
Java How to Program, 10/e

© Copyright 1992-2015 by Pearson Education, Inc. All Rights
Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

 This chapter discusses class String, class

StringBuilder and class Character from the

java.lang package.

 These classes provide the foundation for string and

character manipulation in Java.

 The chapter also discusses regular expressions that

provide applications with the capability to validate

input.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

 A program may contain character literals.

▪ An integer value represented as a character in single quotes.

▪ The value of a character literal is the integer value of the

character in the Unicode character set.

 String literals (stored in memory as String objects)

are written as a sequence of characters in double

quotation marks.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

 Class String is used to represent strings in Java.

 The next several subsections cover many of class

String’s capabilities.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

 No-argument constructor creates a String that

contains no characters (i.e., the empty string, which can

also be represented as "") and has a length of 0.

 Constructor that takes a String object copies the

argument into the new String.

 Constructor that takes a char array creates a String
containing a copy of the characters in the array.

 Constructor that takes a char array and two integers

creates a String containing the specified portion of

the array.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

 String method length determines the number of
characters in a string.

 String method charAt returns the character at a
specific position in the String.

 String method getChars copies the characters of a
String into a character array.
▪ The first argument is the starting index in the String from which

characters are to be copied.
▪ The second argument is the index that is one past the last character to

be copied from the String.
▪ The third argument is the character array into which the characters

are to be copied.
▪ The last argument is the starting index where the copied characters

are placed in the target character array.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

 Strings are compared using the numeric codes of the

characters in the strings.

 Figure 14.3 demonstrates String methods equals,

equalsIgnoreCase, compareTo and

regionMatches and using the equality operator ==
to compare String objects.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

 Method equals tests any two objects for equality

▪ The method returns true if the contents of the objects are equal,

and false otherwise.

▪ Uses a lexicographical comparison.

 When primitive-type values are compared with ==, the

result is true if both values are identical.

 When references are compared with ==, the result is true
if both references refer to the same object in memory.

 Java treats all string literal objects with the same contents as

one String object to which there can be many references.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

 String method equalsIgnoreCase ignores

whether the letters in each String are uppercase or

lowercase when performing the comparison.

 Method compareTo is declared in the Comparable
interface and implemented in the String class.

▪ Returns 0 if the Strings are equal, a negative number if the

String that invokes compareTo is less than the String
that is passed as an argument and a positive number if the

String that invokes compareTo is greater than the

String that is passed as an argument.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

 Method regionMatches compares portions of two

Strings for equality.

▪ The first argument to this version of the method is the starting index

in the String that invokes the method.

▪ The second argument is a comparison String.

▪ The third argument is the starting index in the comparison String.

▪ The last argument is the number of characters to compare.

 Five-argument version of method regionMatches:

▪ When the first argument is true, the method ignores the case of the

characters being compared.

▪ The remaining arguments are identical to those described for the

four-argument regionMatches method.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

 String methods startsWith and endsWith determine

whether strings start with or end with a particular set of

characters

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

 Figure 14.5 demonstrates the many versions of

String methods indexOf and lastIndexOf that search

for a specified character or substring in a String.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

 Method indexOf locates the first occurrence of a character in a
String. If the method finds the character, it returns the
character’s index in the String—otherwise, it returns –1.

 A second version of indexOf takes two integer arguments—the
character and the starting index at which the search of the
String should begin.

 Method lastIndexOf locates the last occurrence of a
character in a String. The method searches from the end of the
String toward the beginning. If it finds the character, it returns
the character’s index in the String—otherwise, it returns –1.

 A second version of lastIndexOf takes two integer
arguments—the integer representation of the character and the
index from which to begin searching backward.

 There are also versions of these methods that search for
substrings in Strings.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

 Class String provides two substring methods to
enable a new String object to be created by copying
part of an existing String object. Each method
returns a new String object.

 The version that takes one integer argument specifies
the starting index in the original String from which
characters are to be copied.

 The version that takes two integer arguments receives
the starting index from which to copy characters in the
original String and the index one beyond the last
character to copy.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

 String method concat concatenates two String
objects (similar to using the + operator) and returns a

new String object containing the characters from

both original Strings.

 The original Strings to which s1 and s2 refer are

not modified.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

 Method replace returns a new String object in which every
occurrence of the first char argument is replaced with the
second.
▪ An overloaded version enables you to replace substrings rather than

individual characters.

 Method toUpperCase generates a new String with uppercase
letters.

 Method toLowerCase returns a new String object with
lowercase letters.

 Method trim generates a new String object that removes all
whitespace characters that appear at the beginning or end of the
String on which trim operates.

 Method toCharArray creates a new character array containing a
copy of the characters in the String.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

 Class String provides static valueOf methods that

take an argument of any type and convert it to a

String object.

 Class StringBuilder is used to create and manipulate

dynamic string information.

 Every StringBuilder is capable of storing a

number of characters specified by its capacity.

 If the capacity of a StringBuilder is exceeded, the

capacity expands to accommodate the additional

characters.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

 We now discuss the features of class StringBuilder for

creating and manipulating dynamic string information—that

is, modifiable strings.

 Every StringBuilder is capable of storing a number of

characters specified by it’s capacity.

 If a StringBuilder‘s capacity is exceeded, the capacity

expands to accommodate additional characters.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

 No-argument constructor creates a StringBuilder with

no characters in it and an initial capacity of 16 characters.

 Constructor that takes an integer argument creates a

StringBuilder with no characters in it and the initial

capacity specified by the integer argument.

 Constructor that takes a String argument creates a

StringBuilder containing the characters in the

String argument. The initial capacity is the number of

characters in the String argument plus 16.

 Method toString of class StringBuilder returns the

StringBuilder contents as a String.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

 Methods length and capacity return the number of
characters currently in a StringBuilder and the
number of characters that can be stored in a without
allocating more memory, respectively.

 Method ensureCapacity guarantees that a
StringBuilder has at least the specified capacity.

 Method setLength increases or decreases the length of a
StringBuilder.
▪ If the specified length is less than the current number of characters,

the buffer is truncated to the specified length.

▪ If the specified length is greater than the number of characters, null
characters are appended until the total number of characters in the
StringBuilder is equal to the specified length.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

 Method charAt takes an integer argument and returns the
character in the StringBuilder at that index.

 Method getChars copies characters from a
StringBuilder into the character array argument.
▪ Four arguments—the starting index from which characters should be

copied, the index one past the last character to be copied, the
character array into which the characters are to be copied and the
starting location in the character array where the first character
should be placed.

 Method setCharAt takes an integer and a character
argument and sets the character at the specified position in
the StringBuilder to the character argument.

 Method reverse reverses the contents of the
StringBuilder.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

 Overloaded append methods allow values of various

types to be appended to the end of a

StringBuilder.

 Versions are provided for each of the primitive types

and for character arrays, Strings, Objects, and

more.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

 The compiler can use StringBuilder and the

append methods to implement the + and += String
concatenation operators.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

 Overloaded insert methods insert values of various types at
any position in a StringBuilder.
▪ Versions are provided for the primitive types and for character

arrays, Strings, Objects and CharSequences.

▪ Each method takes its second argument, converts it to a String and
inserts it at the index specified by the first argument.

 Methods delete and deleteCharAt delete characters at any
position in a StringBuilder.

 Method delete takes two arguments—the starting index
and the index one past the end of the characters to delete.

 Method deleteCharAt takes one argument—the index
of the character to delete.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

 Eight type-wrapper classes that enable primitive-type

values to be treated as objects:

▪ Boolean, Character, Double, Float, Byte, Short,

Integer and Long

 Most Character methods are static methods

designed for convenience in processing individual

char values.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

 Method isDefined determines whether a character is defined

in the Unicode character set.

 Method isDigit determines whether a character is a defined

Unicode digit.

 Method isJavaIdentifierStart determines whether a character

can be the first character of an identifier in Java—that is, a

letter, an underscore (_) or a dollar sign ($).

 Method isJavaIdentifierPart determine whether a character

can be used in an identifier in Java—that is, a digit, a letter,

an underscore (_) or a dollar sign ($).

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

 Method isLetter determines whether a character is a letter.

 Method isLetterOrDigit determines whether a character is a
letter or a digit.

 Method isLowerCase determines whether a character is a
lowercase letter.

 Method isUpperCase determines whether a character is an
uppercase letter.

 Method toUpperCase converts a character to its uppercase
equivalent.

 Method toLowerCase converts a character to its lowercase
equivalent.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

 Methods digit and forDigit convert characters to digits

and digits to characters, respectively, in different

number systems.

 Common number systems: decimal (base 10), octal

(base 8), hexadecimal (base 16) and binary (base 2).

 The base of a number is also known as its radix.

 For more information on conversions between number

systems, see Appendix I.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

 Character method forDigit converts its first

argument into a character in the number system

specified by its second argument.

 Character method digit converts its first

argument into an integer in the number system

specified by its second argument.

▪ The radix (second argument) must be between 2 and 36,

inclusive.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

 Java automatically converts char literals into

Character objects when they are assigned to

Character variables

▪ Process known as autoboxing.

 Method charValue returns the char value stored in

the object.

 Method toString returns the String
representation of the char value stored in the object.

 Method equals determines if two Characters

have the same contents.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

 When you read a sentence, your mind breaks it into
tokens—individual words and punctuation marks that
convey meaning.

 Compilers also perform tokenization.

 String method split breaks a String into its
component tokens and returns an array of Strings.

 Tokens are separated by delimiters
▪ Typically white-space characters such as space, tab, newline

and carriage return.

▪ Other characters can also be used as delimiters to separate
tokens.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

 A regular expression is a specially formatted String
that describes a search pattern for matching characters
in other Strings.

 Useful for validating input and ensuring that data is in a
particular format.

 One application of regular expressions is to facilitate
the construction of a compiler.
▪ Often, a large and complex regular expression is used to

validate the syntax of a program.

▪ If the program code does not match the regular expression, the
compiler knows that there is a syntax error within the code.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

 String method matches receives a String that

specifies the regular expression and matches the

contents of the String object on which it’s called to

the regular expression.

▪ The method returns a boolean indicating whether the match

succeeded.

 A regular expression consists of literal characters and

special symbols.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

 Figure 14.19 specifies some predefined character classes that can be
used with regular expressions.

 A character class is an escape sequence that represents a group of
characters.

 A digit is any numeric character.

 A word character is any letter (uppercase or lowercase), any digit or the
underscore character.

 A white-space character is a space, a tab, a carriage return, a newline or
a form feed.

 Each character class matches a single character in the String we’re
attempting to match with the regular expression.

 Regular expressions are not limited to predefined character classes.

 The expressions employ various operators and other forms of notation
to match complex patterns.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

 To match a set of characters that does not have a predefined

character class, use square brackets, [].

▪ The pattern "[aeiou]" matches a single character that’s a vowel.

 Character ranges are represented by placing a dash (-)

between two characters.

▪ "[A-Z]" matches a single uppercase letter.

 If the first character in the brackets is "^", the expression

accepts any character other than those indicated.

▪ "[^Z]" is not the same as "[A-Y]", which matches uppercase

letters A–Y—"[^Z]" matches any character other than capital Z,

including lowercase letters and nonletters such as the newline

character.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

 Ranges in character classes are determined by the

letters’ integer values.

▪ "[A-Za-z]" matches all uppercase and lowercase letters.

 The range "[A-z]" matches all letters and also

matches those characters (such as [and \) with an

integer value between uppercase Z and lowercase a.

 Like predefined character classes, character classes

delimited by square brackets match a single character

in the search object.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

 When the regular-expression operator "*" appears in a

regular expression, the application attempts to match zero

or more occurrences of the subexpression immediately

preceding the "*".

 Operator "+" attempts to match one or more occurrences

of the subexpression immediately preceding "+".

 The character "|" matches the expression to its left or to

its right.

▪ "Hi (John|Jane)" matches both "Hi John" and "Hi Jane".

 Parentheses are used to group parts of the regular

expression.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

 The asterisk (*) and plus (+) are formally called quantifiers.
 Figure 14.22 lists all the quantifiers.
 A quantifier affects only the subexpression immediately

preceding the quantifier.
 Quantifier question mark (?) matches zero or one

occurrences of the expression that it quantifies.
 A set of braces containing one number ({n}) matches

exactly n occurrences of the expression it quantifies.
 Including a comma after the number enclosed in braces

matches at least n occurrences of the quantified expression.
 A set of braces containing two numbers ({n,m}), matches

between n and m occurrences of the expression that it
qualifies.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

 Quantifiers may be applied to patterns enclosed in

parentheses to create more complex regular expressions.

 All of the quantifiers are greedy.

▪ They match as many occurrences as they can as long as the match is

still successful.

 If a quantifier is followed by a question mark (?), the

quantifier becomes reluctant (sometimes called lazy).

▪ It will match as few occurrences as possible as long as the match is

still successful.

 String Method matches checks whether an entire

String conforms to a regular expression.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

 Sometimes it’s useful to replace parts of a string or to

split a string into pieces. For this purpose, class

String provides methods replaceAll, replaceFirst and

split.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

 String method replaceAll replaces text in a

String with new text (the second argument)

wherever the original String matches a regular

expression (the first argument).

 Escaping a special regular-expression character with \
instructs the matching engine to find the actual

character.

 String method replaceFirst replaces the first

occurrence of a pattern match.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

 In addition to the regular-expression capabilities of class
String, Java provides other classes in package
java.util.regex that help developers manipulate regular
expressions.

 Class Pattern represents a regular expression.
 Class Matcher contains both a regular-expression pattern and a
CharSequence in which to search for the pattern.

 CharSequence (package java.lang) is an interface that allows
read access to a sequence of characters.

 The interface requires that the methods charAt, length,
subSequence and toString be declared.

 Both String and StringBuilder implement interface
CharSequence, so an instance of either of these classes can be
used with class Matcher.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

 If a regular expression will be used only once, static
Pattern method matches can be used.

▪ Takes a String that specifies the regular expression and a

CharSequence on which to perform the match.

▪ Returns a boolean indicating whether the search object (the

second argument) matches the regular expression.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

 If a regular expression will be used more than once, it’s
more efficient to use static Pattern method compile
to create a specific Pattern object for that regular
expression.
▪ Receives a String representing the pattern and returns a new
Pattern object, which can then be used to call method matcher

▪ Method matcher receives a CharSequence to search and returns
a Matcher object.

 Matcher method matches performs the same task as
Pattern method matches, but receives no arguments—
the search pattern and search object are encapsulated in the
Matcher object.

 Class Matcher provides other methods, including find,
lookingAt, replaceFirst and replaceAll.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

 The dot character "." in a regular expression matches

any single character except a newline character.

 Matcher method find attempts to match a piece of

the search object to the search pattern.

▪ Each call to this method starts at the point where the last call

ended, so multiple matches can be found.

 Matcher method lookingAt performs the same

way, except that it always starts from the beginning of

the search object and will always find the first match if

there is one.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

 Matcher method group returns the String from the

search object that matches the search pattern.

▪ The String that is returned is the one that was last matched

by a call to find or lookingAt.

 As you’ll see in Section 17.7, you can combine regular-

expression processing with Java SE 8 lambdas and

streams to implement powerful String-and-file

processing applications.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

	Slide 1: Chapter 14 Strings, Characters and Regular Expressions
	Slide 2
	Slide 3
	Slide 4: 14.1 Introduction
	Slide 5: 14.2 Fundamentals of Characters and Strings
	Slide 6
	Slide 7: 14.3 Class String
	Slide 8: 14.3.1 String Constructors
	Slide 9
	Slide 10
	Slide 11
	Slide 12: 14.3.2 String Methods length, charAt and getChars
	Slide 13
	Slide 14
	Slide 15: 14.3.3 Comparing Strings
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20: 14.3.3 Comparing Strings (cont.)
	Slide 21
	Slide 22: 14.3.3 Comparing Strings (cont.)
	Slide 23: 14.3.3 Comparing Strings (cont.)
	Slide 24: 14.3.3 Comparing Strings (cont.)
	Slide 25
	Slide 26
	Slide 27: 14.3.4 Locating Characters and Substrings in Strings
	Slide 28
	Slide 29
	Slide 30
	Slide 31: 14.3.4 Locating Characters and Substrings in Strings (cont.)
	Slide 32: 14.3.5 Extracting Substrings from Strings
	Slide 33
	Slide 34: 14.3.6 Concatenating Strings
	Slide 35
	Slide 36: 14.3.7 Miscellaneous String Methods
	Slide 37
	Slide 38
	Slide 39
	Slide 40: 14.3.8 String Method valueOf
	Slide 41
	Slide 42
	Slide 43: 14.4 Class StringBuilder
	Slide 44
	Slide 45
	Slide 46
	Slide 47: 14.4.1 StringBuilder Constructors
	Slide 48
	Slide 49: 14.4.2 StringBuilder Methods length, capacity, setLength and ensureCapacity
	Slide 50
	Slide 51
	Slide 52
	Slide 53: 14.4.3 StringBuilder Methods charAt, setCharAt, getChars and reverse
	Slide 54
	Slide 55
	Slide 56: 14.4.4 StringBuilder append Methods
	Slide 57: 14.4.4 StringBuilder append Methods (cont.)
	Slide 58
	Slide 59
	Slide 60
	Slide 61: 14.4.5 StringBuilder Insertion and Deletion Methods
	Slide 62
	Slide 63
	Slide 64
	Slide 65: 14.5 Class Character
	Slide 66: 14.5 Class Character (cont.)
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72: 14.5 Class Character (cont.)
	Slide 73: 14.5 Class Character (cont.)
	Slide 74: 14.5 Class Character (cont.)
	Slide 75
	Slide 76
	Slide 77
	Slide 78: 14.5 Class Character (cont.)
	Slide 79
	Slide 80: 14.6 Tokenizing Strings
	Slide 81
	Slide 82
	Slide 83: 14.7 Regular Expressions, Class Pattern and Class Matcher
	Slide 84: 14.7 Regular Expressions, Class Pattern and Class Matcher (cont.)
	Slide 85: 14.7 Regular Expressions, Class Pattern and Class Matcher (cont.)
	Slide 86: 14.7 Regular Expressions, Class Pattern and Class Matcher (cont.)
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91
	Slide 92
	Slide 93
	Slide 94: 14.7 Regular Expressions, Class Pattern and Class Matcher (cont.)
	Slide 95: 14.7 Regular Expressions, Class Pattern and Class Matcher (cont.)
	Slide 96: 14.7 Regular Expressions, Class Pattern and Class Matcher (cont.)
	Slide 97: 14.7 Regular Expressions, Class Pattern and Class Matcher (cont.)
	Slide 98
	Slide 99: 14.7 Regular Expressions, Class Pattern and Class Matcher (cont.)
	Slide 100: 14.7 Regular Expressions, Class Pattern and Class Matcher (cont.)
	Slide 101
	Slide 102
	Slide 103
	Slide 104: 14.7 Regular Expressions, Class Pattern and Class Matcher (cont.)
	Slide 105: 14.7 Regular Expressions, Class Pattern and Class Matcher (cont.)
	Slide 106
	Slide 107: 14.7 Regular Expressions, Class Pattern and Class Matcher (cont.)
	Slide 108
	Slide 109
	Slide 110: 14.7 Regular Expressions, Class Pattern and Class Matcher (cont.)
	Slide 111
	Slide 112: 14.7 Regular Expressions, Class Pattern and Class Matcher (cont.)

