
Java How to Program, 10/e

© Copyright 1992-2015 by Pearson Education, Inc. All Rights
Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

 Overview capabilities for drawing two-dimensional
shapes, controlling colors and controlling fonts.

 One of Java’s initial appeals was its support for
graphics that enabled programmers to visually enhance
their applications.

 Java contains more sophisticated drawing capabilities
as part of the Java 2D API (presented in this chapter)
and its successor technology JavaFX (presented in
Chapter 25 and two online chapters).

 Figure 13.1 shows a portion of the class hierarchy that
includes various graphics classes and Java 2D API
classes and interfaces covered in this chapter.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

 Class Color contains methods and constants for
manipulating colors.

 Class JComponent contains method
paintComponent, which is used to draw graphics on a
component.

 Class Font contains methods and constants for manipulating
fonts.

 Class FontMetrics contains methods for obtaining font
information.

 Class Graphics contains methods for drawing strings, lines,
rectangles and other shapes.

 Class Graphics2D, which extends class Graphics, is used
for drawing with the Java 2D API.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

 Class Polygon contains methods for creating polygons. The

bottom half of the figure lists several classes and interfaces

from the Java 2D API.

 Class BasicStroke helps specify the drawing characteristics

of lines.

 Classes GradientPaint and TexturePaint help specify the

characteristics for filling shapes with colors or patterns.

 Classes GeneralPath, Line2D, Arc2D, Ellipse2D,

Rectangle2D and RoundRectangle2D represent

several Java 2D shapes.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

 Coordinate system (Fig. 13.2)
● a scheme for identifying every point on the screen.

 The upper-left corner of a GUI component (e.g., a window)
has the coordinates (0, 0).

 A coordinate pair is composed of an x-coordinate (the
horizontal coordinate) and a y-coordinate (the vertical
coordinate).
● x-coordinates from left to right.
● y-coordinates from top to bottom.

 The x-axis describes every horizontal coordinate, and the y-
axis every vertical coordinate.

 Coordinate units are measured in pixels.
● A pixel is a display monitor’s smallest unit of resolution.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

 A graphics context enables drawing on the screen.

 A Graphics object manages a graphics context and

draws pixels on the screen.

 Graphics objects contain methods for drawing, font

manipulation, color manipulation and the like.

 Class JComponent (package javax.swing)

contains a paintComponent for drawing graphics.

●Takes a Graphics object as an argument.

● Passed to the paintComponent method by the system when

a lightweight Swing component needs to be repainted.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

 When you create a GUI-based application, one of those
threads is known as the event-dispatch thread (EDT) and it
is used to process all GUI events.

 All manipulation of the on-screen GUI components must
be performed in that thread.

 The application container calls method
paintComponent (in the EDT) for each lightweight
component as the GUI is displayed.

 If you need paintComponent to execute, you can call
method repaint, which returns void, takes no arguments
and is inherited by all JComponents indirectly from class
Component (package java.awt).

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

 Class Color declares methods and constants for

manipulating colors in a Java program.

 The predeclared color constants are summarized in

Fig. 13.3, and several color methods and constructors

are summarized in Fig. 13.4.

 Two of the methods in Fig. 13.4 are Graphics
methods that are specific to colors.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

 Every color is created from a red, a green and a blue value.
● RGB values: Integers in the range from 0 to 255, or floating-point

values in the range 0.0 to 1.0.

● Specifies the amount of red, the second the amount of green and the
third the amount of blue.

● Larger values == more of that particular color.

● Approximately 16.7 million colors.

 Graphics method getColor returns a Color object
representing the current drawing color.

 Graphics method setColor sets the current drawing color.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

 Graphics method fillRect draws a filled rectangle in the
current color.

 Four arguments:
● The first two integer values represent the upper-left x-coordinate and

upper-left y-coordinate, where the Graphics object begins drawing
the rectangle.

● The third and fourth arguments are nonnegative integers that
represent the width and the height of the rectangle in pixels,
respectively.

 A rectangle drawn using method fillRect is filled by the
current color of the Graphics object.

 Graphics method drawString draws a String in the
current color.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

 The JColorChooser component (package javax.swing)
enables application users to select colors.

 JColorChooser static method showDialog creates a
JColorChooser object, attaches it to a dialog box and
displays the dialog.
● Returns the selected Color object, or null if the user presses

Cancel or closes the dialog without pressing OK.

● Three arguments—a reference to its parent Component, a String
to display in the title bar of the dialog and the initial selected Color
for the dialog.

 Method setBackground changes the background color
of a Component.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

 Most font methods and font constants are part of class Font.
 Some constructors, methods and constants of class Font and

class Graphics are summarized in Fig. 13.10.
 Class Font’s constructor takes three arguments—the font name,

font style and font size.
● Any font currently supported by the system on which the program is

running, such as standard Java fonts Monospaced, SansSerif and
Serif.

● The font style is Font.PLAIN, Font.ITALIC or Font.BOLD.
● Font styles can be used in combination.

 The font size is measured in points.
● A point is 1/72 of an inch.

 Graphics method setFont sets the current drawing font—the
font in which text will be displayed—to its Font argument.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

 Figure 13.13 illustrates some of the common font

metrics, which provide precise information about a font

●Height

● descent (the amount a character dips below the baseline)

● ascent (the amount a character rises above the baseline)

● leading (the difference between the descent of one line of text

and the ascent of the line of text below it—that is, the interline

spacing).

 Class FontMetrics declares several methods for

obtaining font metrics.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

 This section presents Graphics methods for drawing

lines, rectangles and ovals.

 The methods and their parameters are summarized in

Fig. 13.17.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

 Figure 13.20 labels the arc width, arc height, width and

height of a rounded rectangle. Using the same value for

the arc width and arc height produces a quarter-circle at

each corner.

 When the arc width, arc height, width and height have

the same values, the result is a circle. If the values for

width and height are the same and the values of

arcWidth and arcHeight are 0, the result is a

square.

 Figure 13.21 shows an oval bounded by a rectangle.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

 An arc is drawn as a portion of an oval.
●Arc angles are measured in degrees.

●Arcs sweep from a starting angle by the number of degrees
specified by their arc angle.

 Arcs that sweep in a counterclockwise direction are
measured in positive degrees.

 Arcs that sweep in a clockwise direction are measured
in negative degrees.

 When drawing an arc, we specify a bounding rectangle
for an oval.

 The arc will sweep along part of the oval.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

 Polygons are closed multisided shapes composed of

straight-line segments.

 Polylines are sequences of connected points.

 Some methods require a Polygon object (package

java.awt).

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

 The Java 2D API provides advanced two-dimensional
graphics capabilities for programmers who require detailed
and complex graphical manipulations.

 For an overview, visit
● http://docs.oracle.com/javase/7/docs/technotes/

guides/2d/

 Drawing with the Java 2D API is accomplished with a
Graphics2D reference (package java.awt).

 To access Graphics2D capabilities, we must cast the
Graphics reference (g) passed to paintComponent
into a Graphics2D reference with a statement such as
● Graphics2D g2d = (Graphics2D) g;

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

http://docs.oracle.com/javase/7/docs/technotes/guides/2d/
http://docs.oracle.com/javase/7/docs/technotes/guides/2d/

 Example demonstrates several Java 2D shapes from

package java.awt.geom, including Line2D.Double,

Rectangle2D.Double, RoundRectangle2D.Double,

Arc2D.Double and Ellipse2D.Double.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

 Graphics2D method setPaint sets the Paint object that
determines the color for the shape to display.

 A Paint object implements interface
java.awt.Paint.
● Can be something one of the predeclared Color, or it can be an

instance of the Java 2D API’s GradientPaint, SystemColor,
TexturePaint, LinearGradientPaint or
RadialGradientPaint classes.

 Class GradientPaint helps draw a shape in gradually
changing colors—called a gradient.

 Graphics2D method fill draws a filled Shape object—an
object that implements interface Shape (package
java.awt).

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

 Graphics2D method setStroke sets the

characteristics of the shape’s border (or the lines for

any other shape).

●Requires as its argument an object that implements interface

Stroke (package java.awt).

 Class BasicStroke provides several constructors to

specify the width of the line, how the line ends (called

the end caps), how lines join together (called line joins)

and the dash attributes of the line (if it’s a dashed line).

 Graphics2D method draw draws a Shape object.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

 Class BufferedImage (package java.awt.image) can be

used to produce images in color and grayscale.

 The third argument BufferedImage.TYPE_INT_RGB indicates

that the image is stored in color using the RGB color

scheme.

 BufferedImage method create-Graphics creates a

Graphics2D object for drawing into the

BufferedImage.

 A TexturePaint object uses the image stored in its

associated BufferedImage (the first constructor

argument) as the fill texture for a filled-in shape.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

 Constant Arc2D.PIE indicates that the arc is closed by

drawing two lines—one line from the arc’s starting

point to the center of the bounding rectangle and one

line from the center of the bounding rectangle to the

ending point.

 Constant Arc2D.CHORD draws a line from the starting

point to the ending point.

 Constant Arc2D.OPEN specifies that the arc should not

be closed.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

 BasicStroke.CAP_ROUND causes a line to have rounded

ends.

 If lines join together (as in a rectangle at the corners),

use BasicStroke.JOIN_ROUND to indicate a rounded

join.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

 General path—constructed from straight lines and complex curves.

 Represented with an object of class GeneralPath (package
java.awt.geom).

 GeneralPath method moveTo moves to the specified point.

 GeneralPath method lineTo draws a line from the current point to
the specified point.

 GeneralPath method closePath draws a line from the last point to
the point specified in the last call to moveTo.

 Graphics2D method translate moves the drawing origin to the
specified location.

 Graphics2D method rotate rotates the next displayed shape.
● The argument specifies the rotation angle in radians (with 360° = 2 radians).

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

	Slide 1: Chapter 13 Graphics and Java 2D
	Slide 2
	Slide 3
	Slide 4: 13.1 Introduction
	Slide 5
	Slide 6
	Slide 7: 13.1 Introduction (cont.)
	Slide 8: 13.1 Introduction (cont.)
	Slide 9: 13.1 Introduction (cont.)
	Slide 10
	Slide 11: 13.2 Graphics Contexts and Graphics Objects
	Slide 12: 13.2 Graphics Contexts and Graphics Objects (cont.)
	Slide 13: 13.3 Color Control
	Slide 14
	Slide 15
	Slide 16
	Slide 17: 13.3 Color Control (cont.)
	Slide 18: 13.3 Color Control (cont.)
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25: 13.3 Color Control (cont.)
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33: 13.4 Manipulating Fonts
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42: 13.4 Manipulating Fonts (cont.)
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49: 13.5 Drawing Lines, Rectangles and Ovals
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57: 13.5 Drawing Lines, Rectangles and Ovals (cont.)
	Slide 58
	Slide 59
	Slide 60: 13.6 Drawing Arcs
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67: 13.7 Drawing Polygons and Polylines
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76: 13.8 Java 2D API
	Slide 77: 13.8 Java 2D API (cont.)
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84: 13.8 Java 2D API (cont.)
	Slide 85: 13.8 Java 2D API (cont.)
	Slide 86: 13.8 Java 2D API (cont.)
	Slide 87: 13.8 Java 2D API (cont.)
	Slide 88: 13.8 Java 2D API (cont.)
	Slide 89: 13.8 Java 2D API (cont.)
	Slide 90
	Slide 91
	Slide 92
	Slide 93

