Fig. 15.2 | File class used to obtain file and directory information. (Part 5 of 5.)

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

Error-Prevention Tip 15.1

Once you ve confirmed that a Path exists, it’s still possi-
ble that the methods demonstrated in Fig. 15.2 will
throw IOExceptions. For example, the file or directory
represented by the Path could be deleted from the system
after the call to Files method exists and before the
other statements in lines 24—45 execute. Industrial
strength file- and directory-processing programs require
extensive exception handling to recover from such possi-

bilities.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

mxpy Good Programming Practice 15. 1

| When building Strings that represent path informa-
tion, use File.separator to obtain the local comput-
er’s proper separator character rather than explicitly
using / or \. This constant is a String consisting of one
character—the proper separator for the system.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

Common Programming Error 15.1

Using \ as a directory separator rather than \\ in a
string literal is a logic error. A single \ indicates that the
\ followed by the next character represents an escape se-
quence. Use \\ to insert a \ in a string literal.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

15.4 Sequential-Access Text Files

» Seqguential-access files store records in order by the
record-key field.

» Text files are human-readable files.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

-

15.4.1 Creating a Sequential-Access

Text File

» Java Imposes no structure on a file
= Notions such as records do not exist as part of the Java
language.
= You must structure files to meet the requirements of your
applications.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

(55

15.4.1 Creating a Sequential-Access

Tex“ File (cont.)

» Formatter outputs formatted Strings to the
specified stream.

» The constructor with one String argument receives
the name of the file, including its path.

= If a path is not specified, the JVM assumes that the file is In
the directory from which the program was executed.

» If the file does not exist, it will be created.
» If an existing file Is opened, its contents are truncated.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

1 // Fig. 15.3: CreateTextFile.java

2 // Writing data to a sequential text file with class Formatter.
3 dimport java.io.FileNotFoundException;

4 dimport java.lang.SecurityException;

5 dmport java.util.Formatter;

6 import java.util.FormatterClosedException;

7 dimport java.util.NoSuchElementException;

8 import java.util.Scanner;

9

10 public class CreateTextFile

11 {

12 private static Formatter output; // outputs text to a file
13

14 public static void main(String[] args)

15 {

16 openFile();

17 addRecords();

I8 closeFile();

19 }
20

Fig. 15.3 | Writing data to a sequential text file with class Formatter. (Part | of 5.)

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39

// open file clients.txt
public static void openFile()

{

try

{
output = new Formatter('clients.txt"); // open the file

}

catch (SecurityException securityException)

{
System.err.println("Write permission denied. Terminating.");
System.exit(1l); // terminate the program

}

catch (FileNotFoundException fileNotFoundException)
{

System.err.println("Error opening file. Terminating.");
System.exit(l); // terminate the program

Fig. 15.3 | Writing data to a sequential text file with class Formatter. (Part 2 of 5.)

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

40 // add records to file

41 public static void addRecords()

42 {

43 Scanner input = new Scanner(System.in);

44 System.out.printf("%s¥%n%s%un? ",

45 "Enter account number, first name, last name and balance.",
46 "Enter end-of-file indicator to end 1input.");

47

48 while (input.hasNext()) // loop until end-of-file indicator
49 {

50 try

51 {

Fig. 15.3 | Writing data to a sequential text file with class Formatter. (Part 3 of 5.)

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

52 // output new record to file; assumes valid input

53 output.format("%d %s %s %.2f%n", dinput.nextInt(),

54 input.next(), input.next(), input.nextDouble());

55 }

56 catch (FormatterClosedException formatterClosedException)
57 {

58 System.err.println("Error writing to file. Terminating.");
59 break;

60 3

61 catch (NoSuchElementException elementException)

62 {

63 System.err.println("Invalid input. Please try again.");
64 input.nextLine(); // discard input so user can try again
65 3

66

67 System.out.print("? ");

68 } // end while

69 } // end method addRecords

70

Fig. 15.3 | Writing data to a sequential text file with class Formatter. (Part 4 of 5.)

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

71 // close file

72 public static void closeFile()
73 {

74 if (output !'= null)

75 output.close();

76 }

77 1} // end class CreateTextFile

Enter account number, first name, last name and balance.
Enter end-of-file indicator to end input.

? 100 Bob Blue 24.98

200 Steve Green -345.67

300 Pam White 0.00

400 Sam Red -42.16

500 Sue Yellow 224.62

AZ

IRV LRV LN LN IS |

Fig. 15.3 | Writing data to a sequential text file with class Formatter. (Part 5 of 5.)

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

<

15.4.1 Creating a Sequential-Access Text

» ASecurityException occurs if the user does not
have permission to write data to the file.

» AF11eNotFoundException occurs if the file
does not exist and a new file cannot be created.

» static method System.ex1it terminates an
application.
= An argument of O indicates successful program termination.
= A nonzero value, normally indicates that an error has occurred.

= The argument is useful if the program is executed from a batch
file on Windows or a shell script on UNIX/Linux/Mac OS X.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

UNIX/Linux/Mac OS X <Enter> <Ctrl> d
Windows <Ctrl> z

Fig. 15.4 | End-of-file key combinations.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

15.4.1 Creating a Sequential-Access Text
File (cont.)

» Scanner method hasNext determines whether the end-
of-file key combination has been entered.

» ANoSuchElementException occurs if the data being
read by a Scanner method is in the wrong format or if
there Is no more data to input.

» Formatter method format works like
System.out.printf

» AFormatterClosedException occurs if the
Formatter is closed when you attempt to output.

» Formatter method close closes the file.

= |f method close is not called explicitly, the operating sys-tem
normally will close the file when program execution terminates.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

100
200
300
400
500

Bob
Steve
Pam
Sam
Sue

Blue
Green
White
Red
Yellow

24.98
-345.67
0.00
-42.16
224.62

Fig. 15.5 | Sample data for the program in Fig. 15.3.

© Copyright 1992-2015 by Pearson

Education, Inc. All Rights Reserved.

)

15.4.2 Reading Data from a Sequential-

Access Text File
» The application (Fig. 15.6) reads records from the file

"clients.txt" created by the application of
Section 15.4.1 and displays the record contents.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

OoOoO~NONBNDE WN=—

10
11
12
13
14
15
16
17
I8
19
20
21

// Fig. 15.6: ReadTextFile.java
// This program reads a text file and displays each record.

import
import
import
import
import
import
import

java
java

java.
java.
java.
java.
java.

.170.I0Exception;
.lang.ITlegalStateException;
nio.file.Files;
nio.file.Path;
nio.file.Paths;
util.NoSuchElementException;
util.Scanner;

public class ReadTextFile

{

private static Scanner input;

public static void main(String[] args)

{

openFile();
readRecords();
closeFile();

Fig. 15.6 | Sequential file reading using a Scanner. (Part | of 4.)

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

22 // open file clients.txt

23 public static void openFile()

24 {

25 try

26 {

27 input = new Scanner(Paths.get("clients.txt"));

28 }

29 catch (IOException ioException)

30 {

31 System.err.println("Error opening file. Terminating.");
32 System.exit(l);

33 }

34 3

35

36 // read record from file

37 public static void readRecords()

38 {

39 System.out.printf("%-10s%-12s%-12s%10s%n", "Account",
40 "First Name", "Last Name", "Balance");

41

Fig. 15.6 | Sequential file reading using a Scanner. (Part 2 of 4.)

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

42 try

43 {

44 while (input.hasNext()) // while there is more to read

45 {

46 // display record contents

47 System.out.printf("%-10d%-12s%-12s%10.21%n", dinput.nextInt(),
48 input.next(), input.next(), input.nextDouble());

49 }

50 3

51 catch (NoSuchElementException elementException)

52 {

53 System.err.println("File improperly formed. Terminating.");
54 }

55 catch (I1legalStateException stateException)

56 {

57 System.err.println("Error reading from file. Terminating.");
58 }

59 } // end method readRecords

60

Fig. 15.6 | Sequential file reading using a Scanner. (Part 3 of 4.)

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

61 // close file and terminate application

62 public static void closeFile()

63 {

64 if (input != null)

65 input.close();

66 }

67 1} // end class ReadTextFile

Account First Name Last Name BaTlance
100 Bob Blue 24 .98
200 Steve Green -345.67
300 Pam White 0.00
400 Sam Red -42.16
500 Sue Yellow 224.62

Fig. 15.6 | Sequential file reading using a Scanner. (Part 4 of 4.)

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

15.4.2 Reading Data from a Sequential-
Access Text File

» If a Scanner Is closed before data is input, an
I1legalStateException occurs.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

» To retrieve data sequentially from a file, programs start
from the beginning of the file and read all the data
consecutively until the desired information is found.

» It might be necessary to process the file sequentially
several times (from the beginning of the file) during the
execution of a program.

» Class Scanner does not allow repositioning to the
beginning of the file.
= The program must close the file and reopen it.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

OoOoO~NONBNDE WN=—

19

// Fig. 15.7: MenuOption.java
// enum type for the credit-inquiry program's options.

public enum MenuOption

{

// declare contents of enum type
ZERO_BALANCE(1),
CREDIT_BALANCE(2),
DEBIT_BALANCE(3),

END(4);

private final int value; // current menu option

// constructor
private MenuOption(int value)

{

}
} // end enum MenuOption

this.value = value;

Fig. 15.7 | enum type for the credit-inquiry program’s menu options.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

OoOoO~NONBNDE WN=—

10
11
12
13
14
15
16
17
I8
19

// Fig. 15.8: CreditInquiry.java

// This program reads a file sequentially and displays the
// contents based on the type of account the user requests
// (credit balance, debit balance or zero balance).

import java.io.IOException;

import java.lang.IllegalStateException;

import java.nio.file.Paths;

import java.util.NoSuchElementException;

import java.util.Scanner;

public class CreditInquiry
{

private final static MenuOption[] choices = MenuOption.values();

public static void main(String[] args)

{
// get user's request (e.g., zero, credit or debit balance)
MenuOption accountType = getRequest();

Fig. 15.8 | Credit-inquiry program. (Part | of 8.)

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39

while (accountType !'= MenuOption.END)

{

switch (accountType)
{
case ZERO_BALANCE:
System.out.printf("%nAccounts with zero balances:%n");
break;
case CREDIT_BALANCE:
System.out.printf("%nAccounts with credit balances:%n");
break;
case DEBIT_BALANCE:
System.out.printf("%nAccounts with debit balances:%n");
break;

}

readRecords(accountType) ;
accountType = getRequest(); // get user's request

Fig. 15.8 | Credit-inquiry program. (Part 2 of 8.)

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

40 // obtain request from user

41 private static MenuOption getRequest()

42 {

43 int request = 4;

44

45 // display request options

46 System.out.printf("%nEnter request¥n¥%s%n¥%sink%sinskn',
47 " 1 - List accounts with zero balances",
48 " 2 - List accounts with credit balances",
49 " 3 - List accounts with debit balances",
50 " 4 - Terminate program");

51

52 try

53 {

54 Scanner input = new Scanhner(System.in);
55

56 do // input user request

57 {

58 System.out.printf("%n7? ");

59 request = input.nextInt();

60 } while ((request < 1) || (request > 4));
61 }

Fig. 15.8 | Credit-inquiry program. (Part 3 of 8.)

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82

}

catch (NoSuchElementException noSuchElementException)

{
}

System.err.println("Invalid input. Terminating.");

return choices[request - 1]; // return enum value for option

// read records from file and display only records of appropriate type
private static void readRecords(MenuOption accountType)

{

// open file and process contents
try (Scanner input = new Scanner(Paths.get("clients.txt")))

{
while (input.hasNext()) // more data to read

{
int accountNumber = input.nextInt();
String firstName = input.next();
String TastName = input.next();
double balance = input.nextDouble();

Fig. 15.8 | Credit-inquiry program. (Part 4 of 8.)

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

83 // if proper acount type, display record

84 if (shouldDisplay(accountType, balance))

85 System.out.printf("%-10d%-12s%-12s%10.2f%n", accountNumber,
86 firstName, lastName, balance);

87 else

88 input.nextLine(); // discard the rest of the current record
89 }

90 }

91 catch (NoSuchElementException |

92 I1legalStateException | IOException e)

93 {

94 System.err.println("Error processing file. Terminating.");

95 System.exit(1l);

96 3

97 } // end method readRecords

98

Fig. 15.8 | Credit-inquiry program. (Part 5 of 8.)

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

929

100
101
102
103
104
105
106
107
108
109
110
111

// use record type to determine if record should be displayed
private static boolean shouldDisplay(
MenuOption accountType, double balance)
{
if ((accountType == MenuOption.CREDIT_BALANCE) && (balance < 0))
return true;
else if ((accountType == MenuOption.DEBIT_BALANCE) && (balance > 0))
return true;
else if ((accountType == MenuOption.ZERO_BALANCE) && (balance == 0))
return true;

return false;

}

112 } // end class CreditInquiry

Fig. 15.8 | Credit-inquiry program. (Part 6 of 8.)

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

Enter request

1 - List accounts with zero balances

2 - List accounts with credit balances
3 - List accounts with debit balances
4 - Terminate program

71

Accounts with zero balances:
300 Pam White 0.00

Enter request

1 - List accounts with zero balances

2 - List accounts with credit balances
3 - List accounts with debit balances
4 - Terminate program

? 2

Accounts with credit balances:

200 Steve Green -345.67
400 Sam Red -42 .16

Fig. 15.8 | Credit-inquiry program. (Part 7 of 8.)

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

Enter request

1 - List accounts with zero balances

2 - List accounts with credit balances
3 - List accounts with debit balances
4 - Terminate program

7?3

Accounts with debit balances:

100 Bob Blue 24.98
500 Sue Yellow 224.62

Enter request

1 - List accounts with zero balances

2 - List accounts with credit balances
3 - List accounts with debit balances
4 - Terminate program

? 4

Fig. 15.8 | Credit-inquiry program. (Part 8 of 8.)

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

15.4.4 Updating Sequential-Access Files
» The data in many sequential files cannot be modified
without the risk of destroying other data in the file.

» If the name “Wh1te” needed to be changed to
“Worthington,” the old name cannot simply be
overwritten, because the new name requires more space.

» Fields in a text file—and hence records—can vary in size.

» Records in a sequential-access file are not usually updated
In place. Instead, the entire file is rewritten.

» Rewriting the entire file is uneconomical to update just one
record, but reasonable if a substantial number of records
need to be updated.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

15.5 Object Serialization

» To read an entire object from or write an entire object
to a file, Java provides object serialization.

» A serialized object is represented as a sequence of
bytes that includes the object’s data and its type
Information.

» After a serialized object has been written into a file, it
can be read from the file and deserialized to recreate
the object In memory.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

15.5 Object Serialization (cont.)

» Classes ObjectInputStreamand
ObjectOutputStream (package java.10).
which respectively implement the ObjectInput and
Objectoutput interfaces, enable entire objects to be
read from or written to a stream.

» To use serialization with files, initialize
ObjectInputStreamand
ObjectoutputStream objects that read from and
write to files.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

15.5 Object Serialization (cont.)

» Objectoutput interface method writeObject takes
an Object as an argument and writes its information to an
OutputStream.

» A class that implements ObjectOuput (such as
ObjectOutputStream) declares this method and
ensures that the object being output implements
Serializable.

» ObjectInput interface method readobject reads and
returns a reference to an Object from an InputStream.

= After an object has been read, its reference can be cast to the object’s
actual type.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

15.5.1 Creating a Sequential-Access File
Using Object Serialization

» Objects of classes that implement interface
Serializable can be serialized and deserialized

with ObjectOutputStreams and
ObjectInputStreams.

» Interface Seri1alizable is atagging interface.
= It does not contain methods.

» Aclass that implements Serializable istagged as
being a Serializable object.

» An ObjectOutputStream will not output an object
unlessitisa Serializable object.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

1 // Fig. 15.9: Account.java

2 // Serializable Account class for storing records as objects.
3 dimport java.io.Serializable;

4

5 public class Account implements Serializable

6 {

7 private int account;

8 private String firstName;

9 private String lastName;

10 private double balance;

11

12 // initializes an Account with default values

13 public Account()

14 {

15 this(0, "", "", 0.0); // call other constructor
16 }

17

Fig. 15.9 | Account class for serializable objects. (Part | of 4.)

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

I8 // initializes an Account with provided values

19 public Account(int account, String firstName,
20 String TastName, double balance)
21 {

22 this.account = account;

23 this.firstName = firstName;
24 this.lastName = lastName;

25 this.balance = balance;

26 }

27

28 // set account number

29 public void setAccount(int acct)
30 {

31 this.account = account;

32 }

33

34 // get account number

35 public int getAccount()

36 {

37 return account;

38 }

39

Fig. 15.9 | Account class for serializable objects. (Part 2 of 4.)

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

40 // set first name

41 public void setFirstName(String firstName)
42 {

43 this.firstName = firstName;
44 }

45

46 // get first name

47 public String getFirstName()
48 {

49 return firstName;

50 }

51

52 // set last name

53 public void setLastName(String TastName)
54 {

55 this.lastName = lastName;
56 }

57

58 // get last name

59 public String getLastName()
60 {

61 return lastName;

62 }

63

Fig. 15.9 | Account class for serializable objects. (Part 3 of 4.)

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

64 // set balance

65 public void setBalance(double balance)
66 {

67 this.balance = balance;

68 }

69

70 // get balance

71 public double getBalance()

72 {

73 return balance;

74 }

75 1} // end class Account

Fig. 15.9 | Account class for serializable objects. (Part 4 of 4.)

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

ization (cont.)

r 4

» In a class that implements Serializable, every
variable must be Serializable.

» Any one that is not must be declared transient so it
will be ignored during the serialization process.

» All primitive-type variables are serializable.

» For reference-type variables, check the class’s
documentation (and possibly its superclasses) to ensure
that the type is Serializable.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

1 // Fig. 15.10: CreateSequentialFile.java

2 // Writing objects sequentially to a file with class ObjectOutputStream.
3 dimport java.io.IOException;

4 dimport java.io.ObjectOutputStream;

5 dimport java.nio.file.Files;

6 import java.nio.file.Paths;

7 dimport java.util.NoSuchElementException;

8 import java.util.Scanner;

9

10 public class CreateSequentialFile

11 {

12 private static ObjectOutputStream output; // outputs data to file
13

14 public static void main(String[] args)

15 {

16 openFile();

17 addRecords();

I8 closeFile();

19 }
20

Fig. 15.10 | Sequential file created using ObjectOutputStream. (Part | of 5.)

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

21 // open file clients.ser

22 public static void openFile()

23 {

24 try

25 {

26 output = new ObjectOutputStream(

27 Files.newOutputStream(Paths.get("clients.ser")));
28 }

29 catch (IOException ioException)

30 {

31 System.err.printin("Error opening file. Terminating.");
32 System.exit(l); // terminate the program

33 }

34 }

35

36 // add records to file

37 public static void addRecords()

38 {

39 Scanner input = new Scanner(System.in);

40

41 System.out.printf("%s%n%s%n? ",

42 "Enter account number, first name, last name and balance.",
43 "Enter end-of-file indicator to end input.");

44

Fig. 15.10 | Sequential file created using ObjectOutputStream. (Part2 of 5.)

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

while (input.hasNext()) // loop until end-of-file indicator

{

try
{
// create new record; this example assumes valid input
Account record = new Account(input.nextInt(),
input.next(), input.next(), input.nextDouble());

// serialize record object into file
output.writeObject(record);

}

catch (NoSuchElementException elementException)

{
System.err.println("Invalid input. Please try again.");
input.nextLine(); // discard finput so user can try again

}

catch (IOException ioException)

{
System.err.println("Error writing to file. Terminating.");
break;

}

Fig. 15.10 | Sequential file created using ObjectOutputStream. (Part 3 of 5.)

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

66

67 System.out.print("? ");

68 }

69 }

70

71 // close file and terminate application
72 public static void closeFile()

73 {

74 try

75 {

76 if (output '= null)

77 output.close();

78 ¥

79 catch (IOException 1ioException)

80 {

81 System.err.println("Error closing file. Terminating.");
82 }

83 }

84 } // end class CreateSequentialFile

Fig. 15.10 | Sequential file created using ObjectOutputStream. (Part4 of 5.)

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

Enter account number, first name, last name and balance.
Enter end-of-file indicator to end input.

? 100 Bob Blue 24.98

200 Steve Green -345.67

300 Pam White 0.00

400 Sam Red -42.16

500 Sue Yellow 224.62

AZ

[V ALV LV LN LN |

Fig. 15.10 | Sequential file created using ObjectOutputStream. (Part5 of 5.)

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

15.5.2 Reading and Deserializing Data
from a Sequential-Access File
» The program in Fig. 15.11 reads records from a file

created by the program in Section 15.5.1 and displays
the contents.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

1 // Fig. 15.11: ReadSequentialFile.java

2 // Reading a file of objects sequentially with ObjectInputStream
3 // and displaying each record.

4 import java.io.EOFException;

5 dimport java.io.IOException;

6 import java.io.ObjectInputStream;

7 dimport java.nio.file.Files;

8 import java.nio.file.Paths;

9

10 public class ReadSequentialFile

11 {

12 private static ObjectInputStream input;
13

14 public static void main(String[] args)
15 {

16 openFile();

17 readRecords();

I8 closeFile();

19 }
20

Fig. 15.11 | Readinga file of objects sequentially with ObjectInputStreamand
displaying each record. (Part | of 6.)

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

21
22
23
24
25
26
27
28
29
30
31
32
33
34
35

// enable user to select file to open
public static void openFile()

{
try // open file
{
input = new ObjectInputStream(
Files.newInputStream(Paths.get("clients.ser")));
}
catch (IOException ioException)
{
System.err.println("Error opening file.");
System.exit(l);
}
3

Fig. 15.11 | Readinga file of objects sequentially with ObjectInputStreamand
displaying each record. (Part 2 of 6.)

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53

// read record from file
public static void readRecords()

{

System.out.printf("%-10s%-12s%-12s%10s%n", "Account",
"First Name", "Last Name", "Balance");

try

{
while (true) // loop until there is an EOFException

{

Account record = (Account) input.readObject();

// display record contents

System.out.printf("%-10d%-12s%-12s%10.2f%n",
record.getAccount(), record.getFirstName(),
record.getLastName(), record.getBalance());

}

Fig. 15.11 | Readinga file of objects sequentially with ObjectInputStreamand
displaying each record. (Part 3 of 6.)

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

54 catch (EOFException endOfFileException)

55 {

56 System.out.printf("%No more records%n™);

57 }

58 catch (ClassNotFoundException classNotFoundException)

59 {

60 System.err.println("Invalid object type. Terminating.");
61 }

62 catch (IOException ioException)

63 {

64 System.err.println("Error reading from file. Terminating.™);
65 }

66 } // end method readRecords

67

Fig. 15.11 | Readinga file of objects sequentially with ObjectInputStreamand
displaying each record. (Part 4 of 6.)

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

68 // close file and terminate application

69 public static void closeFile()

70 {

71 try

72 {

73 if (input !'= null)

74 input.close();

75 }

76 catch (IOException ioException)
77 {

78 System.err.println("Error closing file. Terminating.");
79 System.exit(1l);

80 }

8l }

82 } // end class ReadSequentialFile

Fig. 15.11 | Readinga file of objects sequentially with ObjectInputStreamand
displaying each record. (Part 5 of 6.)

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

Account First Name Last Name Balance

100 Bob Blue 24.98
200 Steve Green -345.67
300 Pam white 0.00
400 Sam Red -42.16
500 Sue Yellow 224.62

No more records

Fig. 15.11 | Readinga file of objects sequentially with ObjectInputStreamand
displaying each record. (Part 6 of 6.)

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

15.5.2 Reading and Deserializing Data
from a Sequential-Access File (cont.)

» ObjectInputStream method readObject reads
an Object from a file.

» Method readoObject throws an EOFException if
an attempt i1s made to read beyond the end of the file.

» Method readObject throws a
ClassNotFoundException if the class for the
object being read cannot be located.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

'\nv’ Software Engineering Observation 15.1

S8 This section introduced object serialization and
demonstrated basic serialization techniques.
Serialization is a deep subject with many traps and
pitfalls. Before implementing object serialization in
industrial-strength applications, carefully read the
online Java documentation for object serialization.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

15.6 Opening Files with JF11eChooser

» Class JF11eChooser displays a dialog that enables the user
to easily select files or directories.

» To demonstrate JF1 1eChooser, we enhance the example in
Section 15.3, as shown in Figs. 15.12-15.13.

» Call method setFileSelectionMode specifies what the
user can select from the 1 1eChooser. For this program,
we use JF1 leChooser static constant
FILES_AND_DIRECTORIES to indicate that files and
directories can be selected. Other static constants include
FILES_ONLY (the default) and DIRECTORIES_ONLY.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

I // Fig. 15.12: JFileChooserDemo. java

2 // Demonstrating JFileChooser.

3 import java.io.IOException;

4 import java.nio.file.DirectoryStream;

5 dimport java.nio.file.Files;

6 import java.nio.file.Path;

7 import java.nio.file.Paths;

8 import javax.swing.JFileChooser;

9 import javax.swing.JFrame;

10 1import javax.swing.JOptionPane;

Il dimport javax.swing.JScrollPane;

12 1import javax.swing.JTextArea;

13

14 public class JFileChooserDemo extends JFrame

15 {

16 private final JTextArea outputArea; // displays file contents
17

18 // set up GUI

19 public JFileChooserDemo() throws IOException
20 {
21 super("JFileChooser Demo");
22 outputArea = new JTextArea();
23 add(new JScrollPane(outputArea)); // outputArea is scrollable
24 analyzePath(); // get Path from user and display info
25 }

15.12 | Demonstrating JFileChooser. (Part | of 4.)

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

26

27 // display information about file or directory user specifies

28 public void analyzePath() throws IQException

29 {

30 // get Path to user-selected file or directory

31 Path path = getFileOrDirectoryPath();

32

33 if (path !'= null & & Files.exists(path)) // if exists, display info
34 {

35 // gather file (or directory) information

36 StringBuilder builder = new StringBuilder();

37 builder.append(String.format("%s:%n", path.getFileName()));
38 builder.append(String.format("%s a directory%n",

39 Files.isDirectory(path) ? "Is" : "Is not"));

40 builder.append(String.format("%s an absolute path%n",

41 path.isAbsolute() ? "Is" : "Is not"));

42 builder.append(String.format("Last modified: %s%n",

43 Files.getlLastModifiedTime(path)));

44 builder.append(String.format("'Size: %s%n", Files.size(path)));
45 builder.append(String.format("Path: %s%n", path));

46 builder.append(String.format("Absolute path: %s¥%n",

47 path.toAbsolutePath()));

48

Fig. 15.12 | Demonstrating JFileChooser. (Part 2 of 4.)

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

49 if (Files.isDirectory(path)) // output directory listing
50 {

51 builder.append(String.format("%nDirectory contents:%n"));
52

53 // object for iterating through a directory's contents
54 DirectoryStream<Path> directoryStream =

55 Files.newDirectoryStream(path);

56

57 for (Path p : directoryStream)

58 builder.append(String.format("%s%n", p));

59 }

60

61 outputArea.setText(builder.toString()); // display String content
62 }

63 else // Path does not exist

64 {

65 JOptionPane.showMessageDialog(this, path.getFileName() +
66 " does not exist.", "ERROR", JOptionPane.ERROR_MESSAGE);
67 }

68 } // end method analyzePath

69

Fig. 15.12 | Demonstrating JFileChooser. (Part 3 of 4.)

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

70 // allow user to specify file or directory name

71 private Path getFileOrDirectoryPath()

72 {

73 // configure dialog allowing selection of a file or directory
74 JFileChooser fileChooser = new JFileChooser();

75 fileChooser.setFileSelectionMode(

76 JFileChooser.FILES_AND_DIRECTORIES);

77 int result = fileChooser.showOpenDialog(this);

78

79 // if user clicked Cancel button on dialog, return
80 if (result == JFileChooser.CANCEL_OPTION)

8l System.exit(l);

82

83 // return Path representing the selected file

84 return fileChooser.getSelectedFile().toPath();

85 }

86 1} // end class JFileChooserDemo

Fig. 15.12 | Demonstrating JFileChooser. (Part 4 of 4.)

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

OoOoO~NONBNDE WN=—

10
11
12
13
14
15

// Fig. 15.13: JFileChooserTest.java
// Tests class JFileChooserDemo.
import java.io.IOException;

import javax.swing.JFrame;

public class JFileChooserTest
{
public static void main(String[] args) throws IOException
{
JFileChooserDemo application = new JFileChooserDemo();
application.setSize(400, 400);
application.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
application.setVisible(true);

}
} // end class JFileChooserTest

Fig. 15.13 | Testing class FileDemonstration. (Part | of 3.)

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

1) Use thisdialog

£)0 n
to locate and 1O _ _ _
selectg file or | Lookin: |(& cn15 o (@ (@) (@] [E s Click Open to
directory & fig15_02 submit file or
& ng15_12-13 directory name
[E5 serializationpps to program
[E5 TextFileApps /
/
Files and 4"
directories are _ = //
displayed hE’.FE’. File Mame: Chbooks\2013UHTP10examplesich15
Files of Type: | All Files / v
/ |
[ngn Lk’[Cancel J

Fig. 15.13 | Testing class FileDemonstration. (Part 2 of 3.)

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

b) Selected file's ar
. . . 4| JFileChooser Demo = ||
directory’s information; 515: [e

if it’s a directory, the | |ls a directory
|5 an absolute path

contents of that | | ast modified: 2012-11-10T15:45:35 3013152
directory are displayed | |3z 4096

I'y p Y Path: C\books\2013UHTP10\examplesich15
Absolute path: Clbooks\2013WUHTP 10\examplesich15

Directory contents:
C\books\2013UHTP10\examplesich15%ig15_02
C\books\2013UHTP10\examplesich15¥ig15_12-13
C\books\2013UHTP10\examplesich15\SerializationApps
CAbooks\2013UHTP 10\examplesich 15\ TextFileApps

Fig. 15.13 | Testing class FileDemonstration. (Part3 of 3.)

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

15.7 (Optional) Additional java.1io
Classes

» This section overviews additional interfaces and classes
(from package java.10).

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

15.7.1 Interfaces and Classes for Byte

Based Input and Output

4

InputStreamand OutputStreamare abstract
classes that declare methods for performing byte-based
Input and output, respectively.

Pipes are synchronized communication channels
between threads.
= PipedoutputStream (asubclass of OutputStream)

and PipedInputStream (asubclass of InputStream)
establish pipes between two threads in a program.

= One thread sends data to another by writing to a
PipedOutputStream.

= The target thread reads information from the pipe via a
PipedInputStream.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

15.7.1 Interfaces and Classes for Byte-
I

Based Input and Output (cont.)

(/a

AF1lterInputStream filtersan InputStream,
and a F1 1teroutputStream filters an
OoutputStream.

» Filtering means simply that the filter stream provides
additional functionality, such as aggregating bytes into
meaningful primitive-type units.

» F11terInputStreamand
F1lterOutputStream are typically used as
superclasses, so some of their filtering capabilities are
provided by their subclasses.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

15.7.1 Interfaces and Cla ;ses for Byte-
Based Input and Output (c mh)

» APrintStream (a subclass of

F11lteroutputStream) performs text output to the
specified stream.

» System.out and System.err are PrintStream
objects.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

(/a

15.7.1 Interfaces and Classes for Byte-

Based Input and Output (cont.)

» Usually, programs read data as aggregates of bytes that
form 1nts, floats, doublesand so on.

» Java programs can use several classes to input and
output data in aggregate form.

» Interface DataInput describes methods for reading
primitive types from an input stream.

» Classes DataInputStreamand
RandomAccessF1 1e each implement this interface
to read sets of bytes and process them as primitive-type
values.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

)

15.7.1 Interfaces and Classes for Byte-

Based Input and Output (cont.)

» Interface DataOutput describes a set of methods for
writing primitive types to an output stream.

» Classes DataOutputStream (a subclass of
F1lterOutputStream)and
RandomAccessF1 | e each implement this interface
to write primitive-type values as bytes.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

L =~ »-‘-W-f'\ ~ l [o ol e ~ o Y e
13;;1LnuJ ces and Classes Tor Byte-

Based In LLL;HQ/ﬁLQLJ\ppHL\

>
>

Buffering is an 1/O-performance-enhancement technique.

With a BufferedoutputStream, each output operation
IS directed to a buffer

= holds the data of many output operations

Transfer to the output device Is performed in one large
physical output operation each time the buffer fills.

The output operations directed to the output buffer in
memory are often called logical output operations.

A partially filled buffer can be forced out to the device at
any time by invoking the stream object’s TTush method.
Using buffering can greatly increase the performance of an
application.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

<55 Performance Tip 15.1
222 Buffered I/O can yield significant performance improve-

ments over unbuffered /0.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

.1 Interfaces and Classes for Byte-
l

Based Input and Output (cont.)

» With a BufferedInputStream, many “logical”
chunks of data from a file are read as one large
physical input operation into a memory buffer.

» As a program requests each new chunk of data, it’s
taken from the buffer.

» This procedure Is sometimes referred to as a logical
Input operation.

» When the buffer is empty, the next actual physical input
operation from the input device Is performed.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

.1 Interfaces and Classes for Byte-
l

Based Input and Output (cont.)

» Java stream 1/O includes capabilities for inputting from
byte arrays in memory and outputting to byte arrays
In memory.

» AByteArrayInputStream (a subclass of
InputStream) reads from a byte array in memory.

» AByteArrayoutputStream (a subclass of
OoutputStream) outputs to a byte array in memory.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

15.7.1 Interfaces and Classes for Byte-
|

Based Input and Output (cont.)

» ASequenceInputStream (asubclass of
InputStream) logically concatenates several
InputStreams

» The program sees the group as one continuous
InputStream.

» When the program reaches the end of one input stream,
that stream closes, and the next stream in the sequence

opens.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

[-

15.7.2 Interfaces and Classes for
Input and Output

» The Reader and Writer abstract classes are
Unicode two-byte, character-based streams.

» Most of the byte-based streams have corresponding
character-based concrete Reader or Writer classes.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

» Classes BufferedReader (a subclass of
abstract class Reader) and Bufferedwriter
(a subclass of abstract classwriter) enable
buffering for character-based streams.

» Classes CharArrayReader and
CharArraywriter read and write, respectively, a
stream of characters to a char array.

» AL1neNumberReader (asubclass of Buffered-
Reader) is a buffered character stream that keeps
track of the number of lines read.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

<

!—/

VhiL¢2Lmi:rﬁa:15;and_CXas
Ch. L

S r
nput and

put (cont.)

®,

es 1
Oui

(‘,_r

) ™y |
S ST A E Y N & N
raciel bbabcﬂ

QB

» An InputStream can be converted to a Reader via
class InputStreamReader.

» An OuputStream can be converted toawriter via
class OutputStreamwriter.

» Class F1le-Reader and class F1lewriter read
characters from and write characters to a file.

» Class PipedReader and class Pipedwriter
Implement piped-character streams for transfering data
between threads.

» Class StringReader bStringwriter read characters
from and write characters to Strings.

» APrintwriter writes characters to a stream.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

	Slide 1: Chapter 15 Files, Streams and Object Serialization
	Slide 2
	Slide 3
	Slide 4: 15.1 Introduction
	Slide 5: 15.2 Files and Streams
	Slide 6
	Slide 7: 15.2 Files and Streams (cont.)
	Slide 8: 15.2 Files and Streams (cont.)
	Slide 9: 15.2 Files and Streams (cont.)
	Slide 10: 15.2 Files and Streams (cont.)
	Slide 11: 15.3 Using NIO Classes and Interfaces to Get File and Directory Information
	Slide 12: 15.3 Using NIO Classes and Interfaces to Get File and Directory Information (Cont.)
	Slide 13: 15.3 Using NIO Classes and Interfaces to Get File and Directory Information (Cont.)
	Slide 14: 15.3 Using NIO Classes and Interfaces to Get File and Directory Information (Cont.)
	Slide 15: 15.3 Using NIO Classes and Interfaces to Get File and Directory Information (Cont.)
	Slide 16: 15.3 Using NIO Classes and Interfaces to Get File and Directory Information (Cont.)
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25: 15.4 Sequential-Access Text Files
	Slide 26: 15.4.1 Creating a Sequential-Access Text File
	Slide 27: 15.4.1 Creating a Sequential-Access Text File (cont.)
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33: 15.4.1 Creating a Sequential-Access Text File (cont.)
	Slide 34
	Slide 35: 15.4.1 Creating a Sequential-Access Text File (cont.)
	Slide 36
	Slide 37: 15.4.2 Reading Data from a Sequential-Access Text File
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42: 15.4.2 Reading Data from a Sequential-Access Text File
	Slide 43: 15.4.3 Case Study: A Credit-Inquiry Program
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53: 15.4.4 Updating Sequential-Access Files
	Slide 54: 15.5 Object Serialization
	Slide 55: 15.5 Object Serialization (cont.)
	Slide 56: 15.5 Object Serialization (cont.)
	Slide 57: 15.5.1 Creating a Sequential-Access File Using Object Serialization
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62: 15.5.1 Creating a Sequential-Access File Using Object Serialization (cont.)
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68: 15.5.2 Reading and Deserializing Data from a Sequential-Access File
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75: 15.5.2 Reading and Deserializing Data from a Sequential-Access File (cont.)
	Slide 76
	Slide 77: 15.6 Opening Files with JFileChooser
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85: 15.7 (Optional) Additional java.io Classes
	Slide 86: 15.7.1 Interfaces and Classes for Byte-Based Input and Output
	Slide 87: 15.7.1 Interfaces and Classes for Byte-Based Input and Output (cont.)
	Slide 88: 15.7.1 Interfaces and Classes for Byte-Based Input and Output (cont.)
	Slide 89: 15.7.1 Interfaces and Classes for Byte-Based Input and Output (cont.)
	Slide 90: 15.7.1 Interfaces and Classes for Byte-Based Input and Output (cont.)
	Slide 91: 15.7.1 Interfaces and Classes for Byte-Based Input and Output (cont.)
	Slide 92
	Slide 93: 15.7.1 Interfaces and Classes for Byte-Based Input and Output (cont.)
	Slide 94: 15.7.1 Interfaces and Classes for Byte-Based Input and Output (cont.)
	Slide 95: 15.7.1 Interfaces and Classes for Byte-Based Input and Output (cont.)
	Slide 96: 15.7.2 Interfaces and Classes for Character-Based Input and Output
	Slide 97: 15.7.2 Interfaces and Classes for Character-Based Input and Output (cont.)
	Slide 98: 15.7.2 Interfaces and Classes for Character-Based Input and Output (cont.)

