Chapter 13
Graphics and Java 2D

Java How to Program, 10/e

© Copyright 1992-2015 by Pearson Education, Inc. All Rights
Reserved.

OBJECTIVES
In this chapter you'll:

m Understand graphics contexts and graphics objects.

= Manipulate colors and fonts.

m Use methods of class Graphics to draw various shapes.

m Use methods of class Graphics2D from the Java 2D API to draw various shapes.

m Specify Paint and Stroke characteristics of shapes displayed with Graph1ics2D.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

13.1 Introduction

13.2 Graphics Contexts and Graphics Objects
13.3 Color Control

13.4 Manipulating Fonts

13.5 Drawing Lines, Rectangles and Ovals
13.6 Drawing Arcs

3.7 Drawing Polygons and Polylines

13.8 Java 2D API

13.9 Wrap-Up

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

13.1 Introduction

» Overview capabilities for drawing two-dimensional
shapes, controlling colors and controlling fonts.

» One of Java’s initial appeals

was 1ts support for

graphics that enabled programmers to visually enhance

their applications.

» Java contains more sophisticated drawing capabilities

as part of the Java 2D API (

presented in this chapter)

and Its successor technology JavaFX (presented in

Chapter 25 and two online ¢
» Figure 13.1 shows a portion

napters).
of the class hierarchy that

Includes various graphics classes and Java 2D API
classes and interfaces covered in this chapter.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

java.lang.Object I

java.awt.Color

java.awt.Component I<7 java.awt.Container I<17 Jjavax.swing.JComponent I

java.awt.Font

java.awt.FontMetrics

Jjava.awt.Graphics

Jjava.cawt.Graphics2D

java.awt.Polygon

java.awt.BasicStroke

java.awt.GradientPaint

java.awt. TexturePaint

winterface»
java.awt.Paint

winterface»
java.awt.Shape

ainterface»

java.awt.Stroke

— java.awt.geom.GeneralPath

— java.awt.geom.Line2D

|
[
|

|

|

|

|

|

-

~—— java.awt.geom.R larShape java.awt.geom.Arc2D

java.awt.geom.Ellipse2D I

java.awt.geom.Rectangle2D

java.awt.geom.RoundRectangle2D I

Fig. 13.1 | Classes and interfaces used in this chapter from Java’s original
graphics capabilities and from the Java 2D API.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

iy Portability Tip 13.1

18| Different display monitors have different resolutions
(i.c., the density of the pixels varies). This can cause
graphics to appear in different sizes on different monitors
or on the same monitor with different settings.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

13.1 Introduction (cont.)

>

>

>

>

>

>

Class Color contains methods and constants for
manipulating colors.

Class JComponent contains method _
paintComponent, which is used to draw graphics on a
component.

Class Font contains methods and constants for manipulating
fonts.

Class FontMetrics contains methods for obtaining font
Information.

Class Graphics contains methods for drawing strings, lines,
rectangles and other shapes.

Class Graphics2D, which extends class Graph1ics, is used
for drawing with the Java 2D API.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

13.1 Introduction (cont.)

» Class Polygon contains methods for creating polygons. The
bottom half of the figure lists several classes and interfaces
from the Java 2D API.

» Class BasicStroke helps specify the drawing characteristics
of lines.

» Classes GradientPaint and TexturePaint help specify the
characteristics for filling shapes with colors or patterns.

» Classes GeneralPath, L1ne2D, Arc2D, E111pse2D,
Rectangle2D and RoundRectangle2D represent
several Java 2D shapes.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

13.1 Introduction (cont.)

» Coordinate system (Fig. 13.2)
e a scheme for identifying every point on the screen.

» The upper-left corner of a GUI component (e.g., a window)
has the coordinates (0, 0).

» A coordinate pair is composed of an x-coordinate (the
horizontal coordinate) and a y-coordinate (the vertical
coordinate).

e x-coordinates from left to right.
e y-coordinates from top to bottom.

» The x-axis describes every horizontal coordinate, and the y-
axis every vertical coordinate.

» Coordinate units are measured in pixels.
e A pixel 1s a display monitor’s smallest unit of resolution.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

+x A
(0.0) > > X-axis

+y

v
y-axis

Fig. 13.2 | Java coordinate system. Units are measured in pixels.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

13.2 Graphics Contexts and Graphics
Objects

» A graphics context enables drawing on the screen.

» AGraphics object manages a graphics context and
draws pixels on the screen.

» Graph1i cs objects contain methods for drawing, font
manipulation, color manipulation and the like.

» Class JComponent (package javax.swing)
contains a paintComponent for drawing graphics.
e Takes a Graph1i cs object as an argument.

e Passed to the paintComponent method by the system when
a lightweight Swing component needs to be repainted.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

13.2 Graphics Contexts and Graphics
Objects (cont.)

» When you create a GUI-based application, one of those
threads is known as the event-dispatch thread (EDT) and it
IS used to process all GUI events.

» All manipulation of the on-screen GUI components must
be performed in that thread.

» The application container calls method
paintComponent (in the EDT) for each lightweight
component as the GUI is displayed.

» If you need paintComponent to execute, you can call
method repaint, which returns void, takes no arguments
and is inherited by all JComponents indirectly from class
Component (package java.awt).

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

13.3 Color Control

» Class Color declares methods and constants for
manipulating colors in a Java program.

» The predeclared color constants are summarized in
Fig. 13.3, and several color methods and constructors
are summarized in Fig. 13.4.

» Two of the methods in Fig. 13.4 are Graphics
methods that are specific to colors.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

public static final Color RED 255,0,0

public static final Color GREEN 0, 255, 0
public static final Color BLUE 0,0, 255
public static final Color ORANGE 255,200, 0
public static final Color PINK 255, 175, 175
public static final Color CYAN 0, 255, 255

public static final Color MAGENTA 255, 0, 255
public static final Color YELLOW 255, 255, 0

public static final Color BLACK 0,0,0
public static final Color WHITE 255, 255, 255
public static final Color GRAY 128, 128, 128
public static final Color 192, 192, 192
LIGHT_GRAY

public static final Color 64, 64, 64
DARK_GRAY

Fig. 13.3 | Color constants and their RGB values.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

Color constructors and methods

public Color(int r, int g, int b)
Creates a color based on red, green and blue components expressed as integers
from 0 to 255.

public Color(float r, float g, float b)

Creates a color based on red, green and blue components expressed as floating-
point values from 0.0 to 1.0.

public int getRed()

Returns a value between 0 and 255 representing the red content.

public int getGreen()
Returns a value between 0 and 255 representing the green content.
public int getBlue()

Returns a value between 0 and 255 representing the blue content.

Graphics methods for manipulating Colors
public Color getColor()

Fig. 13.4 | Color methods and color-related Graphics methods. (Part | of 2.)

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

Method Description

Returns Color object representing current color for the graphics context.
pubTlic void setColor(Color c)

Sets the current color for drawing with the graphics context.

Fig. 13.4 | Color methods and color-related Graphics methods. (Part 2 of 2.)

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

13.3 Color Control (cont.)

» Every color Is created from a red, a green and a blue value.

e RGB values: Integers in the range from 0 to 255, or floating-point
values in the range 0.0 to 1.0.

e Specifies the amount of red, the second the amount of green and the
third the amount of blue.

e Larger values == more of that particular color.
e Approximately 16.7 million colors.

» Graphics method getColor returns a Color object
representing the current drawing color.

» Graphics method setColor sets the current drawing color.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

13.3 Color Control (cont.)

» Graphics method fillRect draws a filled rectangle in the
current color.

» Four arguments:

e The first two integer values represent the upper-left x-coordinate and

upper-left y-coordinate, where the Graph1i cs object begins drawing
the rectangle.

e The third and fourth arguments are nonnegative integers that

represent the width and the height of the rectangle in pixels,
respectively.

» Arectangle drawn using method f111Rect is filled by the
current color of the Graph1i cs object.

» Graphics method drawString draws a String in the
current color.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

I // Fig. 13.5: ColorJPanel.java

2 // Changing drawing colors.

3 import java.awt.Graphics;

4 import java.awt.Color;

5 dimport javax.swing.JPanel;

6

7 public class ColorJPanel extends JPanel

8 {

9 // draw rectangles and Strings in different colors
10 @verride

11 public void paintComponent(Graphics g)

12 {

13 super.paintComponent(g);

14 this.setBackground(Color.WHITE);

15

16 // set new drawing color using integers

17 g.setColor(new Color(255, 0, 0));

18 g.fi11Rect (15, 25, 100, 20);

19 g.drawString("Current RGB: " + g.getColor(), 130, 40);
20
21 // set new drawing color using floats
22 g.setColor(new Color(0.50f, 0.75f, 0.0f));
23 g.fillRect (15, 50, 100, 20);
24 g.drawString("Current RGB: " + g.getColor(), 130, 65);
25

13.5 | Changing drawing colors. (Part | of 2.)

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

26 // set new drawing color using static Color objects

27 g.setColor(Color.BLUE);

28 g.filTRect (15, 75, 100, 20);

29 g.drawString("Current RGB: " + g.getColor(), 130, 90);
30

31 // display individual RGB values

32 Color color = Color.MAGENTA;

33 g.setColor(color);

34 g.fil1TRect (15, 100, 100, 20);

35 g.drawString("RCGB values: " + color.getRed() + ", " +
36 color.getGreen() + ", " + color.getBlue(), 130, 115);
37 }

38 } // end class ColorJPanel

Fig. 13.5 | Changing drawing colors. (Part 2 of 2.)

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

1 // Fig. 13.6: ShowColors.java

2 // Demonstrating Colors.

3 import javax.swing.JFrame;

4

5 public class ShowColors

6 {

7 // execute application

8 public static void main(String[] args)

9 {

10 // create frame for ColorJ]Panel

11 JFrame frame = new JFrame("Using colors");
12 frame.setDefaultCloseOperation(JFrame. EXIT_ON_CLOSE);
13

14 ColorJPanel colorJPanel = new Color]Panel();
15 frame.add(color]Panel);

16 frame.setSize(400, 180);

17 frame.setVisible(true);

18 }

19 } // end class ShowColors

Fig. 13.6 | Demonstrating Colors. (Part | of 2.)

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

2| Using colors (===

Current RGE: java.awt. Colar[r=25%5,0=0,h=0]
Current RGE: java.awt. Colorr=128,0=191, b=0]
Current RGE: java.awt. Color[r=0,g=0,kh=25%]
RGEvalues: 284, 0, 255

Fig. 13.6 | Demonstrating Colors. (Part 2 of 2.]

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

Look-and-Feel Observation 13.1

= People perceive colors differently. Choose your colors
carefully to ensure that your application is readable, both
for people who can perceive color and for those who are
color blind. Try to avoid using many different colors in
close proximity.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

P,w, Software Engineering Observation 13.1
BE8X To change the color, you must create a new Color object

| (or use one of the predeclared Color constants). Like
String objects, Color objects are immutable (not

modifiable).

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

13.3 Color Control (cont.)

» The JColorChooser component (package javax.swing)
enables application users to select colors.

» JColorChooser static method showDialog creates a
JColorcChooser object, attaches it to a dialog box and
displays the dialog.

e Returns the selected Color object, or nul1 if the user presses
Cancel or closes the dialog without pressing OK.

e Three arguments—a reference to its parent Component, a String

to display in the title bar of the dialog and the initial selected Color
for the dialog.

» Method setBackground changes the background color
of a Component.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

OO~ bh WN =

// Fig. 13.7: ShowColors2]Frame.java
// Choosing

import
import
import
import
import
import
import
import

public
{

java.
java.
java.
java.

javax.
javax.
javax.
javax.

class

colors with JColorChooser.
awt.BorderlLayout;
awt.Color;
awt.event.ActionEvent;
awt.event.ActionListener;
swing.JButton;
swing.JFrame;
swing.JColorChooser;
swing.JPanel;

ShowColors2JFrame extends JFrame

private final JButton changeColor]Button;
private Color color = Color.LIGHT_CRAY;
private final JPanel color]Panel;

// set up GUI
public ShowColors2]Frame()

{

super(

// cre

color]
color]

"Using JColorChooser™);

ate JPanel for display color
Panel = new JPanel();
Panel.setBackground(color);

13.7 | Choosing colors with JColorChooser. (Part | of 3.)

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47

// set up changeColor]Button and register its event handler
changeColor]Button = new JButton("Change Color™);
changeColor]Button.addActionListener(
new ActionListener() // anonymous inner class
{
// display JColorChooser when user clicks button
@Override
public void actionPerformed(ActionEvent event)
{
color = JColorChooser.showDialog(
ShowColors2]Frame.this, "Choose a color"”, color);

// set default color, if no color is returned
if (color == null)
color = Color.LIGHT_GRAY;

// change content pane's background color
color]Panel.setBackground(color);
} // end method actionPerformed
} // end anonymous 1inner class
); // end call to addActionListener

Fig. 13.7 | Choosing colors with JColorChooser. (Part 2 of 3.)

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

48

49 add(color]Panel, BorderlLayout.CENTER);

50 add(changeColor]Button, BorderLayout.SOUTH);
51

52 setSize(400, 130);

53 setVisible(true);

54 } // end ShowColor2]Frame constructor

55 1} // end class ShowColors2]Frame

Fig. 13.7 | Choosing colors with JColorChooser. (Part 3 of 3.)

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

1 // Fig. 13.8: ShowColors2.java

2 // Choosing colors with JColorChooser.

3 import javax.swing.JFrame;

4

5 public class ShowColors2

6 {

7 // execute application

8 public static void main(String[] args)

9 {

10 ShowColors2]Frame application = new ShowColors2]Frame();
11 application.setDefaul tCloseOperation(JFrame.EXIT_ON_CLOSE);
12 }

I3 1} // end class ShowColors?2

Fig. 13.8 | Choosing colors with JColorChooser. (Part | of 2.)

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

(a) Initial application window

| £| Using JColerChooser EI

[Change Color h]

N

Select a color from

one of th

e color

swalches

(c] Application window after changing JPanel’s
background calor

| £ Using IColorChooser = E]

| Change Color |

e

(B) 3CoTorChooser windaow

| £ Choose a color

|/ watches | Hss | res |

Recent:

=

Preview

a - [l Sample Text Sample Text

. . . Sample Text Sample Text

[OK] l Cancel J [Reset J

Fig. 13.8 | Choosing colors with JCoTorChooser. (Part 2 of 2.)

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

| %] Choose a color X

[swatches | HSB | RaB |

Preview
f N

u-. Sample Text Sample Text

[OK] [Cancel J [Reset J

Fig. 13.9 | HSB and RGB tabs of the JColorChooser dialog. (Part | of 2.)

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

| £| Choose a color

| swatches | HsB | ReB |

M —GI 1 1 1 1 1 1 1 1 1 1 1 | =
Slidersto select //Qeg' | | | | 16
0 a5 170 255
the red, green -

oy

and blLlE. CO'OF] GTEE.T-'I- R | |I""'|JI o | 108 D
COMponents \u 85 170 255
o -
EIUE LI T A O R Y [B B B | 228
0 85 170 255
Preview

a - [l Sample Text Sample Text
we0 .

Sample Text Sample Text

[OK &l Cancel J l Reset J

Fig. 13.9 | HSB and RGB tabs of the JColorChooser dialog. (Part 2 0f2.)

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

13.4 Manipulating Fonts

» Most font methods and font constants are part of class Font.

» Some constructors, methods and constants of class Font and
class Graphics are summarized in Fig. 13.10.

» Class Font’s constructor takes three arguments—the font name,
font style and font size.

e Any font currently supported by the system on which the program is
runni_n]g, such as standard Java fonts Monospaced, SansSer1if and
Serif.

e The font style is Font.PLAIN, Font.ITALIC or Font.BOLD.
e Font styles can be used in combination.
» The font size is measured in points.
e A pointis 1/72 of an inch.
» Graphics method setFont sets the current drawing font—the
font in which text will be displayed—to its Font argument.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

Font constants, constructors and methods

public
public
public
public

int
public
public
public
public
public
public
public

static final int PLAIN
static final 1int BOLD
static final int ITALIC

Font(String name,
style, int size)

int getStyle()
int getSize()
String getName()
String getFamily()
boolean isPlain()
boolean isBold()

boolean isItalic()

A constant representing a plain font style.
A constant representing a bold font style.
A constant representing an italic font style.

Creates a Font object with the specified font name,
style and size.

Returns an int indicating the current font style.
Returns an int indicating the current font size.
Returns the current font name as a string.
Returns the fonts family name as a string.
Returns true if the font is plain, else false.
Returns true if the font is bold, else false.

Returns true if the font is italic, else false.

Fig. 13.10 | Font-related methods and constants. (Part | of 2.)

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

Method or constant Description

Graphics methods for manipulating Fonts

public Font getFont() Returns a Font object reference representing the
current font.

public void setFont(Font) Sets the current font to the font, style and size
specified by the Font object reference f.

Fig. 13.10 | Font-related methods and constants. (Part 2 of 2.)

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

Ao

el

Portability Tip 13.2

The number of fonts varies across systems. Java provides
five font names—Serif, Monospaced, SansSerif,
Dialog and DialogInput—that can be used on all
Java platforms. The Java runtime environment (JRE)
on each platform maps these logical font names to actual
fonts installed on the platform. The actual fonts used

may vary by platform.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

Nz Software Engineering Observation 13.2

5 . To change the font, you must create a new Font object.
Font objects are immutable—class Font has no set
methods to change the characteristics of the current font.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

I // Fig. 13.11: FontJPanel.java

2 // Display strings in different fonts and colors.

3 import java.awt.Font;

4 import java.awt.Color;

5 dimport java.awt.Graphics;

6 import javax.swing.JPanel;

7

8 public class FontJPanel extends JPanel

9 {
10 // display Strings in different fonts and colors
11 @verride
12 public void paintComponent(Graphics g)

13 {

14 super.paintComponent(g);

15

16 // set font to Serif (Times), bold, 12pt and draw a string
17 g.setFont(hew Font("Serif", Font.BOLD, 12));

18 g.drawString("Serif 12 point bold.", 20, 30);

19
20 // set font to Monospaced (Courier), italic, 24pt and draw a string
21 g.setFont(new Font("Monospaced"”, Font.ITALIC, 24));
22 g.drawString("Monospaced 24 point italic.”, 20, 50);
23

Fig. 13.11 | Display strings in different fonts and colors. (Part | of 2.)

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

24 // set font to SansSerif (Helvetica), plain, l4pt and draw a string

25 g.setFont(new Font("SansSerif", Font.PLAIN, 14));

26 g.drawString("SansSerif 14 point plain.™, 20, 70);

27

28 // set font to Serif (Times), bold/italic, 18pt and draw a string
29 g.setColor(Color.RED);

30 g.setFont(new Font("Serif", Font.BOLD + Font.ITALIC, 18));

31 g.drawString(g.getFont().getName() + " " + g.getFont().getSize() +
32 " point bold italic.", 20, 90);

33 }

34 } // end class FontJPanel

Fig. 13.11 | Display strings in different fonts and colors. (Part 2 of 2.)

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

1 // Fig. 13.12: Fonts.java

2 // Using fonts.

3 import javax.swing.JFrame;

4

5 public class Fonts

6 {

7 // execute application

8 public static void main(String[] args)

9 {

10 // create frame for FontJPanel

11 JFrame frame = new JFrame("Using fonts");
12 frame.setDefaultCloseOperation(JFrame. EXIT_ON_CLOSE);
13

14 FontJPanel fontJPanel = new Font]Panel();
15 frame.add(fontJPanel) ;

16 frame.setSize(420, 150);

17 frame.setVisible(true);

18 }

19 1} // end class Fonts

Fig. 13.12 | Using fonts. (Part | of 2.)

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

|2 Using fonts F=n|Eol(=<3

Serif 12 point hold

Monospaced 24 point italic.
SansSerit 14 point plain.

Serif 13 point bold iinlic.

Fig. 13.12 | Usingfonts. (Part2 of 2.)

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

13.4 Manipulating Fonts (cont.)

» Figure 13.13 illustrates some of the common font
metrics, which provide precise information about a font
e Height
e descent (the amount a character dips below the baseline)
e ascent (the amount a character rises above the baseline)

e |leading (the difference between the descent of one line of text
and the ascent of the line of text below it—that is, the interline
spacing).

» Class FontMetrics declares several methods for

obtaining font metrics.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

1 leading

I
height g I O ascent
! baseline
|

' descent

Fig. 13.13 | Font metrics.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

FontMetrics methods

public int getAscent() Returns the ascent of a font in points.
public int getDes- Returns the descent of a font in points.
cent()

public int getlLead- Returns the leading of a font in points.
ing O

public int getHeight() Returns the height of a font in points.

Graphics methods for getting a Fonts FontMetrics
public FontMetrics getFontMetrics()

Returns the FontMetrics object for the current drawing Font.
public FontMetrics getFontMetrics(Font f)

Returns the FontMetrics object for the specified Font argu-
ment.

Fig. 13.14 | FontMetrics and Graphics methods for obtaining font metrics.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

I // Fig. 13.15: Metrics]Panel.java

2 // FontMetrics and Graphics methods useful for obtaining font metrics.
3 import java.awt.Font;

4 dimport java.awt.FontMetrics;

5 dimport java.awt.Graphics;

6 import javax.swing.JPanel;

7

8 public class MetricsJPanel extends JPanel

9 {
10 // display font metrics
11 @verride
12 public void paintComponent(Graphics g)

13 {

14 super.paintComponent(g);

15

16 g.setFont(new Font("SansSerif", Font.BOLD, 12));

17 FontMetrics metrics = g.getFontMetrics();

18 g.drawString("Current font: " + g.getFont(), 10, 30);

19 g.drawString("Ascent: " + metrics.getAscent(), 10, 45);
20 g.drawString("Descent: " + metrics.getDescent(), 10, 60);
21 g.drawString("Height: " + metrics.getHeight(), 10, 75);
22 g.drawString("Leading: " + metrics.getLeading(), 10, 90);
23

Fig. 13.15 | FontMetrics and Graphics methods useful for obtaining font
metrics. (Part | of 2.)

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

24 Font font = new Font("Serif", Font.ITALIC, 14);

25 metrics = g.getFontMetrics(font);

26 g.setFont(font);

27 g.drawString("Current font: " + font, 10, 120);

28 g.drawString("Ascent: " + metrics.getAscent(), 10, 135);
29 g.drawString("Descent: " + metrics.getDescent(), 10, 150);
30 g.drawString("Height: " + metrics.getHeight(), 10, 165);
31 g.drawString("Leading: " + metrics.getlLeading(), 10, 180);
32 }

33 1} // end class MetricsJPanel

Fig. 13.15 | FontMetrics and Graphics methods useful for obtaining font
metrics. (Part 2 of 2.)

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

1 // Fig. 13.16: Metrics.java

2 // Displaying font metrics.

3 import javax.swing.JFrame;

4

5 public class Metrics

6 {

7 // execute application

8 public static void main(String[] args)

9 {

10 // create frame for MetricsJPanel

11 JFrame frame = new JFrame("Demonstrating FontMetrics");
12 frame.setDefaultCloseOperation(JFrame. EXIT_ON_CLOSE);
13

14 MetricsJPanel metrics]Panel = new Metrics]Panel();

15 frame.add(metrics]Panel);

16 frame.setSize(510, 240);

17 frame.setVisible(true);

18 }

19 } // end class Metrics

Fig. 13.16 | Displaying font metrics.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

| £:| Demonstrating FontMetrics [| = |]

Current font: java.awt.Font[family=S5ansSerif,name=5ansSerif,shie=hold,size=12]
Ascent: 13

Descent: 3

Height: 16

Leading: 0

Clurrent font. java awt Font [family=5erif name=Serif, style=italic, size=14]
Ascent: 15
Dgscent. &
Height: 19
Leading: 0

Fig. 13.16 | Displaying font metrics,

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

13.5 Drawing Lines, Rectangles and
Ovals

» This section presents Graphi cs methods for drawing
lines, rectangles and ovals.

» The methods and their parameters are summarized in
Fig. 13.17.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

public void drawLine(int x1, int yl, int x2, int y2)
Draws a line between the point (x1, y1) and the point (x2, y2).
public void drawRect(int x, int y, int width, int height)

Draws a rectangle of the specified width and height. The rectangle’s top-left
corner is located at (x, y). Only the outline of the rectangle is drawn using the
Graphics object’s color—the body of the rectangle is not filled with this color.

public void fillRect(int x, int y, int width, int height)
Draws a filled rectangle in the current color with the specified width and
height. The rectangle’s top-left corner is located at (x, y).

public void clearRect(int x, int y, int width, int height)

Draws a filled rectangle with the specified width and height in the current
background color. The rectangle’s zop-left corner is located at (x, y). This
method is useful if you want to remove a portion of an image.

Fig. 13.17 | Graphics methods that draw lines, rectangles and ovals. (Part | of
3.)

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

public void drawRoundRect(int x, int y, int width, int height, int arcwidth,
int arcHeight)
Draws a rectangle with rounded corners in the current color with the specified
width and height. The arcwidth and arcHeight determine the rounding of the
corners (see Fig. 13.20). Only the outline of the shape is drawn.
public void fillRoundRect(int x, int y, int width, int height, int arcWidth,
int arcHeight)
Draws a filled rectangle in the current color with rounded corners with the spec-
ified width and height. The arcwidth and arcHeight determine the rounding
of the corners (see Fig. 13.20).
public void draw3DRect(int x, int y, int width, int height, boolean b)
Draws a three-dimensional rectangle in the current color with the specified
width and height. The rectangle’s zop-/eft corner is located at (x, y). The rectan-
gle appears raised when b is true and lowered when b is false. Only the outline
of the shape is drawn.

Fig. 13.17 | Graphics methods that draw lines, rectangles and ovals. (Part 2 of
3.)

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

public void fil13DRect(int x, int y, int width, int height, boolean b)

Draws a filled three-dimensional rectangle in the current color with the speci-
fied width and height. The rectangle’s zop-left corner is located at (x, y). The
rectangle appears raised when b is true and lowered when b is false.

public void drawOval(int x, int y, int width, int height)

Draws an oval in the current color with the specified width and height. The
bounding rectangle’s zop-lef corner is located at (x, y). The oval touches all four
sides of the bounding rectangle at the center of each side (see Fig. 13.21). Only
the outline of the shape is drawn.

public void filloval(int x, int y, int width, int height)

Draws a filled oval in the current color with the specified width and height.
The bounding rectangle’s zop-lef corner is located at (x, y). The oval touches the
center of all four sides of the bounding rectangle (see Fig. 13.21).

Fig. 13.17 | Graphics methods that draw lines, rectangles and ovals. (Part 3 of
3.)

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

1 // Fig. 13.18: LinesRectsOvalsJ]Panel.java
2 // Drawing lines, rectangles and ovals.

3 dimport java.awt.Color;

4 dimport java.awt.Graphics;

5 dimport javax.swing.JPanel;

6

7 public class LinesRectsOvalsJPanel extends JPanel
8 {

9 // display various lines, rectangles and ovals
10 @Jverride

11 public void paintComponent(Graphics g)
12 {

13 super.paintComponent(g);

14 this.setBackground(Color.WHITE);

15

16 g.setColor(Color.RED);

17 g.drawLine(5, 30, 380, 30);

18

19 g.setColor(Color.BLUE);
20 g.drawRect(5, 40, 90, 55);
21 g.fil1Rect (100, 40, 90, 55);
22

Fig. 13.18 | Drawing lines, rectangles and ovals. (Part | of 2.)

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

23 g.setColor(Color.CYAN);

24 g.fil1RoundRect (195, 40, 90, 55, 50, 50);
25 g.drawRoundRect (290, 40, 90, 55, 20, 20);
26

27 g.setColor(Color.CREEN);

28 g.draw3DRect (5, 100, 90, 55, true);

29 g.fi113DRect (100, 100, 90, 55, false);

30

31 g.setColor(Color.MAGENTA) ;

32 g.drawOval (195, 100, 90, 55);

33 g.fi110val (290, 100, 90, 55);

34 }

35 } // end class LinesRectsOvalsJPanel

Fig. 13.18 | Drawing lines, rectangles and ovals. (Part 2 of 2.)

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

OoOoO~NONBNDE WN=—

10
11
12
13
14
15
16
17
I8
19
20
21
22
23

// Fig. 13.19: LinesRectsOvals.java
// Testing LinesRectsOvalsJPanel.
import java.awt.Color;

import javax.swing.JFrame;

public class LinesRectsOvals
{
// execute application
public static void main(String[] args)
{
// create frame for LinesRectsOvalsJ]Panel
JFrame frame =
new JFrame("Drawing lines, rectangles and ovals");
frame.setDefaultCloseOperation(JFrame. EXIT_ON_CLOSE);

LinesRectsOvalsJPanel linesRectsOvalsJPanel =
new LinesRectsOvalsJPanel();

TinesRectsOvals]Panel.setBackground(Color .WHITE);

frame.add(1inesRectsOvalsJPanel);

frame.setSize(400, 210);

frame.setVisible(true);

}

} // end class LinesRectsOvals

Fig. 13.19 | Testing LinesRectsOvalsJPanel. (Part | of 2.)

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

| %] Drawing lines, rectangles and ovals E@
drawlLine

dramRect —_ L L

fil1TRect — -
draw3DRect - -
F11130Rect ——tr= |

L — T11TRoundRect

L drawRoundRect

| drawval

L fi110val

Fig. 13.19 | Testing LinesRectsOvalsIPanel. (Part2 of 2]

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

13.5 Drawing Lines, Rectangles and
Ovals (cont.)

» Figure 13.20 labels the arc width, arc height, width and
height of a rounded rectangle. Using the same value for
the arc width and arc height produces a quarter-circle at
each corner.

» When the arc width, arc height, width and height have
the same values, the result is a circle. If the values for
width and height are the same and the values of
arcwidth and arcHeight are 0, the result is a
square.

» Figure 13.21 shows an oval bounded by a rectangle.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

Xy ¥ _

<1

|
arc height

arc width
height

N iy

- : >
width

Fig. 13.20 | Arc width and arc height for rounded rectangles.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

width

Fig. 13.21 | Oval bounded by a rectangle.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

13.6 Drawing Arcs

» An arc Is drawn as a portion of an oval.
e Arc angles are measured in degrees.

e Arcs sweep from a starting angle by the number of degrees
specified by their arc angle.

» Arcs that sweep In a counterclockwise direction are
measured In positive degrees.

» Arcs that sweep in a clockwise direction are measured
In negative degrees.

» When drawing an arc, we specify a bounding rectangle
for an oval.

» The arc will sweep along part of the oval.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

Positive angles Negative angles
90° 90°

g
A \;
\

180° 0° 180°

Fig. 13.22 | Positive and negative arc angles.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

public void drawArc(int x, int y, int width, int height, int startAngle,
int arcAngle)
Draws an arc relative to the bounding rectangle’s top-left x- and y-coordi-
nates with the specified width and height. The arc segment is drawn starting
at startAngle and sweeps arcAngle degrees.
public void fillArc(int x, int y, int width, int height, int startAngle,
int arcAngle)
Draws a filled arc (i.e., a sector) relative to the bounding rectangle’s top-left
x- and y-coordinates with the specified width and height. The arc segment
is drawn starting at startAngle and sweeps arcAngle degrees.

Fig. 13.23 | Graphics methods for drawing arcs.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

OO~ bh WN =

// Fig. 13.24: ArcsJPanel.java

// Arcs displayed with drawArc and fillArc.

import java.awt.Color;
import java.awt.Graphics;
import javax.swing.JPanel;

public class ArcsJPanel extends JPanel
{
// draw rectangles and arcs
@verride
public void paintComponent(Graphics g)
{

super.paintComponent(g);

// start at 0 and sweep 360 degrees
g.setColor(Color.RED);
g.drawRect(15, 35, 80, 80);
g.setColor(Color.BLACK);
g.drawArc(15, 35, 80, 80, 0, 360);

// start at O and sweep 110 degrees
g.setColor(Color.RED);

g.drawRect (100, 35, 80, 80);
g.setColor(Color.BLACK);
g.drawArc(100, 35, 80, 80, 0, 110);

13.24 | Arcs displayed with drawArc and fi11Arc. (Part | of 2.)

© Copyright 1992-2015 by Pearson

Education, Inc. All Rights Reserved.

26

27 // start at 0 and sweep -270 degrees
28 g.setColor(Color.RED);

29 g.drawRect (185, 35, 80, 80);

30 g.setColor(Color.BLACK);

31 g.drawArc(185, 35, 80, 80, 0, -270);
32

33 // start at 0 and sweep 360 degrees
34 g.fil11Arc(15, 120, 80, 40, 0, 360);
35

36 // start at 270 and sweep -90 degrees
37 g.fi11Arc(100, 120, 80, 40, 270, -90);
38

39 // start at 0 and sweep -270 degrees
40 g.fi11Arc(185, 120, 80, 40, 0, -270);
41 }

42 } // end class ArcsJPanel

Fig. 13.24 | Arcs displayed with drawArc and fi11Arc. (Part 2 of 2.)

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

1 // Fig. 13.25: DrawArcs.java

2 // Drawing arcs.

3 import javax.swing.JFrame;

4

5 public class DrawArcs

6 {

7 // execute application

8 public static void main(String[] args)

9 {

10 // create frame for ArcsJPanel

11 JFrame frame = new JFrame("Drawing Arcs");
12 frame.setDefaultCloseOperation(JFrame. EXIT_ON_CLOSE);
13

14 ArcsJPanel arcsJPanel = new ArcsJPanel();
15 frame.add(arcsJPanel);

16 frame.setSize(300, 210);

17 frame.setVisible(true);

18 }

19 1} // end class DrawArcs

Fig. 13.25 | Drawingarcs. (Part | of 2.)

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

| £:| Drawing Arcs

(=]l ==

7

~

-~

AL N
Pwu &

Fig. 13.25 | Drawing arcs. (Part 2 of 2.)

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

13.7 Drawing Polygons and Polylines

» Polygons are closed multisided shapes composed of
straight-line segments.

» Polylines are sequences of connected points.

» Some methods require a Polygon object (package
java.awt).

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

Graphics methods for drawing polygons
public void drawPolygon(int[] xPoints, int[] yPoints, int points)

Draws a polygon. The x-coordinate of each point is specified in the xPoints
array and the y-coordinate of each point in the yPoints array. The last argu-
ment specifies the number of points. This method draws a closed polygon. 1f
the last point is different from the first, the polygon is closed by a line that
connects the last point to the first.

public void drawPolyline(int[] xPoints, int[] yPoints, int points)
Draws a sequence of connected lines. The x-coordinate of each point is spec-
ified in the xPoints array and the y-coordinate of each point in the yPoints

array. The last argument specifies the number of points. If the last point is
different from the first, the polyline is 7oz closed.

public void drawPolygon(Polygon p)
Draws the specified polygon.

Fig. 13.26 | Graphics methods for polygons and class Polygon methods. (Part
| of 3.)

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

public void fillPolygon(int[] xPoints, int[] yPoints, int points)

Draws a filled polygon. The x-coordinate of each point is specified in the
xPoints array and the y-coordinate of each point in the yPoints array. The
last argument specifies the number of points. This method draws a closed
polygon. 1f the last point is different from the first, the polygon is closed by a
line that connects the last point to the first.

public void fillPolygon(Polygon p)
Draws the specified filled polygon. The polygon is closed.

Fig. 13.26 | Graphics methods for polygons and class Polygon methods. (Part
2 of 3.)

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

Polygon constructors and methods
public Polygon()

Constructs a new polygon object. The polygon does not contain any points.
public Polygon(int[] xValues, int[] yValues, int numberOfPoints)

Constructs a new polygon object. The polygon has numberofPoints sides,
with each point consisting of an x-coordinate from xvalues and a y-coordi-
nate from yvalues.

public void addPoint(int x, int y)
Adds pairs of x- and y-coordinates to the Polygon.

Fig. 13.26 | Graphics methods for polygons and class Polygon methods. (Part
30f3.)

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

1 // Fig. 13.27: PolygonsJ]Panel.java

2 // Drawing polygons.

3 dimport java.awt.Graphics;

4 import java.awt.Polygon;

5 dimport javax.swing.JPanel;

6

7 public class PolygonsJPanel extends JPanel

8 {

9 // draw polygons and polylines

10 @Jverride

11 public void paintComponent(Graphics g)

12 {

13 super.paintComponent(g);

14

I5 // draw polygon with Polygon object

16 int[] xValues = {20, 40, 50, 30, 20, 15};
17 int[] yvValues = {50, 50, 60, 80, 80, 60};
18 Polygon polygonl = new Polygon(xValues, yValues, 6);
19 g.drawPolygon(polygonl);
20

Fig. 13.27 | Polygons displayed with drawPolygon and fi11Polygon. (Part | of
2.)

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

21 // draw polylines with two arrays

22 int[] xValues2 = {70, 90, 100, 80, 70, 65, 60};
23 int[] yValues2 = {100, 100, 110, 110, 130, 110, 90};
24 g.drawPolyline(xValues2, yValues2, 7);

25

26 // fill polygon with two arrays

27 int[] xValues3 = {120, 140, 150, 190}%;

28 int[] yvalues3 = {40, 70, 80, 60};

29 g.filTPolygon(xValues3, yValues3, 4);

30

31 // draw filled polygon with Polygon object

32 Polygon polygon2 = new Polygon();

33 polygon2.addPoint(165, 135);

34 polygon2.addPoint(175, 150);

35 polygon2.addPoint(270, 200);

36 polygon2.addPoint (200, 220);

37 polygon2.addPoint (130, 180);

38 g.fil1Polygon(polygon2);

39 }

40 1} // end class PolygonsJPanel

Fig. 13.27 | Polygons displayed with drawPolygon and fi11Polygon. (Part 2 of
2.)

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

1 // Fig. 13.28: DrawPolygons.java

2 // Drawing polygons.

3 import javax.swing.JFrame;

4

5 public class DrawPolygons

6 {

7 // execute application

8 public static void main(String[] args)

9 {

10 // create frame for Polygons]Panel

11 JFrame frame = new JFrame("Drawing Polygons™);

12 frame.setDefaultCloseOperation(JFrame. EXIT_ON_CLOSE);
13

14 PolygonsJPanel polygonsJPanel = new Polygons]Panel();
15 frame.add(polygonsJPanel);

16 frame.setSize(280, 270);

17 frame.setVisible(true);

18 }

19 } // end class DrawPolygons

Fig. 13.28 | Drawing polygons. (Part | of 2.)

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

2| Drawing Polygons [=E =

]
Result of line 18—~ D ‘

~—-""'t' i; Result of line 37
..-ﬂ"'"#‘-.
_Af""’f’

| — Result of line 28

Rezult of line 23 ="

Fig. 13.28 | Drawing polygons. (Part 2 of 2.)

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

Common Programming Error 13.1

An ArrayIndexOutOfBoundsException is thrown
if the number of points specified in the third argument to
method drawPo1ygon or method Ti11Polygon is
greater than the number of elements in the arrays of co-

ordinates that specify the polygon to display.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

13.8 Java 2D API

» The Java 2D API provides advanced two-dimensional
graphics capabilities for programmers who require detailed
and complex graphical manipulations.

» For an overview, visit

» Drawing with the Java 2D API is accomplished with a
Graphics2D reference (package java.awt).

» To access Graphics?2D capabilities, we must cast the
Graphics reference (g) passed to paintComponent
into a Graphics2D reference with a statement such as
e Graphics2D g2d = (Graphics2D) g;

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

http://docs.oracle.com/javase/7/docs/technotes/guides/2d/
http://docs.oracle.com/javase/7/docs/technotes/guides/2d/

13.8 Java 2D API (cont.)

» Example demonstrates several Java 2D shapes from
package java.awt.geom, including Line2D.Double,
Rectangle2D.Double, RoundRectangle2D.Double,
Arc2D.Double and Ellipse2D.Double.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

// Fig. 13.29: ShapesJPanel.java

// Demonstrating some Java 2D shapes.
import java.awt.Color;

import java.awt.Graphics;

import java.awt.BasicStroke;

import java.awt.GradientPaint;

import java.awt.TexturePaint;

import java.awt.Rectangle;

import java.awt.Graphics2D;

10 1import java.awt.geom.Ell1ipse2D;

Il import java.awt.geom.Rectangle2D;

12 1import java.awt.geom.RoundRectangle2D;
13 import java.awt.geom.Arc2D;

14 1import java.awt.geom.lLine2D;

15 import java.awt.image.BufferedImage;
16 import javax.swing.JPanel;

OO~ bh WN =

17

I8 public class ShapesJPanel extends JPanel

19 {

20 // draw shapes with Java 2D API

21 @verride

22 public void paintComponent(Graphics g)

23 {

24 super.paintComponent(g);

25 Graphics2D g2d = (Graphics2D) g; // cast g to Graphics2D

13.29 | Demonstrating some Java 2D shapes. (Part | of 4.)

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

26

27 // draw 2D ellipse filled with a blue-yellow gradient
28 g2d.setPaint(new GradientPaint(5, 30, Color.BLUE, 35, 100,
29 Color.YELLOW, true));

30 g2d.fill1(new ET11lipse2D.Double(5, 30, 65, 100));

31

32 // draw 2D rectangle 1in red

33 g2d.setPaint(Color.RED);

34 g2d.setStroke(new BasicStroke(10.0f));

35 g2d.draw(new Rectangle2D.Double(80, 30, 65, 100));

36

37 // draw 2D rounded rectangle with a buffered background
38 BufferedImage buffImage = new BufferedImage(10, 10,

39 BufferedImage.TYPE_INT_RGCB);

Fig. 13.29 | Demonstrating some Java 2D shapes. (Part 2 of 4.)

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

2 // obtain Graphics2D from buffImage and draw on it
3 Graphics2D gg = buffImage.createGraphics();

4 gg.setColor(Color.YELLOW);

5 gg.fillRect(0, O, 10, 10);

6 gg.setColor(Color.BLACK);

7 gg.drawRect(1l, 1, 6, 6);

8 gg.setColor(Color.BLUE);

9 gg.fillRect(1l, 1, 3, 3);

10 gg.setColor(Color.RED);

11 gg.fillRect(4, 4, 3, 3); // draw a filled rectangle
12

13 // paint buffImage onto the JFrame

14 g2d.setPaint(new TexturePaint(buffImage,

15 new Rectangle(10, 10)));

16 g2d.fi11(

17 new RoundRectangle2D.Double(155, 30, 75, 100, 50, 50));
18

19 // draw 2D pie-shaped arc in white

20 g2d.setPaint(Color.WHITE);

21 g2d.setStroke(new BasicStroke(6.0f));

22 g2d.draw(

23 new Arc2D.Double(240, 30, 75, 100, 0, 270, Arc2D.PIE));
24

Fig. 13.29 | Demonstrating some Java 2D shapes. (Part 3 of 4.)

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

25 // draw 2D lines 1in green and yellow

26 g2d.setPaint(Color.GREEN);

27 g2d.draw(new Line2D.Double(395, 30, 320, 150));

28

29 // draw 2D 1ine using stroke

30 float[] dashes = {10}; // specify dash pattern

31 g2d.setPaint(Color.YELLOW) ;

32 g2d.setStroke(new BasicStroke(4, BasicStroke.CAP_ROUND,
33 BasicStroke.JOIN_ROUND, 10, dashes, 0));

34 g2d.draw(new Line2D.Double(320, 30, 395, 150));

35 }

36 } // end class ShapesJPanel

Fig. 13.29 | Demonstrating some Java 2D shapes. (Part 4 of 4.)

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

1 // Fig. 13.30: Shapes.java

2 // Testing Shapes]Panel.

3 import javax.swing.JFrame;

4

5 public class Shapes

6 {

7 // execute application

8 public static void main(String[] args)

9 {

10 // create frame for Shapes]Panel

11 JFrame frame = new JFrame("Drawing 2D shapes");
12 frame.setDefaultCloseOperation(JFrame. EXIT_ON_CLOSE);
13

14 // create Shapes]Panel

15 ShapesJPanel shapes]Panel = new ShapesJPanel ();
16

17 frame.add(shapesJPanel);

I8 frame.setSize(425, 200);

19 frame.setVisible(true);
20 }

21 1} // end class Shapes

Fig. 13.30 | Testing ShapesJPanel. (Part | of 2.)

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

| £| Drawing 2D shapes f=liE ==

~

JARAARAEEHAR
FEAAARAEAEARAR
ol s s e
sl s s e e
FEAAAREEAAA
AR EAREAAE
"AEARERER

g

Fig. 13.30 | Testing ShapesJPanel. (Part2 of 2.)

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

13.8 Java 2D API (cont.)

» Graphics2D method setPaint sets the Paint object that
determines the color for the shape to display.

» A Paint object implements interface
java.awt.Paint.

e Can be something one of the predeclared Color, or it can be an
instance of the Java 2D API’s GradientPaint, SystemColor,
TexturePaint, LinearGradientPaint or
RadialGradientPaint classes.

» Class GradientPaint helps draw a shape in gradually
changing colors—called a gradient.

» Graphics2D method fill draws a filled Shape object—an

object that implements interface Shape (package
java.awt).

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

13.8 Java 2D API (cont.)

» Graphics2D method setStroke sets the
characteristics of the shape’s border (or the lines for
any other shape).

e Requires as Its argument an object that implements interface
Stroke (package java.awt).

» Class Bas1cStroke provides several constructors to
specify the width of the line, how the line ends (called
the end caps), how lines join together (called line joins)
and the dash attributes of the line (if it’s a dashed line).

» Graphics2D method draw draws a Shape object.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

13.8 Java 2D API (cont.)

» Class Bufferedimage (package java.awt.1mage) can be
used to produce images in color and grayscale.

» The third argument Bufferedimage.TYPE_INT_RGB indicates
that the image Is stored in color using the RGB color
scheme.

» BufferedImage method create-Graphics creates a
Graph1ics?2D object for drawing into the
BufferedImage.

» ATexturePaint object uses the image stored in its
associated BufferedImage (the first constructor
argument) as the fill texture for a filled-in shape.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

13.8 Java 2D API (cont.)

» Constant Arc2D.PIE indicates that the arc Is closed by
drawing two lines—one line from the arc’s starting
point to the center of the bounding rectangle and one
line from the center of the bounding rectangle to the
ending point.

» Constant Arc2D.CHORD draws a line from the starting
point to the ending point.

» Constant Arc2D.OPEN specifies that the arc should not
be closed.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

13.8 Java 2D API (cont.)

» BasicStroke.CAP_ROUND causes a line to have rounded
ends.

» If lines join together (as In a rectangle at the corners),
use BasicStroke.JOIN_ROUND to indicate a rounded

join.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

13.8 Java 2D API (cont.)

» General path—constructed from straight lines and complex curves.

» Represented with an object of class GeneralPath (package
java.awt.geom).

» GeneralPath method moveTo moves to the specified point.
» GeneralPath method lineTo draws a line from the current point to
the specified point.

» GeneralPath method closePath draws a line from the last point to
the point specified in the last call to moveTo.

» Graphics2D method translate moves the drawing origin to the
specified location.

» Graphics2D method rotate rotates the next displayed shape.
e The argument specifies the rotation angle in radians (with 360° = 2z radians).

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

1 // Fig. 13.31: Shapes2]Panel.java

2 // Demonstrating a general path.

3 dimport java.awt.Color;

4 dimport java.awt.Graphics;

5 dimport java.awt.Graphics2D;

6 import java.awt.geom.GeneralPath;

7 import java.security.SecureRandom;

8 import javax.swing.JPanel;

9

10 public class Shapes2]Panel extends JPanel

11 {

12 // draw general paths

13 @verride

14 public void paintComponent(Graphics g)

15 {

16 super.paintComponent(g);

17 SecureRandom random = new SecureRandom();
18

19 int[] xPoints = {55, 67, 109, 73, 83, 55, 27, 37, 1, 43};
20 int[] yPoints = {0, 36, 36, 54, 96, 72, 96, 54, 36, 36};
21
22 Graphics2D g2d = (Graphics2D) g;
23 CeneralPath star = new GeneralPath();
24

Fig. 13.31 | Java 2D general paths. (Part | of 2.)

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

25 // set the initial coordinate of the General Path

26 star.moveTo(xPoints[0], yPoints[0]);

27

28 // create the star--this does not draw the star

29 for (int count = 1; count < xPoints.length; count++)

30 star.lineTo(xPoints[count], yPoints[count]);

31

32 star.closePath(); // close the shape

33

34 g2d.translate(150, 150); // translate the origin to (150, 150)
35

36 // rotate around origin and draw stars in random colors
37 for (int count = 1; count <= 20; count++)

38 {

39 g2d.rotate(Math.PI / 10.0); // rotate coordinate system
40

41 // set random drawing color

42 g2d.setColor(new Color(random.nextInt(256),

43 random.nextInt(256), random.nextInt(256)));

44

45 g2d.fill(star); // draw filled star

46 }

47 }

48 1} // end class Shapes2]Panel

Fig. 13.31 | Java 2D general paths. (Part 2 of 2.)

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

1 // Fig. 13.32: Shapes2.java

2 // Demonstrating a general path.

3 dimport java.awt.Color;

4 import javax.swing.JFrame;

5

6 public class Shapes?2

7 {

8 // execute application

9 public static void main(String[] args)

10 {

11 // create frame for Shapes2]Panel

12 JFrame frame = new JFrame("Drawing 2D Shapes");

13 frame.setDefaultCloseOperation(JFrame. EXIT_ON_CLOSE);
14

15 Shapes2]Panel shapes2]Panel = new Shapes2]Panel();
16 frame.add(shapes2]JPanel);

17 frame.setBackground(Color .WHITE);

I8 frame.setSize(315, 330);

19 frame.setVisible(true);
20 }

21 } // end class Shapes2

Fig. 13.32 | Demonstrating a general path. (Part | of 2.)

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

|| Drawing 2D Shapes E=HEE8 =

Fig. 13.32 | Demonstrating a general path. (Part 2 of 2.)

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

	Slide 1: Chapter 13 Graphics and Java 2D
	Slide 2
	Slide 3
	Slide 4: 13.1 Introduction
	Slide 5
	Slide 6
	Slide 7: 13.1 Introduction (cont.)
	Slide 8: 13.1 Introduction (cont.)
	Slide 9: 13.1 Introduction (cont.)
	Slide 10
	Slide 11: 13.2 Graphics Contexts and Graphics Objects
	Slide 12: 13.2 Graphics Contexts and Graphics Objects (cont.)
	Slide 13: 13.3 Color Control
	Slide 14
	Slide 15
	Slide 16
	Slide 17: 13.3 Color Control (cont.)
	Slide 18: 13.3 Color Control (cont.)
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25: 13.3 Color Control (cont.)
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33: 13.4 Manipulating Fonts
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42: 13.4 Manipulating Fonts (cont.)
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49: 13.5 Drawing Lines, Rectangles and Ovals
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57: 13.5 Drawing Lines, Rectangles and Ovals (cont.)
	Slide 58
	Slide 59
	Slide 60: 13.6 Drawing Arcs
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67: 13.7 Drawing Polygons and Polylines
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76: 13.8 Java 2D API
	Slide 77: 13.8 Java 2D API (cont.)
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84: 13.8 Java 2D API (cont.)
	Slide 85: 13.8 Java 2D API (cont.)
	Slide 86: 13.8 Java 2D API (cont.)
	Slide 87: 13.8 Java 2D API (cont.)
	Slide 88: 13.8 Java 2D API (cont.)
	Slide 89: 13.8 Java 2D API (cont.)
	Slide 90
	Slide 91
	Slide 92
	Slide 93

