Chapter 14
Strings, Characters and Regular

Expressions
Java How to Program, 10/e

© Copyright 1992-2015 by Pearson Education, Inc. All Rights
Reserved.

OBJECTIVES

In this chapter you'll:

m Create and manipulate immutable character-string objects of class String.

m Create and manipulate mutable character-string objects of class StringBuilder.
m Create and manipulate objects of class Character.

m Break a String object into tokens using String method sp1it.

m Use regular expressions to validate String data entered into an application.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

14.1 Introduction
14.2 Fundamentals of Characters and Strings
14.3 Class String

14.3.1 String Constructors

14.3.2 String Methods Tength, charAt and getChars
1433 Comparing Strings

1434 Locating Characters and Substrings in Strings

1435 Extracting Substrings from Strings

14.3.6 Concatenating Strings

14.3.7 Miscellaneous String Methods

[4.3.8 String Method valueOf

14.4 Class StringBuilder

14.4.1 StringBuilder Constructors

14.4.2 StringBuilder Methods Tength, capacity, setLength and ensureCapacity
[4.4.3 StringBuilder Methods charAt, setCharAt, getChars and reverse

[4.4.4 StringBuilder append Methods

14.4.5 StringBuilder Insertion and Deletion Methods

14.5 Class Character

14.6 Tokenizing Strings

14.7 Regular Expressions, Class Pattern and Class Matcher
14.8 Wrap-Up

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

14.1 Introduction

» This chapter d
StringBui]
java. lang

» These classes

iscusses class String, class
der and class Character from the
package.

orovide the foundation for string and

character manipulation in Java.

» The chapter also discusses regular expressions that
provide applications with the capability to validate
Input.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

14.2 Fundamentals of Characters and
Strings

» A program may contain character literals.
= An integer value represented as a character in single quotes.

= The value of a character literal is the integer value of the
character in the Unicode character set.

» String literals (stored in memory as String objects)
are written as a sequence of characters in double
guotation marks.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

si3. Performance Tip 14.1
cZz=| To conserve memory, Java treats all string literals with

the same contents as a single String object that has
many references to it.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

14.3 Class String

» Class String is used to represent strings in Java.

» The next several subsections cover many of class
String’s capabilities.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

14.3.1 String Constructors

» No-argument constructor creates a String that
contains no characters (i.e., the empty string, which can

also be represented as

) and has a length of 0.

» Constructor that takes a String object copies the

argument into the new St

» Constructor that takes a C
containing a copy of the ¢

» Constructor that takes a C

ring.
nar array creates a String
naracters in the array.

nar array and two integers

creates a String containing the specified portion of
the array.

© Copyright 1992-2015 by Pearson

Education, Inc. All Rights Reserved.

1 // Fig. 14.1: StringConstructors.java

2 // String class constructors.

3

4 public class StringConstructors

5 {

6 public static void main(String[] args)

7 {

8 char[] charArray = {'b", "i", 'r', "t', "h"', " ', 'd', "a', "v'};
9 String s = new String("hello™);

10

11 // use String constructors

12 String sl = new String();

13 String s2 = new String(s);

14 String s3 = new String(charArray);

15 String s4 = new String(charArray, 6, 3);

16

17 System.out.printf(

I8 "sl = %s¥kns2 = %s%ns3 = %sknsd = %skn", sl, s2, s3, s4);
19 }

20 1} // end class StringConstructors

Fig. 14.1 | String class constructors. (Part | of 2.)

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

= hello

s2 =
s3 = birth day
s4 = day

Fig. 14.1 | String class constructors. (Part 2 of 2.)

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

si3. Performance Tip 14.2

P2 It's not necessary to copy an existing String object.
String objects are immutable, because class String
does not provide methods that allow the contents of a
String object to be modified after it is created.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

14.3.2 String Methods 1ength, charAt
and getChars

» String method 1ength determines the number of
characters in a string.

» String method charAt returns the character at a
specmc position in the String.

» String method getChars copies the characters of a
String into a character array.

= The first argument is the starting index in the String from which
characters are to be copied

= The second argument is the index that is one past the last character to
be copied from the String.

= The third argument is the character array into which the characters
are to be copied.

= The last argument is the starting index where the copied characters
are placed in the target character array.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

1 // Fig. 14.2: StringMiscellaneous.java

2 // This application demonstrates the length, charAt and getChars
3 // methods of the String class.

4

5 public class StringMiscellaneous

6 {

7 public static void main(String[] args)

8 {

9 String sl = "hello there";

10 char[] charArray = new char[5];

11

12 System.out.printf("sl: %s", sl);

13

14 // test length method

15 System.out.printf("%nLength of sl: %d", sl.length(Q));
16

17 // loop through characters in sl with charAt and display reversed
I8 System.out.printf("%nThe string reversed is: ");

19
20 for (int count = sl.length() - 1; count >= 0; count--)
21 System.out.printf("%c ", sl.charAt(count));
22

Fig. 14.2 | String methods Tength, charAt and getChars. (Part | of 2.)

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

23 // copy characters from string into charArray

24 sl.getChars(0, 5, charArray, 0);

25 System.out.printf("%nThe character array 1is: ");
26

27 for (char character : charArray)

28 System.out.print(character);

29

30 System.out.println();

31 }

32 } // end class StringMiscellaneous

sl: hello there

Length of sl1: 11

The string reversed is: ereht o1 1eh
The character array is: hello

Fig. 14.2 | String methods Tength, charAt and getChars. (Part 2 of 2.)

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

14.3.3 Comparing Strings

» Strings are compared using the numeric codes of the
characters in the strings.

» Figure 14.3 demonstrates String methods equals,
equalsIgnoreCase, compareTo and
regionMatches and using the equality operator ==
to compare String objects.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

1 // Fig. 14.3: StringCompare.java

2 // String methods equals, equalsIgnhoreCase, compareTo and regionMatches.
3

4 public class StringCompare

5 {

6 public static void main(String[] args)

7 {

8 String sl = new String("hello"); // sl is a copy of "hello"
9 String s2 = "goodbye";

10 String s3 = "Happy Birthday";

11 String s4 = "happy birthday";

12

13 System.out.printf(

14 "sl = %s¥ns2 = %s%ns3 = %sknsd = %sknhxn", sl, s2, s3, sd);
15

16 // test for equality

17 if (sl.equals("hello"™)) // true

I8 System.out.println("sl equals \"hello\"");

19 else
20 System.out.println("sl does not equal \"hello\"");
21

Fig. 14.3 | String methods equals, equalsIgnoreCase, compareTo and
regionMatches. (Part | of 4.)

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

22 // test for equality with ==

23 if (sl == "hello") // false; they are not the same object
24 System.out.println("sl is the same object as \"hello\"");
25 else

26 System.out.printin("sl is not the same object as \"hello\"");
27

28 // test for equality (ighore case)

29 if (s3.equalsIlgnoreCase(s4)) // true

30 System.out.printf("%s equals %s with case ignored%n”, s3, s4);
31 else

32 System.out.printlin('s3 does not equal s4");

33

34 // test compareTo

35 System.out.printf(

36 "%nsl.compareTo(s2) s %d", sl.compareTo(s2));

37 System.out.printf(

38 "%ns2.compareTo(sl) is %d", s2.compareTo(sl));

39 System.out.printf(

40 "%nsl.compareTo(sl) is %d", sl.compareTo(sl));

41 System.out.printf(

42 "%ns3.compareTo(s4) is %d", s3.comparelTo(s4));

43 System.out.printf(

44 "%nsd.comparelo(s3) s %d%n%n", s4.compareTo(s3));

Fig. 14.3 | String methods equals, equalsIgnoreCase, compareTo and
regionMatches. (Part 2 of 4.)

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

45

46 // test regionMatches (case sensitive)

47 if (s3.regionMatches(0, s4, 0, 5))

48 System.out.println("First 5 characters of s3 and s4 match™);
49 else

50 System.out.printin(

51 "First 5 characters of s3 and s4 do not match");

52

53 // test regionMatches (ignore case)

54 if (s3.regionMatches(true, 0, s4, 0, 5))

55 System.out.println(

56 "First 5 characters of s3 and s4 match with case +ignored");
57 else

58 System.out.println(

59 "First 5 characters of s3 and s4 do not match");

60 }

61 } // end class StringCompare

Fig. 14.3 | String methods equals, equalsIgnoreCase, compareTo and
regionMatches. (Part 3 of 4.)

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

n
=
]

hello

= goodbye

s3 = Happy Birthday
= happy birthday

1]
N
|

w0
B
I

sl equals "hello"
sl is not the same object as "hello"
Happy Birthday equals happy birthday with case ignored

sl.compareTo(s2) is 1
s2.compareTo(sl) 1is -1
sl.compareTo(sl) is O
s3.compareTo(s4) is -32
s4.compareTo(s3) is 32

First 5 characters of s3 and s4 do not match
First 5 characters of s3 and s4 match with case ignored

Fig. 14.3 | String methods equals, equalsIgnoreCase, compareTo and
regionMatches. (Part 4 of 4.)

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

14.3.3 Comparing Strings (cont.)

» Method equals tests any two objects for equality

= The method returns true if the contents of the objects are equal,
and false otherwise.

= Uses a lexicographical comparison.
» When primitive-type values are compared with ==, the
result is true if both values are identical.

» When references are compared with ==, the result is true
If both references refer to the same object in memory.

» Java treats all string literal objects with the same contents as
one String object to which there can be many references.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

Common Programming Error 14.1

Comparing references with - can lead to logic errors, be-
cause == compares the references to determine whether
they refer to the same object, not whether two objects
have the same contents. When two separate objects that
contain the same values are compared with ==, the result
will be false. When comparing objects to determine
whether they have the same contents, use method
equals.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

14.3.3 Comparing Strings (cont.)

» String method equalsIgnoreCase ignores
whether the letters in each String are uppercase or
lowercase when performing the comparison.

» Method compareTo is declared in the Comparable
interface and implemented in the String class.

= Returns 0 if the Strings are equal, a negative number if the
String that invokes compareTo is less than the String
that is passed as an argument and a positive number if the
String that invokes compareTo is greater than the
String that is passed as an argument.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

14.3.3 Comparing Strings (cont.)

» Method regionMatches compares portions of two
Strings for equality.
= The first argument to this version of the method is the starting index
in the String that invokes the method.
= The second argument is a comparison String.
= The third argument is the starting index in the comparison String.
= The last argument is the number of characters to compare.

» Five-argument version of method regionMatches:

= When the first argument is true, the method ignores the case of the
characters being compared.

= The remaining arguments are identical to those described for the
four-argument regionMatches method.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

14.3.3 Comparing Strings (cont.)

» String methods startsWith and endsWith determine
whether strings start with or end with a particular set of
characters

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

1 // Fig. 14.4: StringStartEnd.java

2 // String methods startsWith and endsWith.

3

4 public class StringStartEnd

5 {

6 public static void main(String[] args)

7 {

8 String[] strings = {"started"”, "starting”, "ended", "ending"};
9

10 // test method startsWith

11 for (String string : strings)

12 {

13 if (string.startsWith("st"))

14 System.out.printf("\"%s\" starts with \"st\"%n", string);
I5 }

16

17 System.out.println();

18

19 // test method startsWith starting from position 2 of string
20 for (String string : strings)
21 {
22 if (string.startsWith("art", 2))
23 System.out.printf(
24 "\"%s\" starts with \"art\" at position 2%n", string);
25 }

14.4 | String methods startsWith and endswith. (Part | of 2.)

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

26

27 System.out.printin();

28

29 // test method endsWith

30 for (String string : strings)

31 {

32 if (string.endsWith("ed"))

33 System.out.printf("\"%s\" ends with \"ed\"%n", string);
34 }

35 3

36 } // end class StringStartEnd

"started" starts with "st"
"starting" starts with "st"

"started" starts with "art" at position 2

"starting" starts with "art" at position 2

"started" ends with "ed"
"ended" ends with "ed"

Fig. 14.4 | String methods startsWith and endswWith. (Part 2 of 2.)

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

14.3.4 Locating Characters and Substrings in
Strings
» Figure 14.5 demonstrates the many versions of

String methods indexOf and lastindexOf that search
for a specified character or substring ina String.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

I // Fig. 14.5: StringIndexMethods.java

2 // String searching methods indexOf and lastIndexOf.

3

4 public class StringIndexMethods

5 {

6 public static void main(String[] args)

7 {

8 String letters = "abcdefghijklimabcdefghijklim™;

9

10 // test indexOf to locate a character in a string

11 System.out.printf(

12 "'"c' is located at index %d%n", letters.indexOf('c'));
13 System.out.printf(

14 "'a' is Tocated at index %d%n", letters.indexOf('a', 1));
15 System.out.printf(

16 "'$" is located at index %d%n%n", letters.indexOf('$'));
17

18 // test lastlIndexOf to find a character in a string

19 System.out.printf("Last "¢’ is located at index %d%n",
20 letters.lastIndexOf('c"));
21 System.out.printf("Last "a' s located at index %d%n",
22 letters.lastIndexOf('a", 25));
23 System.out.printf("Last '$" is located at index %d%n%n",
24 Tetters.lastIndexOf('$"'));

Fig. 14.5 | String-searching methods indexOf and 1astIndexOf. (Part | of 3.)

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

25

26 // test indexOf to locate a substring in a string

27 System.out.printf("\"def\" is located at index %d%n",

28 lTetters.indexOf("def"));

29 System.out.printf("\"def\" s located at index %d%n",

30 letters.indexOf("def", 7));

31 System.out.printf("\"hello\" is located at index %d%n%n",
32 letters.indexOf("hello"));

33

34 // test lastIndexOf to find a substring in a string

35 System.out.printf("Last \"def\" is located at index %d%n",
36 letters.lastIndexOf("def"));

37 System.out.printf("Last \"def\" is located at index %d%n",
38 lTetters.lastIndexOf("def", 25));

39 System.out.printf("Last \"hello\" is located at index %d%n",
40 lTetters.lastIndexOf("hello"));

41 }

42 } // end class StringIndexMethods

Fig. 14.5 | String-searching methods indexOf and TastIndexOf. (Part 2 of 3.)

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

v v

c' is located at index 2
'a' is located at index 13
'$" is located at index -1

Last 'c¢' is Tocated at index 15

Last 'a' is located at index 13
Last '$' is located at index -1

"def" is located at index 3
"def" is located at index 16
"hello" 1is located at index -1

Last "def" is located at index 16
Last "def" is located at index 16
Last "hello" is located at index -1

Fig. 14.5 | String-searching methods indexOf and TastIndexOf. (Part 3 of 3.)

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

14.3.4 Locating Characters and Substrings in
Strings (cont.)

>

Method 1ndexOf locates the first occurrence of a character in a
String. If the method finds the character, it returns the
character’s index in the St ri1ng—otherwise, it returns —1.

A second version of 1ndexOf takes two integer arguments—the
character and the starting index at which the search of the
String should begin.

Method TastIndexOf locates the last occurrence of a
character in a String. The method searches from the end of the
String toward the beginning. If it finds the character, it returns
the character’s index in the St ring—otherwise, it returns —1.

A second version of TastIndexOf takes two integer
arguments—the integer representation of the character and the
Index from which to begin searching backward.

There are also versions of these methods that search for
substrings in Strings.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

14.3.5 Extracting Substrings from Strings

» Class String provides two substring methods to
enable a new String object to be created by copying
part of an existing String object. Each method
returns a new String object.

» The version that takes one integer argument specifies
the starting index in the original String from which
characters are to be copied.

» The version that takes two integer arguments receives
the starting index from which to copy characters in the
original String and the index one beyond the last
character to copy.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

1 // Fig. 14.6: SubString.java

2 // String class substring methods.

3

4 public class SubString

5 {

6 public static void main(String[] args)

7 {

8 String letters = "abcdefghijklmabcdefghijklim";

9

10 // test substring methods

11 System.out.printf("Substring from index 20 to end is \"%s\"%n",
12 Tetters.substring(20));

13 System.out.printf("%s \"%s\"%n",

14 "Substring from index 3 up to, but not including 6 is",
15 letters.substring(3, 6));

16 }

1T } // end class SubString

Substring from index 20 to end is "hijklIm"
Substring from index 3 up to, but not including 6 is "def"

Fig. 14.6 | Stringclass substring methods.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

14.3.6 Concatenating Strings

» String method concat concatenates two String

objects (similar to using the + operator) and returns a
new String object containing the characters from
both original Strings.

» The original Stringsto which s1 and s2 refer are
not modified.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

1 // Fig. 14.7: StringConcatenation.java

2 // String method concat.

3

4 public class StringConcatenation

5 {

6 public static void main(String[] args)

7 {

8 String s1 = "Happy ";

9 String s2 = "Birthday";

10

11 System.out.printf('sl = %s¥%ns2 = %skn%n",sl, s2);

12 System.out.printf(

13 "Result of sl.concat(s2) = %s%n", sl.concat(s2));
14 System.out.printf('sl after concatenation = %s%n", sl);
15 }

16 } // end class StringConcatenation

sl
s2

Happy
Birthday

Result of sl.concat(s2) = Happy Birthday
sl after concatenation = Happy

Fig. 14.7 | String method concat.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

14.3.7 Miscellaneous String Methods

» Method replace returns a new String object in which every
occurrence of the first char argument is replaced with the
second.

= An overloaded version enables you to replace substrings rather than
Individual characters.

» Method toUpperCase generates a new String with uppercase
letters.

» Method toLowerCase returns a new String object with
lowercase letters.

» Method trim generates a new String object that removes all

whitespace characters that appear at the beginning or end of the
String on which trim operates.

» Method toCharArray creates a new character array containing a
copy of the characters in the String.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

I // Fig. 14.8: StringMiscellaneous2.java

2 // String methods replace, tolLowerCase, tolUpperCase, trim and toCharArray.
3

4 public class StringMiscellaneous?2

5 {

6 public static void main(String[] args)

7 {

8 String sl = "hello";

9 String s2 = "GOODBYE";

10 String s3 = " spaces "

11

12 System.out.printf("sl = %s¥kns2 = %s¥ns3 = %sun%n", sl, s2, s3);
13

14 // test method replace

15 System.out.printf(

16 "Replace "1" with 'L' in sl: %s%n%n", sl.replace('l’', "'L'));
17

18 // test toLowerCase and tolUpperCase

19 System.out.printf("sl.toUpperCase() = %s%n", sl.toUpperCase());
20 System.out.printf('s2.tolLowerCase() = %s%n%n", s2.tolLowerCase());
21
22 // test trim method
23 System.out.printf("s3 after trim = \"%s\"%n%n", s3.trim());

Fig. 14.8 | String methods replace, toLowerCase, toUpperCase, trim and
toCharArray. (Part | of 3.)

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

24

25 // test toCharArray method

26 char[] charArray = sl.toCharArray();

27 System.out.print("sl as a character array = ");
28

29 for (char character : charArray)

30 System.out.print(character);

31

32 System.out.println();

33 }

34 } // end class StringMiscellaneous?2

Fig. 14.8 | String methods replace, toLowerCase, toUpperCase, trim and
toCharArray. (Part 2 of 3.)

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

sl = hello
s2 = GOODBYE
s3 = spaces

Replace '"1' with "L' in sl: hello

sl. toUpperCase() HELLO
s2.toLowerCase() = goodbye

s3 after trim = "spaces"

sl as a character array = hello

Fig. 14.8 | String methods replace, toLowerCase, toUpperCase, trim and
toCharArray. (Part 3 of 3.)

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

14.3.8 String Method valueOf

» Class String provides static valueOf methods that
take an argument of any type and convert it to a
String object.

» Class StringBuilder Is used to create and manipulate
dynamic string information.

» Every StringBui lder is capable of storing a
number of characters specified by Its capacity.

» If the capacity of a StringBui lder is exceeded, the
capacity expands to accommodate the additional
characters.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

I // Fig. 14.9: StringValueOf.java

2 // String valueOf methods.

3

4 public class StringValueOf

5 {

6 public static void main(String[] args)

7 {

8 char[] charArray = {'a', 'b"', 'c', 'd', 'e', '"f'};

9 boolean booleanValue = true;

10 char characterValue = '7';

11 int integerValue = 7;

12 Tong longValue = 10000000000L; // L suffix indicates long
13 float floatValue = 2.5f; // f indicates that 2.5 is a float
14 double doubleValue = 33.333; // no suffix, double is default
15 Object objectRef = "hello"; // assign string to an Object reference
16

17 System.out.printf(

18 "char array = %s%n", String.valueOf(charArray));

19 System.out.printf("part of char array = %s%n",
20 String.valueOf(charArray, 3, 3));
21 System.out.printf(
22 "boolean = %s%n", String.valueOf(booleanValue));
23 System.out.printf(
24 "char = %s%n", String.valueOf(characterValue));

Fig. 14.9 | StringvalueOf methods. (Part | of 2.)

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

25 System.out.printf("int = %s%n", String.valueOf(integerValue));

26 System.out.printf("long = %s%n", String.valueOf(longValue));
27 System.out.printf("float = %s%n", String.valueOf(floatValue));
28 System.out.printf(

29 "double = %s%n", String.valueOf(doubleValue));

30 System.out.printf("Object = %s", String.valueOf(objectRef));
31 }

32 } // end class StringValueOf

char array = abcdef
part of char array = def
boolean = true

char = 7

int = 7

Tong = 10000000000
float = 2.5

double = 33.333
Object = hello

Fig. 14.9 | StringvalueOf methods. (Part 2 of 2.)

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

14.4 Class StringBui lder

» We now discuss the features of class StringBui lder for
creating and manipulating dynamic string information—that
IS, modifiable strings.

» Every StringBu1i lder is capable of storing a number of
characters specified by it’s capacity.

» IfaStringBuilder s capacity is exceeded, the capacity
expands to accommodate additional characters.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

s53. Performance Tip 14.3

P2 Java can perform certain optimizations involving
String objects (such as referring to one String object
from multiple variables) because it knows these objects
will not change. Strings (not StringBuilders)
should be used if the data will not change.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

=5z Performance Tip 14.4
zZ2| In programs that frequently perform string concatena-

tion, or other string modifications, it’s often more effi-
cient to implement the modifications with class
StringBuilder.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

N Software Engineering Observation 14.1
._._,; StringBuilders are not thread safe. If multiple

threads require access to the same dynamic string
information, use class StringBuffer in your code.
Classes StringBuilder and StringBuffer provide
identical capabilities, but class StringBuffer is
thread safe. For more details on threading, see

Chapter 23.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

14.4.1 StringBul lder Constructors

» No-argument constructor creates a StringBui lder with
no characters in it and an initial capacity of 16 characters.

» Constructor that takes an integer argument creates a
StringBui lder with no characters in it and the initial
capacity specified by the integer argument.

» Constructor that takes a String argument creates a
StringBui lder containing the characters in the
String argument. The initial capacity is the number of
characters in the String argument plus 16.

» Method toString of class StringBui lder returns the
StringBuilder contents asa String.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

1 // Fig. 14.10: StringBuilderConstructors.java

2 // StringBuilder constructors.

3

4 public class StringBuilderConstructors

5 {

6 public static void main(String[] args)

7 {

8 StringBuilder bufferl = new StringBuilder();

9 StringBuilder buffer2 = new StringBuilder(10);

10 StringBuilder buffer3 = new StringBuilder("hello”);
11

12 System.out.printf("bufferl = \"%s\"%n", bufferl);
13 System.out.printf("buffer2 = \"%s\"%n", bufferl);
14 System.out.printf("buffer3 = \"%s\"%n", buffer3);
15 }

16 } // end class StringBuilderConstructors

bufferl "
buffer2 e
buffer3 "hello"

Fig. 14.10 | StringBuilder constructors.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

14.4.2 StringBui lder Methods 1ength,
capacity, setLength and ensureCapacity

» Methods length and capacity return the number of
characters currently ina StringBui lder and the
number of characters that can be stored in a without
allocating more memory, respectively.

» Method ensureCapacity guarantees that a
StringBui lder has at least the specified capacity.

» Method setLength increases or decreases the length of a
StringBui lder.

= |f the specified length is less than the current number of characters,
the buffer is truncated to the specified length.

= |If the specified length is greater than the number of characters, nul 1
characters are appended until the total number of characters in the
StringBui lder is equal to the specified length.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

I // Fig. 14.11: StringBuilderCaplLen.java

2 // StringBuilder Tength, setlLength, capacity and ensureCapacity methods.
3

4 public class StringBuilderCaplLen

5 {

6 public static void main(String[] args)

7 {

8 StringBuilder buffer = new StringBuilder("Hello, how are you?");
9
10 System.out.printf("buffer = %s¥%nlength = %d%ncapacity = %d%n%n",
11 buffer.toString(), buffer.length(), buffer.capacity());
12
13 buffer.ensureCapacity(75);
14 System.out.printf("New capacity = %d%n%n", buffer.capacity());
15
16 buffer.setLength(10));
17 System.out.printf("New length = %d%nbuffer = %s%n",
18 buffer.length(), buffer.toString());
19 }

20 } // end class StringBuilderCaplLen

Fig. 14.11 | StringBuilder length, setlLength, capacity and
ensureCapacity methods. (Part | of 2.)

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

buffer = Hello, how are you?
Tength = 19
capacity = 35

New capacity = 75

New length = 10
buffer = Hello, how

Fig. 14.11 | StringBuilder Tength, setLength, capacity and
ensureCapacity methods. (Part 2 of 2.)

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

s53. Performance Tip 14.5

22" Dynamically increasing the capacity of a String-
Builder can take a relatively long time. Executing a
large number of these operations can degrade the perfor-
mance of an application. If a StringBuilder is going
to increase greatly in size, possibly multiple times, setting
its capacity high at the beginning will increase perfor-
mance.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

14.4.3 StringBu1ilder Methods charAt,
setCharAt, getChars and reverse

» Method charAt takes an integer argument and returns the
character in the StringBui lder at that index.

» Method getChars copies characters from a
StringBui lder into the character array argument.

= Four arguments—the starting index from which characters should be
copied, the index one past the last character to be copied, the
character array into which the characters are to be copied and the
starting location in the character array where the first character
should be placed.
» Method setCharAt takes an integer and a character
argument and sets the character at the specified position in

the StringBui lder to the character argument.

» Method reverse reverses the contents of the
StringBui lder.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

I // Fig. 14.12: StringBuilderChars.java

2 // StringBuilder methods charAt, setCharAt, getChars and reverse.
3

4 public class StringBuilderChars

5 {

6 public static void main(String[] args)

7 {

8 StringBuilder buffer = new StringBuilder("hello there");

9

10 System.out.printf("buffer = %s%n", buffer.toString());

11 System.out.printf("Character at 0: %s%nCharacter at 4: %s¥%n%n",
12 buffer.charAt(0), buffer.charAt(4));

13

14 char[] charArray = new char[buffer.length(Q];

15 buffer.getChars(0, buffer.length(), charArray, 0);

16 System.out.print("The characters are: ");

17

18 for (char character : charArray)

19 System.out.print(character);
20

Fig. 14.12 | StringBuilder methods charAt, setCharAt, getChars and
reverse. (Part | of 2.)

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

21 buffer.setCharAt(0, 'H');

22 buffer.setCharAt(6, 'T');

23 System.out.printf("%n%nbuffer = %s", buffer.toString();
24

25 buffer.reverse(Q);

26 System.out.printf("%n%nbuffer = %s%n", buffer.toString());
27 }

28 } // end class StringBuilderChars

buffer = hello there
Character at 0: h
Character at 4: o

The characters are: hello there

buffer Hello There

buffer erehT olleH

Fig. 14.12 | StringBuilder methods charAt, setCharAt, getChars and
reverse. (Part 2 of 2.)

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

14.4.4 StringBuil lder append Methods

» Overloaded append methods allow values of various

types to be appended to the end of a
StringBuilder.

» Versions are provided for each of the primitive types
and for character arrays, Strings, Objects, and

maore.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

14.4.4 StringBui lder append Methods
(cont.)

» The compiler can use StringBui lder and the
append methods to implement the + and += String
concatenation operators.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

1 // Fig. 14.13: StringBuilderAppend.java

2 // StringBuilder append methods.

3

4 public class StringBuilderAppend

5 {

6 public static void main(String[] args)

7 {

8 Object objectRef = "hello";

9 String string = "goodbye";

10 char[] charArray = {'a', 'b", 'c', 'd"', Te', "f'};
11 boolean booleanValue = true;

12 char characterValue = '7';

13 int integerValue = 7;

14 Tong longValue = 10000000000L;

15 float floatValue = 2.5f;

16 double doubleValue = 33.333;

17

I8 StringBuilder TastBuffer = new StringBuilder("last buffer™);
19 StringBuilder buffer = new StringBuilder();
20

Fig. 14.13 | StringBuilder append methods. (Part | of 3.)

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

21 buffer.append(objectRef)

22 .append("%n")
23 .append(string)
24 .append("%n"™)
25 .append(charArray)
26 .append("%n")
27 .append(charArray, 0, 3)
28 .append("%n")
29 .append(booleanValue)
30 .append("%n")
31 .append(characterValue);
32 .append("%n")
33 .append(integerValue)
34 .append("%n")
35 .append(longValue)
36 .append("%n")
37 .append(floatValue)
38 .append("%n")
39 .append(doubleValue)
40 .append("%n")
41 .append(lastBuffer);
— 42
43 System.out.printf("buffer contains¥%n%s%n", buffer.toString());
44 }

45 1} // end StringBuilderAppend

14.13 | StringBuilder append methods. (Part 2 of 3.)

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

buffer contains
hello
goodbye
abcdef

abc

true

Z

7
10000000000
2.5

33.333

Tast buffer

Fig. 14.13 | StringBuilder append methods. (Part 3 of 3.)

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

14.4.5 StringBui lder Insertion and

» Overloaded insert methods insert values of various types at

any position ina StringBuilder.

= \ersions are provided for the primitive types and for character
arrays, Strings, Objects and CharSequences.

= Each method takes its second argument, converts it to a String and
Inserts it at the index specified by the first argument.

» Methods delete and deleteCharAt delete characters at any
position ina StringBui lder.

» Method de1ete takes two arguments—the starting index
and the index one past the end of the characters to delete.

» Method deleteCharAt takes one argument—the index
of the character to delete.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

1 // Fig. 14.14: StringBuilderInsertDelete.java

2 // StringBuilder methods insert, delete and deleteCharAt.
3

4 public class StringBuilderInsertDelete

5 {

6 public static void main(String[] args)

7 {

8 Object objectRef = "hello";

9 String string = "goodbye";

10 char[] charArray = {'a', 'b", 'c', 'd"', Te', "f'};
11 boolean booleanValue = true;

12 char characterValue = "K';

13 int integerValue = 7;

14 Tong longValue = 10000000;

15 float floatValue = 2.5f; // f suffix indicates that 2.5 is a float
16 double doubleValue = 33.333;

17

Fig. 14.14 | StringBuilder methods insert, delete and deleteCharAt. (Part
| of 3.)

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39

StringBuilder buffer = new StringBuilder();

buffer
buffer
buffer
buffer
buffer
buffer
buffer
buffer
buffer
buffer
buffer
buffer
buffer
buffer
buffer
buffer
buffer
buffer
buffer

.insert(0,
.insert(0,
.insert(0,
.insert(0,
.insert(0,
.insert(0,
.insert(0,
.insert(0,
.insert(0,
.insert(0,
.insert(0,
.insert(0,
.insert(0,
.insert(0,
.insert(0,

.insert(0, "

.insert(0,
.insert(0,
.insert(0,

objectRef);
string);
" ”);

charArray);

R I

charArray, 3, 3);
" ll);
booleanValue) ;

¥

characterValue);

¥

integerValue);

LA ”);
TongValue);
")
floatValue);

" ”);
doubleValue);

"); // each of these contains two spaces

Fig. 14.14 | StringBuilder methods insert, delete and deleteCharAt. (Part
20f3.)

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

40 System.out.printf(

41 "buffer after inserts:%n%s%n%n", buffer.toString());
42

43 buffer.deleteCharAt(10); // delete 5 in 2.5

44 buffer.delete(2, 6); // delete .333 in 33.333

45

46 System.out.printf(

47 "buffer after deletes:%n%s%n", buffer.toString());
48 }

49 } // end class StringBuilderInsertDelete

buffer after inserts:
33.333 2.5 10000000 7 K true def abcdef goodbye hello

buffer after deletes:
33 2. 10000000 7 K +true def abcdef goodbye hello

Fig. 14.14 | StringBuilder methods insert, delete and deleteCharAt. (Part
30of3.)

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

14.5 Class Character

» Elght type-wrapper classes that enable primitive-type
values to be treated as objects:

= Boolean, Character,Double, Float, Byte, Short,
Integer and Long

» Most Character methods are static methods

designed for convenience in processing individual
char values.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

14.5 Class Character (cont.)

» Method isDefined determines whether a character iIs defined
In the Unicode character set.

» Method isDigit determines whether a character is a defined
Unicode digit.

» Method isJavaldentifierStart determines whether a character
can be the first character of an identifier in Java—that 1s, a
letter, an underscore (_) or a dollar sign ($).

» Method isJavaldentifierPart determine whether a character
can be used in an identifier in Java—that is, a digit, a letter,
an underscore (_) or a dollar sign ($).

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

I // Fig. 14.15: StaticCharMethods.java

2 // Character static methods for testing characters and converting case.
3 import java.util.Scanner;

4

5 public class StaticCharMethods

6 {

7 public static void main(String[] args)

8 {

9 Scanner scanner = new Scanner(System.in); // create scanner
10 System.out.println("Enter a character and press Enter");
11 String input = scanner.next();
12 char ¢ = input.charAt(0); // get input character

13

14 // display character 1info

15 System.out.printf("is defined: %b%n", Character.isDefined(c));
16 System.out.printf("is digit: %b%n", Character.isDigit(c));

17 System.out.printf("is first character in a Java identifier: %b¥%n",
18 Character.isJavaldentifierStart(c));

19 System.out.printf("is part of a Java identifier: %b%n",
20 Character.isJavaldentifierPart(c));
21 System.out.printf("is letter: %b%n", Character.isLetter(c));
22 System.out.printf(
23 "is letter or digit: %b%n", Character.isLetterOrDigit(c));

Fig. 14.15 | Character static methods for testing characters and converting
case. (Part | of 5.)

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

24 System.out.printf(

25 "is lower case: %b%n", Character.isLowerCase(c));
26 System.out.printf(

27 "is upper case: %b%n", Character.isUpperCase(c));
28 System.out.printf(

29 "to upper case: %s%n", Character.toUpperCase(c));
30 System.out.printf(

31 "to lower case: %s%n", Character.tolLowerCase(c));
32 }

33 1} // end class StaticCharMethods

Fig. 14.15 | Character static methods for testing characters and converting
case. (Part 2 of 5.)

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

Enter a character and press Enter
A

is defined: true

is digit: false

is first character in a Java identifier: true
is part of a Java identifier: true
is letter: true

is letter or digit: true

is lower case: false

is upper case: true

to upper case: A

to lower case: a

Fig. 14.15 | Character static methods for testing characters and converting
case. (Part 3 of 5.)

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

Enter a character and press Enter
8

is defined: true

is digit: true

is first character in a Java identifier: false
is part of a Java identifier: true
is letter: false

is letter or digit: true

is lower case: false

is upper case: false

to upper case: 8

to Tower case: 8

Fig. 14.15 | Character static methods for testing characters and converting
case. (Part 4 of 5.)

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

Enter a character and press Enter
$

is defined: true

is digit: false

is first character in a Java identifier: true
is part of a Java identifier: true
is letter: false

is letter or digit: false

is lower case: false

is upper case: false

to upper case: $

to lower case: §

Fig. 14.15 | Character static methods for testing characters and converting
case. (Part 5 of 5.)

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

14.5 Class Character (cont.)

» Method isLetter determines whether a character is a letter.

» Method isLetterOrDigit determines whether a character is a
letter or a digit.

» Method isLowerCase determines whether a character is a
lowercase letter.

» Method isUpperCase determines whether a character is an
uppercase letter.

» Method toUpperCase converts a character to its uppercase
equivalent.

» Method toLowerCase converts a character to its lowercase
equivalent.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

14.5 Class Character (cont.)

» Methods digit and forDigit convert characters to digits
and digits to characters, respectively, in different
number systems.

» Common number systems: decimal (base 10), octal
(base 8), hexadecimal (base 16) and binary (base 2).

» The base of a number is also known as its radix.

» For more information on conversions between number
systems, see Appendix I.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

14.5 Class Character (cont.)

» Character method forbDigit converts its first
argument into a character in the number system
specified by its second argument.

» Character method dig1it converts its first
argument into an integer in the number system

specified by its second argument.

= The radix (second argument) must be between 2 and 36,
Inclusive.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

1 // Fig. 14.16: StaticCharMethods2.java

2 // Character class static conversion methods.

3 dimport java.util.Scanner;

4

5 public class StaticCharMethods2

6 {

7 // executes application

8 public static void main(String[] args)

9 {

10 Scanner scanner = new Scanner(System.in);

11

12 // get radix

13 System.out.println("Please enter a radix:");

14 int radix = scanner.nextInt();

I5

16 // get user choice

17 System.out.printf("Please choose one:%nl -- %s%nZ2 —-- %s¥%n",
I8 "Convert digit to character", "Convert character to digit");
19 int choice = scanner.nextInt();
20

Fig. 14.16 | Character class static conversion methods. (Part | of 3.)

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

21 // process request

22 switch (choice)

23 {

24 case 1: // convert digit to character

25 System.out.println("Enter a digit:");

26 int digit = scanner.nextInt();

27 System.out.printf("Convert digit to character: %s%n",
28 Character.forDigit(digit, radix));

29 break;

30

31 case 2: // convert character to digit

32 System.out.println("Enter a character:");

33 char character = scanner.next().charAt(0);

34 System.out.printf("Convert character to digit: %s%n",
35 Character.digit(character, radix));

36 break;

37 }

38 }

390 } // end class StaticCharMethods?2

Fig. 14.16 | Character class static conversion methods. (Part 2 of 3.)

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

Please enter a radix:

16

Please choose one:

1 -- Convert digit to character
2 -- Convert character to digit
2

Enter a character:

A

Convert character to digit: 10

Please enter a radix:

16

Please choose one:

1 -- Convert digit to character
2 -- Convert character to digit
1

Enter a digit:

13

Convert digit to character: d

Fig. 14.16 | Character class static conversion methods. (Part 3 of 3.)

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

14.5 Class Character (cont.)

» Java automatically converts char literals into
Character objects when they are assigned to
Character variables
= Process known as autoboxing.

» Method charvalue returns the char value stored in

the object.

» Method toString returns the String
representation of the char value stored in the object.

» Method equals determines if two Characters
have the same contents.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

1 // Fig. 14.17: OtherCharMethods.java
2 // Character class instance methods.
3 public class OtherCharMethods

4 {

5 public static void main(Stringl[]
6 {

7 Character cl = 'A’;

8 Character c2 = 'a';

9

10 System.out.printf(

11 "cl = %sknc2 = %sknkn", cl.
12

13 if (cl.equals(c2))

14 System.out.println("cl and
15 else

16 System.out.println("cl and
17 }

I8 } // end class OtherCharMethods

args)

charValue(), c2.toString());

c2 are equal¥n");

c2 are not equal%n");

cl = A
c2 = a

cl and c2 are not equal

Fig. 14.17 | Character class instance methods.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

14.6 Tokenizing Strings

» When you read a sentence, your mind breaks it into
tokens—individual words and punctuation marks that
convey meaning.

» Compilers also perform tokenization.

» String method split breaks a String into its
component tokens and returns an array of Strings.

» Tokens are separated by delimiters

= Typically white-space characters such as space, tab, newline
and carriage return.

= Other characters can also be used as delimiters to separate
tokens.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

I // Fig. 14.18: TokenTest.java

2 // StringTokenizer object used to tokenize strings.
3 import java.util.Scanner;

4 import java.util.StringTokenizer;

5

6 public class TokenTest

7

8 // execute application

9 public static void main(String[] args)

10 {

11 // get sentence

12 Scanner scanner = new Scanner(System.in);

13 System.out.println("Enter a sentence and press Enter');
14 String sentence = scanner.nextLine();

15

16 // process user sentence

17 String[] tokens = sentence.split(" ");

18 System.out.printf("Number of elements: %d%nThe tokens are:%n",
19 tokens.length);
20
21 for (String token : tokens)
22 System.out.printin(token);
23 }

24 } // end class TokenTest

Fig. 14.18 | StringTokenizer object used to tokenize strings. (Part 1 of 2.)

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

Enter a sentence and press Enter
This is a sentence with seven tokens
Number of elements: 7

The tokens are:

This

is

a

sentence

with

seven

tokens

Fig. 14.18 | StringTokenizer object used to tokenize strings. (Part 2 of 2.)

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

14.7 Regular Expressions, Class
Pattern and Class Matcher

» Aregular expression is a specially formatted String
that describes a search pattern for matching characters
in other Strings.

» Useful for validating input and ensuring that data is in a
particular format.

» One application of regular expressions Is to facilitate
the construction of a compiler.

= Often, a large and complex regular expression is used to
validate the syntax of a program.

= If the program code does not match the regular expression, the
compiler knows that there is a syntax error within the code.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

14.7 Regular Expressions, Class
Pattern and Class Matcher (cont.)

» String method matches receives a String that
specifies the regular expression and matches the

contents of the String object on which it’s called to

the regular expression.
= The method returns a boo 1 ean indicating whether the match

succeeded.
» Aregular expression consists of literal characters and

special symbols.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

14.7 Regular Expressions, Class
Pattern and Class Matcher (cont.)

>

>

Figure 14.19 specifies some predefined character classes that can be
used with regular expressions.

A character class Is an escape sequence that represents a group of
characters.

A digit is any numeric character.

A word character is any letter (uppercase or lowercase), any digit or the
underscore character.

A white-space character is a space, a tab, a carriage return, a newline or
a form feed.

Each character class matches a single character in the String we’re
attempting to match with the regular expression.

Regular expressions are not limited to predefined character classes.

The expressions employ various operators and other forms of notation
to match complex patterns.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

14.7 Regular Expressions, Class
Pattern and Class Matcher (cont.)

» To match a set of characters that does not have a predefined
character class, use square brackets, [].

= The pattern " [ae1ou] " matches a single character that’s a vowel.
» Character ranges are represented by placing a dash (-)

between two characters.

= "TA-Z]" matches a single uppercase letter.

» If the first character in the brackets is "A", the expression
accepts any character other than those indicated.

= "[AZ]" is not the same as " [A-Y]", which matches uppercase
letters A-Y—""[AZ]" matches any character other than capital Z,

including lowercase letters and nonletters such as the newline
character.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

Character Matches Character Matches

\d any digit \D any nondigit

\w any word character \W any nonword charac-
ter

\s any white-space character ~ \S any non-whitespace
character

Fig. 14.19 | Predefined character classes.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

I // Fig. 14.20: ValidateInput.java

2 // Validating user information using regular expressions.
3

4 public class ValidatelInput

5 {

6 // validate first name

7 public static boolean validateFirstName(String firstName)
8 {

9 return firstName.matches("[A-7][a-zA-7Z]1%");
10 }
11
12 // validate last name

13 public static boolean validateLastName(String lastName)
14 {

15 return lastName.matches("[a-zA-z]+(['-]1[a-zA-Z]1+)*");
16 }

17

18 // validate address

19 public static boolean validateAddress(String address)
20 {
21 return address.matches(
22 "\\d+\\s+([a-zA-Z]+| [a-zA-Z]+\\s[a-zA-Z]+)");
23 }
24

Fig. 14.20 | Validating user information using regular expressions. (Part | of 2.)

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

25 // validate city

26 public static boolean validateCity(String city)

27 {

28 return city.matches("([a-zA-Z]+| [a-zA-Z]+\\s[a-zA-Z]+)");
29 }

30

31 // validate state

32 public static boolean validateState(String state)

33 {

34 return state.matches("([a-zA-Z]+| [a-zA-Z]+\\s[a-ZzA-Z]+)");
35 }

36

37 // validate zip

38 public static boolean validateZip(String zip)

39 {

40 return zip.matches("\\d{5}");

41 }

42

43 // validate phone

44 public static boolean validatePhone(String phone)

45 {

46 return phone.matches("[1-9]\\d{2}-[1-91\\d{2}-\\d{4}");
47 }

48 1} // end class ValidateInput

Fig. 14.20 | Validating user information using regular expressions. (Part 2 of 2.)

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

I // Fig. 14.21: Validate.java

2 // Input and validate data from user using the ValidateInput class.

3 import java.util.Scanner;

4

5 public class Validate

6 {

7 public static void main(String[] args)

8 {

9 // get user input

10 Scanner scanner = new Scanner(System.in);

11 System.out.println("Please enter first name:");
12 String firstName = scanner.nextLine();

13 System.out.println("Please enter last name:");
14 String lastName = scanner.nextlLine();

15 System.out.println("Please enter address:");

16 String address = scanner.nextLine();

17 System.out.println("Please enter city:");

18 String city = scanner.nextlLine();

19 System.out.println("Please enter state:");

20 String state = scanner.nextLine();

21 System.out.println("Please enter zip:");

22 String zip = scanner.nextLine();

23 System.out.println("Please enter phone:");

24 String phone = scanner.nextLine();
Fig. 14.21 | Input and validate data from user using the ValidateInput class.

of 4.)

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

25

26 // validate user input and display error message
27 System.out.println("%nValidate Result:");

28

29 if (!'Validatelnput.validateFirstName(firstName))
30 System.out.println("Invalid first name™);

31 else if (!ValidateInput.validateLastName(lastName))
32 System.out.printin("Invalid last name");

33 else if (!ValidateInput.validateAddress(address))
34 System.out.printin("Invalid address™);

35 else if (!ValidateInput.validateCity(city))

36 System.out.printin("Invalid city"”),;

37 else if (!ValidateInput.validateState(state))

38 System.out.printin("Invalid state");

39 else if (!ValidateInput.validateZip(zip))

40 System.out.printin("Invalid zip code");

41 else if (!Validatelnput.validatePhone(phone))

42 System.out.printin("Invalid phone number™);

43 else

44 System.out.printin("Valid input. Thank you.");
45 }

46 1} // end class Validate

Fig. 14.21 | Input and validate data from user using the ValidateInput class.
(Part 2 of 4.)

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

Please enter first name:
Jane

Please enter last name:
Doe

Please enter address:
123 Some Street

Please enter city:

Some City

Please enter state:

SS

Please enter zip:

123

Please enter phone:
123-456-7890

Validate Result:
Invalid zip code

Fig. 14.21 | Input and validate data from user using the validateInput class.
(Part 3 of 4.)

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

Please enter first name:
Jane

Please enter last name:
Doe

Please enter address:
123 Some Street

Please enter city:

Some City

Please enter state:

SS

Please enter zip:

12345

Please enter phone:
123-456-7890

Validate Result:
Valid input. Thank you.

Fig. 14.21 | Input and validate data from user using the ValidateInput class.
(Part 4 of 4.)

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

14.7 Regular Expressions, Class
Pattern and Class Matcher (cont.)

» Ranges In character classes are determined by the
letters’ integer values.
= "[A-Za-z]" matches all uppercase and lowercase letters.
» Therange " [A-z]" matches all letters and also
matches those characters (such as [and \) with an
Integer value between uppercase Z and lowercase a.

» Like predefined character classes, character classes
delimited by square brackets match a single character
In the search object.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

14.7 Regular Expressions, Class
Pattern and Class Matcher (cont.)

» When the regular-expression operator "' *" appears in a
regular expression, the application attempts to match zero
or more occurrences of the subexpression immediately
preceding the " *".

» Operator "+"" attempts to match one or more occurrences
of the subexpression immediately preceding "'+".

» The character "' | " matches the expression to its left or to
Its right.
= "H1 (John|Jane)" matches both "H1 John" and "H1 Jane".

» Parentheses are used to group parts of the regular
expression.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

14.7 Regular Expressions, Class
Pattern and Class Matcher (cont.)

» The asterisk (*) and plus (+) are formally called quantifiers.
» Figure 14.22 lists all the quantifiers.

» A guantifier affects only the subexpression immediately
preceding the quantifier.

» Quantifier question mark (?) matches zero or one
occurrences of the expression that it quantifies.

» A set of braces containing one number ({n_#*) matches
exactly n occurrences of the expression it quantifies.

» Including a comma after the number enclosed In braces
matches at least n occurrences of the quantified expression.

» Aset of braces containing two numbers ({n, m_#), matches
between n and m occurrences of the expression that it
qualifies.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

14.7 Regular Expressions, Class
Pattern and Class Matcher (cont.)

» Quantifiers may be applied to patterns enclosed in
parentheses to create more complex regular expressions.

» All of the quantifiers are greedy.

= They match as many occurrences as they can as long as the match is
still successful.

» If a quantifier is followed by a question mark (?), the
quantifier becomes reluctant (sometimes called lazy).

= |t will match as few occurrences as possible as long as the match is
still successful.

» String Method matches checks whether an entire
String conforms to a regular expression.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

E Matches zero or more occurrences of the pattern.

+ Matches one or more occurrences of the pattern.
? Matches zero or one occurrences of the pattern.
{n} Matches exactly # occurrences.

{n,} Matches at least # occurrences.

{n,m} Matches between 7 and #z (inclusive) occurrences.

Fig. 14.22 | Quantifiers used in regular expressions.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

14.7 Regular Expressions, Class
Pattern and Class Matcher (cont.)

» Sometimes 1t’s useful to replace parts of a string or to
split a string into pieces. For this purpose, class

String provides methods replaceAll, replaceFirst and
split.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

14.7 Regular Expressions, Class
Pattern and Class Matcher (cont.)

» String method replaceAll replaces text in a
String with new text (the second argument)
wherever the original String matches a regular
expression (the first argument).

» Escaping a special regular-expression character with \
Instructs the matching engine to find the actual
character.

» String method replaceFirst replaces the first
occurrence of a pattern match.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

I // Fig. 14.23: RegexSubstitution.java

2 // String methods replaceFirst, replaceAll and split.

3 dimport java.util.Arrays;

4

5 public class RegexSubstitution

6 {

7 public static void main(String[] args)

8 {

9 String firstString = "This sentence ends in 5 stars #*###*=";
10 String secondString = "1, 2, 3, 4, 5, 6, 7, 8";
11
12 System.out.printf("Original String 1: %s%n", firstString);
13

14 // replace "*' with 'A'

15 firstString = firstString.replaceATT1("*", "A");

16

17 System.out.printf("A substituted for *: %s%n", firstString);
18

19 // replace 'stars' with 'carets'
20 firstString = firstString.replaceAll("stars"”, "carets");
21
22 System.out.printf(
23 "\"carets\" substituted for \"stars\": %s%n", firstString);

Fig. 14.23 | String methods replaceFirst, replaceAll and split. (Part | of
3.)

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

24

25 // replace words with 'word'

26 System.out.printf("Every word replaced by \"word\": %s%n%n",

27 firstString.replaceAlT("\\w+", "word"));

28

29 System.out.printf("Original String 2: %s%n", secondString);

30

31 // replace first three digits with 'digit'

32 for (int i = 0; i < 3; i+4+)

33 secondString = secondString.replaceFirst("\\d", "digit");

34

35 System.out.printf(

36 "First 3 digits replaced by \"digit\" : %s%n", secondString);
37

38 System.out.print("String split at commas: ");

39 String[] results = secondString.split(",\\s*"); // split on commas
40 System.out.println(Arrays.toString(results));

41 }

42 1} // end class RegexSubstitution

Fig. 14.23 | String methods replaceFirst, replaceAll and split. (Part 2 of
3.)

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

Original String 1: This sentence ends in 5 stars #¥%#%%

A substituted for *: This sentence ends in 5 stars AAAAA

"carets" substituted for "stars": This sentence ends in 5 carets AAAAA
Every word replaced by "word": word word word word word word AAAAA

Original String 2: 1, 2, 3, 4, 5, 6, 7, 8
First 3 digits replaced by "digit" : digit, digit, digit, 4, 5, 6, 7, 8
String split at commas: ["digit", "digit", "digit", "4", "5", "e", "7",

"8"]

Fig. 14.23 | String methods replaceFirst, replaceAll and split. (Part 3 of
3.)

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

14.7 Regular Expressions, Class
Pattern and Class Matcher (cont.)

>

In addition to the regular-expression capabilities of class
String, Java provides other classes in package
java.util.regex that help developers manipulate regular
expressions.

Class Pattern represents a regular expression.

Class Matcher contains both a regular-expression pattern and a
CharSequence in which to search for the pattern.

CharSequence (package java. lang) is an interface that allows
read access to a sequence of characters.

The interface requires that the methods charAt, length,
subSequence and toString be declared.

Both String and StringBui lder implement interface
Charsequence, so an instance of either of these classes can be
used with class Matcher.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

14.7 Regular Expressions, Class
Pattern and Class Matcher (cont.)

» If a regular expression will be used only once, static
Pattern method matches can be used.

= Takes a String that specifies the regular expression and a
CharSequence on which to perform the match.

= Returns a boo 1 ean indicating whether the search object (the
second argument) matches the regular expression.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

Common Programming Error 14.2

A regular expression can be tested against an object of any
class that implements interface charsequence, but the regular
expression must be a sering. Attempting to create a regu-
lar expression as a scringsuilder is an error.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

14.7 Regular Expressions, Class
Pattern and Class Matcher (cont.)

» If a regular expression will be used more than once, 1t’s
more efficient to use static Pattern method compile
to create a specific Pattern object for that regular
expression.

= Receives a String representing the pattern and returns a new
Pattern object, which can then be used to call method matcher

= Method matcher receives a CharSequence to search and returns
a Matcher object.

» Matcher method matches performs the same task as
Pattern method matches, but receives no arguments—
the search pattern and search object are encapsulated in the
Matcher object.

» Class Matcher provides other methods, including find,
lookingAt, replaceFirst and replaceAll.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

I // Fig. 14.24: RegexMatches.java

2 // Classes Pattern and Matcher.

3 import java.util.regex.Matcher;

4 dimport java.util.regex.Pattern;

5

6 public class RegexMatches

7 {

8 public static void main(String[] args)

9 {

10 // create regular expression

11 Pattern expression =

12 Pattern.compile("J.*\\d[0-35-9]-\\d\\d-\\d\\d");
13

14 String stringl = "Jane's Birthday is 05-12-75\n" +
15 "Dave's Birthday is 11-04-68\n" +

16 "John's Birthday is 04-28-73\n" +

17 "Joe's Birthday 1is 12-17-77";

18

19 // match regular expression to string and print matches
20 Matcher matcher = expression.matcher(stringl);
21
22 while (matcher.find())
23 System.out.printin(matcher.group());
24 }

25 } // end class RegexMatches

14.24 | Classes Pattern and Matcher. (Part | of 2.)

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

Jane's Birthday 1is 05-12-75
Joe's Birthday is 12-17-77

Fig. 14.24 | Classes Pattern and Matcher. (Part 2 of 2.)

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

14.7 Regular Expressions, Class
Pattern and Class Matcher (cont.)

» The dot character "." In a regular expression matches
any single character except a newline character.

» Matcher method T1nd attempts to match a piece of
the search object to the search pattern.

= Each call to this method starts at the point where the last call
ended, so multiple matches can be found.

» Matcher method 1ook1ngAt performs the same
way, except that it always starts from the beginning of
the search object and will always find the first match if
there is one.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

Common Programming Error 14.3

Method matches (from class String, Pattern or
Matcher) will return true only if the entire search 0b-

ject matches the regular expression. Methods find and
lookingAt (from class Matcher) will return true if
a portion of the search object matches the regular expres-
sion.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

14.7 Regular Expressions, Class
Pattern and Class Matcher (cont.)

» Matcher method group returns the String from the
search object that matches the search pattern.

= The String that is returned is the one that was last matched
by a call to find or TookingAt.

» As you’ll see in Section 17.7, you can combine regular-
expression processing with Java SE 8 lambdas and
streams to implement powerful String-and-file
processing applications.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

	Slide 1: Chapter 14 Strings, Characters and Regular Expressions
	Slide 2
	Slide 3
	Slide 4: 14.1 Introduction
	Slide 5: 14.2 Fundamentals of Characters and Strings
	Slide 6
	Slide 7: 14.3 Class String
	Slide 8: 14.3.1 String Constructors
	Slide 9
	Slide 10
	Slide 11
	Slide 12: 14.3.2 String Methods length, charAt and getChars
	Slide 13
	Slide 14
	Slide 15: 14.3.3 Comparing Strings
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20: 14.3.3 Comparing Strings (cont.)
	Slide 21
	Slide 22: 14.3.3 Comparing Strings (cont.)
	Slide 23: 14.3.3 Comparing Strings (cont.)
	Slide 24: 14.3.3 Comparing Strings (cont.)
	Slide 25
	Slide 26
	Slide 27: 14.3.4 Locating Characters and Substrings in Strings
	Slide 28
	Slide 29
	Slide 30
	Slide 31: 14.3.4 Locating Characters and Substrings in Strings (cont.)
	Slide 32: 14.3.5 Extracting Substrings from Strings
	Slide 33
	Slide 34: 14.3.6 Concatenating Strings
	Slide 35
	Slide 36: 14.3.7 Miscellaneous String Methods
	Slide 37
	Slide 38
	Slide 39
	Slide 40: 14.3.8 String Method valueOf
	Slide 41
	Slide 42
	Slide 43: 14.4 Class StringBuilder
	Slide 44
	Slide 45
	Slide 46
	Slide 47: 14.4.1 StringBuilder Constructors
	Slide 48
	Slide 49: 14.4.2 StringBuilder Methods length, capacity, setLength and ensureCapacity
	Slide 50
	Slide 51
	Slide 52
	Slide 53: 14.4.3 StringBuilder Methods charAt, setCharAt, getChars and reverse
	Slide 54
	Slide 55
	Slide 56: 14.4.4 StringBuilder append Methods
	Slide 57: 14.4.4 StringBuilder append Methods (cont.)
	Slide 58
	Slide 59
	Slide 60
	Slide 61: 14.4.5 StringBuilder Insertion and Deletion Methods
	Slide 62
	Slide 63
	Slide 64
	Slide 65: 14.5 Class Character
	Slide 66: 14.5 Class Character (cont.)
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72: 14.5 Class Character (cont.)
	Slide 73: 14.5 Class Character (cont.)
	Slide 74: 14.5 Class Character (cont.)
	Slide 75
	Slide 76
	Slide 77
	Slide 78: 14.5 Class Character (cont.)
	Slide 79
	Slide 80: 14.6 Tokenizing Strings
	Slide 81
	Slide 82
	Slide 83: 14.7 Regular Expressions, Class Pattern and Class Matcher
	Slide 84: 14.7 Regular Expressions, Class Pattern and Class Matcher (cont.)
	Slide 85: 14.7 Regular Expressions, Class Pattern and Class Matcher (cont.)
	Slide 86: 14.7 Regular Expressions, Class Pattern and Class Matcher (cont.)
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91
	Slide 92
	Slide 93
	Slide 94: 14.7 Regular Expressions, Class Pattern and Class Matcher (cont.)
	Slide 95: 14.7 Regular Expressions, Class Pattern and Class Matcher (cont.)
	Slide 96: 14.7 Regular Expressions, Class Pattern and Class Matcher (cont.)
	Slide 97: 14.7 Regular Expressions, Class Pattern and Class Matcher (cont.)
	Slide 98
	Slide 99: 14.7 Regular Expressions, Class Pattern and Class Matcher (cont.)
	Slide 100: 14.7 Regular Expressions, Class Pattern and Class Matcher (cont.)
	Slide 101
	Slide 102
	Slide 103
	Slide 104: 14.7 Regular Expressions, Class Pattern and Class Matcher (cont.)
	Slide 105: 14.7 Regular Expressions, Class Pattern and Class Matcher (cont.)
	Slide 106
	Slide 107: 14.7 Regular Expressions, Class Pattern and Class Matcher (cont.)
	Slide 108
	Slide 109
	Slide 110: 14.7 Regular Expressions, Class Pattern and Class Matcher (cont.)
	Slide 111
	Slide 112: 14.7 Regular Expressions, Class Pattern and Class Matcher (cont.)

