Chapter 12
GUI Components: Part 1

Java How to Program, 10/e

OBJECTIVES
In this chapter you'll:

m Learn how to use the Nimbus look-and-feel.
m Build GUIs and handle events generated by user interactions with GUIs.

m Understand the packages containing GUI components, event-handling classes and
interfaces.

m Create and manipulate buttons, labels, lists, text fields and panels.
m Handle mouse events and keyboard events.

m Use layout managers to arrange GUI components.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

12.1 Introduction

12.2 Java’s Nimbus Look-and-Feel

12.3 Simple GUI-Based Input/Output with JOptionPane

12.4 Overview of Swing Components

12.5 Displaying Text and Images in a Window

12.6 Text Fields and an Introduction to Event Handling with Nested Classes
12.7 Common GUI Event Types and Listener Interfaces

12.8 How Event Handling Works

12.9 JButton

12.10Buttons That Maintain State

[2.10.1 JCheckBox
12.10.2 JRadioButton

12.11 JComboBox; Using an Anonymous Inner Class for Event Handling
12.12]JL1st

12.13 Multiple-Selection Lists

12.14 Mouse Event Handling

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

12.15 Adapter Classes
12.16 JPanel Subclass for Drawing with the Mouse
12.17Key Event Handling

12.18Introduction to Layout Managers

[2.18.1 FlowLayout
[2.18.2 BorderLayout
[2.18.3 GridLayout

12.19Using Panels to Manage More Complex Layouts
12,20 JTextArea
12.21 Wrap-Up

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

12.1 Introduction

» A graphical user interface (GUI) presents a user-
friendly mechanism for interacting with an application.
> Pronounced “GOO-ee”

> (Gives an application a distinctive “look-and-feel.”
- Consistent, intuitive user-interface components give users a
sense of familiarity

> Learn new applications more quickly and use them more
productively.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

Look-and-Feel Observation 12.1

= Providing different applications with consistent, intui-
tive user-interface components gives users a sense of fa-
miliarity with a new application, so that they can learn
it more quickly and use it more productively.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

12.1 Introduction (cont.)

» Built from GUI components.
- Sometimes called controls or widgets—short for window
gadgets.
» User interacts via the mouse, the keyboard or another
form of input, such as voice recognition.

» IDES

> Provide GUI design tools to specify a component’s Size,
location and other attributes in a visual manner by using the
mouse, keyboard and drag-and-drop.

- Generate the GUI code for you.

> Greatly simplify creating GUIs, but each IDE has different
capabilities and generates different code.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

12.1 Introduction (cont.)

» Example of a GUI: SwingSet3 application (Fig. 12.1)

» title bar at top contains the window’s title.

» menu bar contains menus (File and View).

» In the top-right region of the window Is a set of buttons
o Typically, users press buttons to perform tasks.

» In the GUI Components area of the window is a combo
box;

> User can click the down arrow at the right side of the box to select
from a list of items.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

menu title bar menu har combo box text area button scroll bar
eftingses / F=8 o)
Fil Wiew
" |
I ,4utton Demo f
Simple Buttons

View: | by category fl'
s

 Toplevel Containers

JFrame
JDialog
|:| JWindow

w Containers

JinternalFrame

JTabbedPane
JscrollPane

JsplitPane

Today's modern GUIs
often use buttons which
don't look like the
traditional "push” button.
Swing's button
component,
avax.swing.JButton, can
be used to create both
ordinary and more creative
button visuals. In the end,
they all perform an action
when clicked.

Morf Interesting Buttons

‘s @ Get Maore Info

Connect
To highlight the source
code usedto create a
particular button, popup
the context menu over that
button.

java.net
il

GridBaglLayout

JTable

JTree

\j

Highlight code to: | Select One

Mo highlight selected

]
- |

J ButtonDemo java | JHyperiinkjava | ButonDemo.ntmi | inages |

JList

¥ Controls

@ ToggleButtons

e
Copyright 2007-2008 Sun Microsystems, Inc. All Rights Reserved.

Redistribution and use in source and binary forms, with or without

ed provided th

ion, are permi the following conditions

IButton *
—_—— |

Fig. 12.1 | SwingSet3 application demonstrates many of Java’s Swing GUI
components.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

12.2 Java’s Nimbus Look-and-Feel

» Swing has a cross-platform look-and-feel known as
Nimbus.

» We’ve configured our systems to use Nimbus as the
default look-and-feel.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

12.2 Java’s Nimbus Look-and-Feel
(cont.)

» Three ways to use Nimbus:

> Set It as the default for all Java applications that run on
your computer.

> Set It as the look-and-feel when you launch an
application by passing a command-line argument to the
java command.

o Set It as the look-and-feel programatically in your
application (Section 22.6).

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

12.2 Java’s Nimbus Look-and-Feel

(cont.)

» To set Nimbus as the default for all Java applications:
> Create a text file named swing.propertiesinthe 11b
folder of both your JDK installation folder and your JRE
Installation folder.
> Place the following line of code in the file:

swing.defaultlaf= _
com.sun.java.swing.plaf.nimbus.
NimbusLookAndFeel

» In addition to the standalone JRE, there is a JRE nested In
your JDK’s installation folder. If you are using an IDE that
depends on the JDK (e.g., NetBeans), you may also need to
place the swing.properties file in the nested jre

folder’s 11 b folder.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

12.2 Java’s Nimbus Look-and-Feel
(cont.)

» To select Nimbus on an application-by-application

basis:
> Place the following command-line argument after the java

command and before the application’s name when you run the
application:
-Dswing.defaultlaf=

com.sun.java.swing.plaf.nimbus.
NimbusLookAndFeel

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

<
12.3 Simple GUI-Based Input/Output witH‘iJ
JoptionPane

» Most applications use windows or dialog boxes (also called
dialogs) to interact with the user.

» JOptionPane (package javax.swing) provides prebuilt
dialog boxes for input and output
> Displayed via static JOptionPane methods.

» Figure 12.2 uses two input dialogs to obtain integers from
the user and a message dialog to display the sum of the
Integers the user enters.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

1 // Fig. 12.2: Addition.java

2 // Addition program that uses JOptionPane for input and output.
3 dimport javax.swing.JOptionPane;

4

5 public class Addition

6 {

7 public static void main(String[] args)

8 {

9 // obtain user input from JOptionPane input dialogs

10 String firstNumber =

11 JOptionPane.showInputDialog("Enter first integer”);

12 String secondNumber =

13 JOptionPane.showInputDialog("Enter second integer");
14

I5 // convert String inputs to int values for use in a calculation
16 int numberl = Integer.parselnt(firstNumber);

17 int number2 = Integer.parselnt(secondNumber);

18

19 int sum = numberl + number2;
20

Fig. 12.2 | Addition program that uses JOptionPane for input and output. (Part |
of 3.)

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

21 // display result in a JOptionPane message dialog

22 JOptionPane. showMessageDialog(null, "The sum 1is
23

24 }
25 1} // end class Addition

"+ sum,
"Sum of Two Integers", JOptionPane.PLAIN_MESSAGE);

Fig. 12.2 | Addition program that uses JOptionPane for input and output. (Part 2
of 3.)

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

Prompt to the user

When the user clicks QK,
showInputDialog returns
tothe program the 100 typed
by the user asa String; the
Program must comvert the
Stringtoan Nt

(a) Input dialog displayved by lines 10-11

Tl Input (5]

K Enterﬁrstinteger/’/
K |

DKDJ [Cancel J

———]

Text field in which the
[~ user types a value

(b) Input dialog displaved by lines 12-13 (c) Message dialog displaved by

Input

X3

lines22-23—wWhentheuserclicks

OK, the message dialog is dismissed (removed from the screen)

Sum of Two Integers

Enter second integer
23

| The sumis 123

[DKDll Cancel J

5

Fig. 12.2 | Addition program that uses J0ptionPane for input and output. (Part 3
of 3.)

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

12.3 Simple GUI-Based Input/Outpu%
with JOptionPane (cont.)

» JOptionPane static method showlnputDialog
displays an input dialog, using the method’s String
argument as a prompt.
> The user types characters in the text field, then

clicks OK or presses the Enter key to submit the
String to the program.

> Clicking OK dismisses (hides) the dialog.

> Can input only Strings. Typical of most GUI
components.

> If the user clicks Cancel, returns nul 1.

- JOptionPane dialog are dialog—the user cannot
Interact with the rest of the application while dialog
Is displayed.

\

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

Look-and-Feel Observation 12.2
= The prompt in an input dialog typically uses sentence-
style capitalization—a style that capitalizes only the
furst letter of the first word in the text unless the word is
a proper noun (for example, Jones).

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

Look-and-Feel Observation 12.3

= Do not overuse modal dialogs, as they can reduce the us-
ability of your applications. Use a modal dialog only
when it s necessary to prevent users from interacting with
the rest of an application until they dismiss the dialog.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

12.3 Simple GUI-Based Input/Outpu®

with JOptionPane (cont.)

» Converting Stringsto 1nt Values
- Integer class’s static method parseInt converts its

String argument to an 1nt value and might throw a
NumberFormatException.

» Message Dialogs

> JOptionPane static method showMessageDialog
displays a message dialog.

0 ;{I‘_h? first argument helps determine where to position the

lalog.

- f n?ﬂ 1, the dialog box is displayed at the center of your screen.

> The second argument is the message to display.

> The third argument is the String that should appear in the
title bar at the top of the dialog.

> The fourth argument is the type of message dialog to

display.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

<
12.3 Simple GUI-Based Input/Output wit#
JOoptionPane (cont.)

» Message Dialogs

> A JOption-Pane.PLAIN_MESSAGE dialog does not display an
Icon to the left of the message.

» JOptionPane online documentation:

- http://docs.oracle.com/javase/7/docs/api/j
avax/swing/JOptionPane.html

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

Look-and-Feel Observation 12.4

< The title bar of a window typically uses book-title cap-
italization—a style that capitalizes the first letter of
each significant word in the text and does not end with

any punctuation (for example, Capitalization in a Book
Title).

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

ERROR_MESSAGE

INFORMATION_MESSAGE

WARNING_MESSAGE

QUESTION_MESSAGE

PLAIN_MESSAGE

—
i

=

no
1con

Indicates an error.
Indicates an informational message.
Warns of a potential problem.

Poses a question. This dialog normally requires a
response, such as clicking a Yes or a No button.

A dialog that contains a message, but no icon.

Fig. 12.3 | JOptionPane static constants for message dialogs.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

12.4 Overview of Swing Components

» Swing GUI components located in package javax.swing.

» Abstract Window Toolkit (AWT) in package java.awt Is another
set of GUI components in Java.
> When a Java application with an AWT GUI executes on different Java
platforms, the application’s GUI components display differently on each
platform.
» Together, the appearance and the way in which the user interacts
with the application are known as that application’s look-and-
feel.

» Swing GUI components allow you to specify a uniform look-
and-feel for your application across all platforms or to use each
platform’s custom look-and-feel.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

JLabel
JTextField
JButton
JCheckBox
JComboBox
JList

JPanel

Displays uneditable text and/or icons.

Typically receives input from the user.

Triggers an event when clicked with the mouse.

Specifies an option that can be selected or not selected.

A drop-down list of items from which the user can make a selection.

A [ist of items from which the user can make a selection by clicking on any one
of them. Multiple elements can be selected.

An area in which components can be placed and organized.

Fig. 12.4 | Some basic Swing GUI components.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

12.4 Overview of Swing Components
(cont.)

» Most Swing components are not tied to actual GUI
components of the underlying platform.
> Known as lightweight components.

» AWT components are tied to the local platform and are
called heavyweight components, because they rely on the
local platform’s windowing system to determine their
functionality and their look-and-feel.

» Several Swing components are heavyweight components.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

12.4 Overview of Swing Components
(cont.)

» Class Component (package java.awt) declares
many of the attributes and behaviors common to the
GUI components in packages java.awt and
javax.swing.

» Most GUI components extend class Component
directly or indirectly.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

Look-and-Feel Observation 12.5

= Swing GUI components allow you to specify a uniform
look-and-feel for your application across all platforms or
to use each platform’s custom look-and-feel. An applica-
tion can even change the look-and-feel during execution
to enable users to choose their own preferred look-and-

feel

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

Object
Component

Container

JComponent I

Fig. 12.5 | Common superclasses of the lightweight Swing components.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

12.4 Overview of Swing Components
(cont.)

» Class Container (package java.awt) is a subclass
of Component.

» Components are attached to Containers so that
they can be organized and displayed on the screen.

» Any object that is a Container can be used to
organize other Components ina GUI.

» Because a Container is a Component, you can
place Containers in other Containers to help
organize a GUI.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

12.4 Overview of Swing Components
(cont.)

» Class JComponent (package javax.swing)isa
subclass of Container.

» JComponent is the superclass of all lightweight
Swing components, all of which are also
containers.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

12.4 Overview of Swing Components
(cont.)

» Some common lightweight component
features supported by JComponent include:
> pluggable look-and-feel
o Shortcut keys (called mnemonics)

> Common event-handling capabilities for components
that initiate the same actions in an application.

> tool tips
> Support for accessibility
> Support for user-interface localization

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

12.5 Displaying Text and Images in a

Window

4

4

Most windows that can contain Swing GUI components are
Instances of class JFrame or a subclass of JFrame.

JFrame is an indirect subclass of class
java.awt.window

Provides the basic attributes and behaviors of a window

> atitle bar at the top

> buttons to minimize, maximize and close the window

Most of our examples will consist of two classes

> asubclass of JFrame that demonstrates new GUI concepts

> an application class in which main creates and displays the
application’s primary window.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

12.5 Displaying Text and Images in a
Window (cont.)

» In alarge GUI
o Difficult to identify the purpose of every component.
> Provide text stating each component’s purpose.
» Such text is known as a label and is created with class
JLabel—a subclass of JComponent.
- Displays read-only text, an image, or both text and an image.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

Look-and-Feel Observation 12.6

« Text ina JLabel normally uses sentence-style capital-
1zation.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

I // Fig. 12.6: LabelFrame.java

2 // JLabels with text and 1icons.

3 dimport java.awt.FlowlLayout; // specifies how components are arranged
4 import javax.swing.JFrame; // provides basic window features

5 dmport javax.swing.JLabel; // displays text and images

6 import javax.swing.SwingConstants; // common constants used with Swing
7 import javax.swing.Icon; // interface used to manipulate images

8 1import javax.swing.Imagelcon; // loads images

9

10 public class LabelFrame extends JFrame

11 {

12 private final JLabel labell; // JlLabel with just text

13 private final JLabel Tlabel2; // JlLabel constructed with text and icon
14 private final JLabel Tabel3; // JlLabel with added text and icon
15

16 // LabelFrame constructor adds JLabels to JFrame

17 public LabelFrame()

18 {

19 super("Testing JLabel™);
20 setLayout(new FlowLayout()); // set frame layout
21
22 // JLabel constructor with a string argument
23 labell = new JLabel("Label with text");
24 Tabell.setToolTipText("This is labell");
25 add(labell); // add Tabell to JFrame

2.6 | JLabels with text and icons. (Part | of 2.)

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

26

27 // JLabel constructor with string, Icon and alignment arguments
28 Icon bug = new Imagelcon(getClass().getResource("bugl.png"));
29 label2 = new JLabel ("Label with text and icon", bug,

30 SwingConstants.LEFT);

31 Tabel2.setTool TipText("This is label2");

32 add(label2); // add label2 to JFrame

33

34 Tabel3 = new JLabel(); // JLabel constructor no arguments

35 label3.setText("Label with icon and text at bottom");

36 label3.setIcon(bug); // add icon to JlLabel

37 Tabel3.setHorizontal TextPosition(SwingConstants.CENTER);

38 Tabel3.setVerticalTextPosition(SwingConstants.BOTTOM);

39 Tabel3.setToolTipText("'This is label3");

40 add(label3); // add Tabel3 to JFrame

41 }

42 1} // end class LabelFrame

Fig. 12.6 | JLabels with text and icons. (Part 2 of 2.)

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

1 // Fig. 12.7: LabelTest.java

2 // Testing LabelFrame.

3 import javax.swing.JFrame;

4

5 public class LabelTest

6 {

7 public static void main(String[] args)

8 {

9 LabelFrame labelFrame = new LabelFrame();
10 TabelFrame.setDefaul tCloseOperation(JFrame.EXIT_ON_CLOSE);
11 TabelFrame.setSize(260, 180);

12 TabelFrame.setVisible(true);

13 }

14 } // end class LabelTest

=1
0Q

. 12.7 | Testing LabelFrame. (Part | of 2.)

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

Slietngind | oo e

Label with text

@ Label with text and icon
| =

@

=

Label with icon and text at bottom

Gltemgid | oo

Label with text

@ Label with text and icon
| =

Bl

Label with icon and text at bottom

Fig. 12.7 | Testing LabelFrame. (Part Z of 2.)

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

12.5 Displaying Text and Images in a
Window (cont.)

» JFrame’s constructor uses its String argument as the
text in the window’s title bar.

» Must attach each GUI component to a container, such as a
JFrame.
» You typically must decide where to position each GUI

component.

> Known as specifying the layout of the GUI components.

o Java provides several layout managers that can help you position
components.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

12.5 Displaying Text and Images in a
Window (cont.)

» Many IDEs provide GUI design tools in which you can
specify the exact size and location of a component

» IDE generates the GUI code for you
» Greatly simplifies GUI creation

» To ensure that this book’s examples can be used with any
IDE, we did not use an IDE to create the GUI code

» We use Java’s layout managers in our GUI examples

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

12.5 Displaying Text and Images Iin a
Window (cont.)

» FlowLayout

- GUI components are placed in a container from left to right
In the order in which the program attaches them to the
container.

> When there Is no more room to fit components left to right,
components continue to display left to right on the next line.

> If the container is resized, a FlowLayout reflows the
components to accommodate the new width of the container,
possibly with fewer or more rows of GUI components.
» Method setLayout Is inherited from class
contailner.

> argument must be an object of a class that implements the
LayoutManager interface (e.g., FlowLayout).

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

12.5 Displaying Text and Images Iin a
Window (cont.)

» JLabel constructor can receive a String specifying the
label’s text.

» Method setToolTipText (inherited by JLabel from
JComponent) specifies the tool tip that is displayed when
the user positions the mouse cursor over a JComponent
(such as a JLabel).

» You attach a component to a container using the add
method, which is inherited indirectly from class
container.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

Common Programming Error 12.1
ﬁ If you do not explicitly add a GUI component to a con-
tainer, the GUI component will not be displayed when

the container appears on the screen.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

Look-and-Feel Observation 12.7

« Use tool tips to add descriptive text to your GUI compo-
nents. This text helps the user determine the GUI com-
ponent’s purpose in the user interface.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

12.5 Displaying Text and Images Iin a
Window (cont.)

» lcons enhance the look-and-feel of an application and are
also commonly used to indicate functionality.

» An icon is normally specified with an Icon (package
javax.swing) argument to a constructor or to the
component’s setlcon method.

» Imagelcon (package javax.swing) supports several
Image formats, including Graphics Interchange Format
(GIF), Portable Network Graphics (PNG) and Joint
Photographic Experts Group (JPEG).

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

12.5 Displaying Text and Images Iin a
Window (cont.)

» getClass() .getResource("bugl.png™)

> Invokes method getClass (inherited indirectly from class
Object) to retrieve a reference to the Class object that
represents the Labe 1 Frame class declaration.

> Next, invokes Class method getResource, which returns
the location of the image as a URL.

> The ImageIcon constructor uses the URL to locate the
Image, then loads it into memory.

> The class loader knows where each class it loads is located
on disk. Method getResource uses the Class object’s
class loader to determine the location of a resource, such as
an image file.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

12.5 Displaying Text and Images Iin a

Window (cont.)

» A JLabel can display an Icon.
» JLabel constructor can receive text and an Icon.

> The last constructor argument indicates the justification of
the label’s contents.

> Interface SwingConstants (package javax.swing)
declares a set of common integer constants (such as
SwingConstants.LEFT,
SwingConstants. CENTER and
SwingConstants.RIGHT) that are used with many
Swing components.

- By default, the text appears to the right of the image when a
label contains both text and an image.

> The horizontal and vertical alignments of a JLabe 1 can be
set with methods setHorizontalAlignment and

setVerticalAlignment, respectively.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

12.5 Displaying Text and Images Iin a

Window (cont.)

)

vV Vv Vv Vv

Class JLabe 1 provides methods to change a JLabe1’s
appearance after it has been instantiated.

Method setText sets the text displayed on the label.
Method getText retrieves the JLabe1’s current text.
Method setlcon specifies the Icon to display.

Method getlcon retrieves the current Icon displayed on
a label.

Methods setHorizontalTextPosition and

setVerticalTextPosition specify the text position in the
label.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

Horizontal-position constants

LEFT Place text on the left
CENTER
RIGHT Place text on the right

Place text in the center

Vertical-position constants

TOP Place text at the top
CENTER
BOTTOM

Place text in the center
Place text at the bottom

Fig. 12.8 | Positioning constants (static members of interface
SwingConstants).

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

12.5 Displaying Text and Images in a
Window (cont.)

>
>

By default, closing a window simply hides the window.

Calling method setDefaultCloseOperation (inherited from class
JFrame) with the argument JFrame.EXIT_ON_CLOSE indicates
that the program should terminate when the window is closed by
the user.

Method setSize specifies the width and height of the window iIn
pixels.

Method setVisible with the argument true displays the window
on the screen.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

12.6 Text Fields and an Introduction to
Event Handling with Nested Classes

» GUIs are event driven.

» When the user interacts with a GUI component, the
Interaction—known as an event—drives the program to
perform a task.

» The code that performs a task in response to an event is
called an event handler, and the process of responding
to events Is known as event handling.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

<

12.6 Text Fields and an Introduction to
Event Handling with Nested Classes (cont.)

» JTextFields and JPasswordFields (package javax.swing).

» JTextField extends class JTextComponent (package
javax.swing. text), which provides many features common
to Swing’s text-based components.

» Class JPasswordField extends JTextField and adds
methods that are specific to processing passwords.

» JPasswordField shows that characters are being typed as the
user enters them, but hides the actual characters with an echo
character.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

I // Fig. 12.9: TextFieldFrame.java

2 // JTextFields and JPasswordFields.

3 import java.awt.FlowlLayout;

4 import java.awt.event.ActionlListener;

5 dimport java.awt.event.ActionEvent;

6 import javax.swing.JFrame;

7 dimport javax.swing.JTextField;

8 import javax.swing.JPasswordField;

9 dimport javax.swing.JOptionPane;
10
Il public class TextFieldFrame extends JFrame
12 {

13 private final JTextField textFieldl; // text field with set size
14 private final JTextField textField2; // text field with text

15 private final JTextField textField3; // text field with text and size
16 private final JPasswordField passwordField; // password field with text
17

18 // TextFieldFrame constructor adds JTextFields to JFrame

19 public TextFieldFrame()
20 {
21 super("Testing JTextField and JPasswordField");
22 setLayout(new FlowLayout());
23

Fig. 12.9 | JTextFields and JPasswordFields. (Part | of 4.)

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47

}

// construct text field with 10 columns
textFieldl = new JTextField(10);
add(textFieldl); // add textFieldl to JFrame

// construct text field with default text
textField2 = new JTextField("Enter text here");
add(textField2); // add textField2 to JFrame

// construct text field with default text and 21 columns
textField3 = new JTextField("Uneditable text field"”, 21);
textField3.setEditable(false); // disable editing
add(textField3); // add textField3 to JFrame

// construct password field with default text
passwordField = new JPasswordField("Hidden text");
add(passwordField); // add passwordField to JFrame

// register event handlers

TextFieldHandler handler = new TextFieldHandler();
textFieldl.addActionListener(handler);
textField2.addActionlListener(handler);
textField3.addActionListener(handler);
passwordField.addActionListener(Chandler);

Fig. 12.9 | JTextFields and JPasswordFields. (Part 2 of 4.)

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
(4!

// private inner class for event handling
private class TextFieldHandler implements ActionListener

{

// process text field events
@Jverride
public void actionPerformed(ActionEvent event)

{

"

String string = ;

// user pressed Enter in JTextField textFieldl
if (event.getSource() == textFieldl)
string = String.format("textFieldl: %s",
event.getActionCommand());

// user pressed Enter in JTextField textField2
else if (event.getSource() == textField2)
string = String.format("textField2: %s",
event.getActionCommand());

// user pressed Enter in JTextField textField3
else if (event.getSource() == textField3)
string = String.format("textField3: %s",
event.getActionCommand());

Fig. 12.9 | JTextFields and JPasswordFields. (Part 3 of 4.)

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

72

73 // user pressed Enter in JTextField passwordField
74 else if (event.getSource() == passwordField)

75 string = String.format("passwordField: %s",

76 event.getActionCommand());

77

78 // display JTextField content

79 JOptionPane.showMessageDialog(nhull, string);

80 }

81 } // end private inner class TextFieldHandler

82 } // end class TextFieldFrame

Fig. 12.9 | JTextFields and JPasswordFields. (Part 4 of 4.)

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

w7 Software Engineering Observation 12.1
The event listener for an event must implement the
appropriate event-listener interface.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

Common Programming Error 12.2

% If you forget to register an event-handler object for a par-
ticular GUI component’s event type, events of that type
will be ignored.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

<

12.6 Text Fields and an Introduction to
Event Handling with Nested Classes (cont.)

» When the user types data into a JTextFieldora
JPasswordField, then presses Enter, an event
oCccurs.

» You can type only in the text field that is “in focus.”

» A component receives the focus when the user clicks
the component.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

<

12.6 Text Fields and an Introduction to
Event Handling with Nested Classes (cont.)

» Before an application can respond to an event for a
particular GUI component, you must perform several
coding steps:

- Create a class that represents the event handler.

- Implement an appropriate interface, known as an event-
listener interface, in the class from Step 1.

- Indicate that an object of the class from Steps 1 and 2
should be notified when the event occurs. This is known
as registering the event handler.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

<

12.6 Text Fields and an Introduction to
Event Handling with Nested Classes (cont.)

» All the classes discussed so far were so-called top-level
classes—that is, they were not declared inside another
class.

» Java allows you to declare classes inside other
classes—these are called nested classes.

o Can be staticornon-static.

o Non-static nested classes are called inner classes and are
frequently used to implement event handlers.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

<

12.6 Text Fields and an Introduction to
Event Handling with Nested Classes (cont.)

» Before an object of an inner class can be created, there must first
be an object of the top-level class that contains the inner class.

» This Is required because an inner-class object implicitly has a
reference to an object of its top-level class.

» There is also a special relationship between these objects—the
Inner-class object is allowed to directly access all the variables
and methods of the outer class.

» Anested class that is static does not require an object of its
top-level class and does not implicitly have a reference to an
object of the top-level class.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

<

12.6 Text Fields and an Introduction to
Event Handling with Nested Classes (cont.)

» Inner classes can be declared public, protected
or private.
» Since event handlers tend to be specific to the

application in which they are defined, they are often
implemented as private inner classes.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

<

12.6 Text Fields and an Introduction to
Event Handling with Nested Classes (cont.)

» GUI components can generate many events in response
to user Interactions.

» Each event Is represented by a class and can be
processed only by the appropriate type of event
handler.

» Normally, a component’s supported events are
described in the Java APl documentation for that
component’s class and 1its superclasses.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

<

12.6 Text Fields and an Introduction to
Event Handling with Nested Classes (cont.)

» When the user presses Enter ina JTextField or
JPasswordField, an ActionEvent (package
java.awt. event) occurs.

» Processed by an object that implements the interface
ActionListener (package java.awt.event).

» To handle ActionEvents, a class must implement
interface ActionListener and declare method
actionPerformed.

> This method specifies the tasks to perform when an ActionEvent
occurs.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

<

12.6 Text Fields and an Introduction to
Event Handling with Nested Classes (cont.)

» Must register an object as the event handler for each
text field.

» addActionListener registers an ActionListener
object to handle ActionEvents.

» After an event handler is registered the object listens
for events.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

<

12.6 Text Fields and an Introduction to
Event Handling with Nested Classes (cont.)

» The component with which the user interacts is the event
source.

» ActionEvent method getSource (inherited from class
EventObject) returns a reference to the event source.

» ActionEvent method getActionCommand obtains the
text the user typed in the text field that generated the event.

» JPasswordField method getPassword returns the
password’s characters as an array of type char.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

1 // Fig. 12.10: TextFieldTest.java

2 // Testing TextFieldFrame.

3 import javax.swing.JlFrame;

.|

5 public class TextFieldTest

6 {

T public static void main(5tring[] args)

8 {

9 TextFieldFrame textFieldFrame = new TextFieldFrame();
10 textFieldFrame.setDefaultCloselperation{JFrame.EXIT ON CLOSE);
[} textFieldFrame.setSize (350, 100);

12 textFieldFrame.setVisible(true);

13 1

&

} // end class TextFieldTest

| £ Testing JTextField and JPasswordField [= |[& |[=5]

|| ‘ Enter text here

Uneditable text field AR AR

Fig. 12.10 | Testing TextFieldFrame. (Part | of 3.)

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

£ Testing JTextField and JPasswordField | = || = |[a] Message (5]

Ihello IEntertextherel
textField1: hello
‘ Uneditable text field ‘ srrrnea

| 2| Testing TextField and JPasswordField | = || (=1 |2 Message]
hello Enterftext here
textField2: Enter text here
Uneditable text field AR

Lox]

Fig. 12.10 | Testing TextFieldFrame. (Part 2 of 3.)

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

-

| & Testing JTextField and JPasswordField [= || &][22 | Message (=]

hello Enter text here
textField3: Uneditable text field
Uneditable text field I} FEERRERAARE

Lo

|2| Testing JTextField and JPasswordField | = || = (s Message

hello Enter text here
passwordField: Hidden text
Uneditable text field |*Eﬂ*ﬂﬂ*‘

Lok

Fig. 12.10 | Testing TextFieldFrame. (Part 3 of 3.)

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

12.7 Common GUI Event Types and
Listener Interfaces

» Figure 12.11 illustrates a hierarchy containing many
event classes from the package java.awt.event.

» Used with both AWT and Swing components.

» Additional event types that are specific to Swing GUI
components are declared in package javax.swing.event.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

Object — ActionEvent

—— AdjustmentEvent
EventObject

L ltemEvent — ContainerEvent

& vent I — FocusEvent
— TextEvent

PaintEvent

il
il

L

— ComponentEvent

WindowEvent

|

— InputEvent

MouseEvent

MouseWheelEvent

H

Fig. 12.11 | Some event classes of package java.awt.event.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

12.7 Common GUI Event Types and
Listener Interfaces (cont.)

» Delegation event model—an event’s processing is
delegated to an object (the event listener) in the
application.

» For each event-object type, there is typically a
corresponding event-listener interface.

» Many event-listener types are common to both Swing and
AWT components.

> Such types are declared in package
java.awt.event, and some of them are shown in
Fig. 12.12.

» Additional event-listener types that are specific to Swing
components are declared in package
javax.swing.event.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

«interface»
java.util.EventListener

A

«interface» «interface» «interface»
ActionListener AdjustmentListener ComponentListener

«interface» «interface» «interface»
ContainerListener FocusListener ItemListener

«interface» «interface» «interface»
KeyListener MouseListener MouseMotionListener

«interface» «interface»
TextListener WindowListener

Fig. 12.12 | Some common event-listener interfaces of package
java.awt.event.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

12.7 Common GUI Event Types and
Listener Interfaces (cont.)

» Each event-listener interface specifies one or more
event-handling methods that must be declared in the
class that implements the interface.

» When an event occurs, the GUI component with which
the user interacted notifies its registered listeners by
calling each listener’s appropriate event-handling
method.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

12.8 How Event Handling Works

» How the event-handling mechanism works:

» Every JComponent has a variable 11stenerList that
refers to an EventListenerList (package
javax.swing.event).

» Maintains references to registered listeners in the
listenerList.

» When a listener Is registered, a new entry is placed in the
component’s 11stenerList.

» Every entry also includes the listener’s type.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

textFieldl handler

Q\\\\\ JTextField object Q\\\\\ TextFieldHandler object

TistenerList pubTlic void actionPerformed(
ActionEvent event)
— >
// event handled here
}

This reference is created by the statement
textFieldl.addActionListener(handler);

Fig. 12.13 | Event registration for JTextField textFieldl.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

12.8 How Event Handling Works (cont.)

» How does the GUI component know to call
actionPerformed rather than another method?

> Every GUI component supports several event types,
Including mouse events, key events and others.

- When an event occurs, the event is dispatched only to the
event listeners of the appropriate type.

> Dispatching is simply the process by which the GUI
component calls an event-handling method on each of its
listeners that are registered for the event type that occurred.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

12.8 How Event Handling Works (cont.)

» Each event type has one or more corresponding event-listener
Interfaces.
- ActionEvents are handled by ActionListeners
> MouseEvents are handled by MouselListeners and

MouseMotionListeners

> KeyEvents are handled by KeylListeners

» When an event occurs, the GUI component receives (from the
JVM) a unique event ID specifying the event type.

> The component uses the event ID to decide the listener type
to which the event should be dispatched and to decide which
method to call on each listener object.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

12.8 How Event Handling Works (cont.)

» For an ActionEvent, the event is dispatched to every
registered ActionListener’s actionPerformed
method.

» ForaMouse-Event, the event is dispatched to every
registered MouseL1stener or
MouseMotionListener, depending on the mouse event

that occurs.

> The MouseEvent’s event ID determines which of the several
mouse event-handling methods are called.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

<55 Performance Tip 12.1

GUIs should always remain responsive to the user. Per-
forming a long-running task in an event handler pre-
vents the user from interacting with the GUI until that
task completes. Section 23.11 demonstrates techniques
prevent such problems.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

12.9 JBuUtton

» A button Is a component the user clicks to trigger a
specific action.

» Several types of buttons
o command buttons
> checkboxes
> toggle buttons
o radio buttons

» Button types are subclasses of AbstractButton

(package javax.swing), which declares the
common features of Swing buttons.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

JComponent

AbstractBution

JButton JToggleButton

JRadioButton I

JCheckBox

Fig. 12.14 | Swing button hierarchy.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

12.9 JButton (cont.)

» A command button generates an Acti1onEvent when
the user clicks it.

» Command buttons are created with class JButton.

» The text on the face of a JButton is called a button
label.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

Look-and-Feel Observation 12.8

< The text on buttons typically uses book-title capitaliza-
tion.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

Look-and-Feel Observation 12.9
=+ A GUI can have many JButtons, but each button label
should be unique in the portion of the GUI that’s cur-

rently displayed. Having more than one JButton with
the same label makes the JButtons ambiguous to the us-

er.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

// Fig. 12.15: ButtonFrame.java

// Command buttons and action events.
import java.awt.FlowLayout;

import java.awt.event.ActionlListener;
import java.awt.event.ActionEvent;
import javax.swing.JFrame;

import javax.swing.JButton;

import javax.swing.Icon;

import javax.swing.Imagelcon;

10 1import javax.swing.JOptionPane;

OO~ bh WN =

12 public class ButtonFrame extends JFrame

13 {

14 private final JButton plain]JButton; // button with just text
15 private final JButton fancyJButton; // button with icons

16

17 // ButtonFrame adds JButtons to JFrame

18 public ButtonFrame()

19 {

20 super("Testing Buttons");

21 setLayout(new FlowLayout());

22

23 plain]JButton = new JButton("Plain Button"); // button with text
24 add(plain]Button); // add plain]JButton to JFrame

Fig. 12.15 | Command buttons and action events. (Part | of 2.)

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

25

26 Icon bugl = new ImageIcon(getClass().getResource("bugl.gif"));
27 Icon bug2 = new Imagelcon(getClass().getResource("bug2.gif"));
28 fancyJButton = new JButton('"Fancy Button", bugl); // set image
29 fancyJButton.setRolloverIcon(bug2); // set rollover image

30 add(fancyJButton); // add fancyJButton to JFrame

31

32 // create new ButtonHandler for button event handling

33 ButtonHandler handler = new ButtonHandler();

34 fancyJButton.addActionListener(Chandler);

35 plain]JButton.addActionListener(handler);

36 }

37

38 // inner class for button event handling

39 private class ButtonHandler implements ActionListener

40 {

41 // handle button event

42 @verride

43 public void actionPerformed(ActionEvent event)

44 {

45 JOptionPane.showMessageDialog(ButtonFrame.this, String.format(
46 "You pressed: %s", event.getActionCommand()));

47 }

48 }

49 1} // end class ButtonFrame

12.15 | Command buttons and action events. (Part 2 of 2.)

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

1 // Fig. 12.16: ButtonTest.java

2 // Testing ButtonFrame.

3 import javax.swing.JFrame;

4

5 public class ButtonTest

6 {

7 public static void main(String[] args)

8 {

9 ButtonFrame buttonFrame = new ButtonFrame();
10 buttonFrame.setDefaul tCloseOperation(JFrame.EXIT_ON_CLOSE);
11 buttonFrame.setSize(275, 110);

12 buttonFrame.setVisible(true);

13 }

14 } // end class ButtonTest

Fig. 12.16 | Testing ButtonFrame. (Part | of 3.)

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

|2 Testing Buttons [= I[EJ&S | | (2 Testing Buttons [=lEEs
| Plain Bulton | @ Fancy Bulton I Plain BUIIGE l I @ Fancy Buiton
Message

6 You pressed: Plain Buiton

Lox]

Fig. 12.16 | Testing ButtonFrame. (Part 2 of 3.)

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

I " = =

L Testing Buttons [= I 5] | | (2 Testing Buttons (o= =

Plain Builton l @ Fancy Buiton Plain Buiton @ Fancy Buiton
[

Message

6 You pressed: Fancy Buiton

(o]

Fig. 12.16 | Testing ButtonFrame. (Part 3 of 3.)

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

12.9 JButton (cont.)

» A JButton can display an Icon.

» A JButton can also have a rollover Icon
o displayed when the user positions the mouse over the JButton.

> The icon on the JButton changes as the mouse moves in and out of
the JButton’s area on the screen.
» AbstractButton method setRolloverlcon specifies the
Image displayed on the JButton when the user positions
the mouse over It.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

Look-and-Feel Observation 12.10

= Because class AbstractButton supports displaying text
and images on a button, all subclasses of Abstract-
Button also support displaying text and images.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

Look-and-Feel Observation 12.11

< Rollover icons provide visual feedback indicating that an
action will occur when when a JButton is clicked.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

12.9 JButton (cont.)

» JBuUttons, like JTextFields, generate
ActionEvents that can be processed by any
ActionListener object.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

',,w, Software Engineering Observation 12.2

88 When used in an inner class, keyword this refers to the
current inner-class object being manipulated. An inner-
class method can use its outer-class object’s this by
preceding this with the outer-class name and a dot (.)
separator, as in ButtonFrame. this.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

12.10 Buttons That Maintain State

» Three types of state buttons—JToggleButton,
JCheckBox and JRadioButton—that have on/off or
true/false values.

» Classes JCheckBox and JRadioButton are
subclasses of JToggleButton.

» JRad10oButtons are grouped together and are
mutually exclusive—only one in the group can be
selected at any time

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

12.10.1 JCheckBox

» JTextField method setFont (inherited by JTextField
Indirectly from class Component) sets the font of the
JTextFieldtoanew Font (package java.awt).

» String passed to the JCheckBox constructor is the
checkbox label that appears to the right of the JCheckBox by
default.

» When the user clicks a JCheckBoX, an ItemEvent occurs.

- Handled by an ItemListener object, which must implement method
itemStateChanged.

» An ItemL1istener is registered with method
addltemListener.

» JCheckBox method isSelected returns true if a
JCheckBoXx is selected.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

I // Fig. 12.17: CheckBoxFrame.java

2 // JCheckBoxes and item events.

3 import java.awt.FlowlLayout;

4 import java.awt.Font;

5 dimport java.awt.event.ItemlListener;

6 import java.awt.event.ItemEvent;

7 import javax.swing.JFrame;

8 import javax.swing.JTextField;

9 dimport javax.swing.JCheckBox;
10
Il public class CheckBoxFrame extends JFrame

12 {

13 private final JTextField textField; // displays text in changing fonts
14 private final JCheckBox bold]CheckBox; // to select/deselect bold
15 private final JCheckBox italiclCheckBox; // to select/deselect italic
16

17 // CheckBoxFrame constructor adds JCheckBoxes to JFrame

18 public CheckBoxFrame()

19 {
20 super("JCheckBox Test");
21 setLayout(new FlowLayout());
22

Fig. 12.17 | 31CheckBoxes and item events. (Part | of 3.)

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

23 // set up JTextField and set its font

24 textField = new JTextField("Watch the font style change”, 20);
25 textField.setFont(new Font("Serif", Font.PLAIN, 14));
26 add(textField); // add textField to JFrame

27

28 boldJCheckBox = new JCheckBox("Bold");

29 italicJCheckBox = new JCheckBox("Italic");

30 add(boldlCheckBox); // add bold checkbox to JFrame

31 add(italiclCheckBox); // add italic checkbox to JFrame
32

33 // register listeners for JCheckBoxes

34 CheckBoxHandler handler = new CheckBoxHandler();

35 bold]CheckBox.addItemListener(handler);

36 italicJCheckBox.addItemListener(Chandler);

37 }

38

Fig. 12.17 | 31CheckBoxes and item events. (Part 2 of 3.)

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

39 // private inner class for ItemlListener event handling

40 private class CheckBoxHandler implements ItemlListener

41 {

42 // respond to checkbox events

43 @verride

44 public void itemStateChanged(ItemEvent event)

45 {

46 Font font = null; // stores the new Font

47

48 // determine which CheckBoxes are checked and create Font
49 if (boldJCheckBox.isSelected() && italicJlCheckBox.isSelected())
50 font = new Font("Serif"”, Font.BOLD + Font.ITALIC, 14);
51 else if (boldJCheckBox.isSelected())

52 font = new Font("Serif", Font.BOLD, 14);

53 else if (italicJCheckBox.isSelected())

54 font = new Font("Serif", Font.ITALIC, 14);

55 else

56 font = new Font("Serif", Font.PLAIN, 14);

57

58 textField.setFont(font);

59 }

60 }

61 1} // end class CheckBoxFrame

Fig. 12.17 | 31CheckBoxes and item events. (Part 3 of 3.)

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

1 // Fig. 12.18: CheckBoxTest.java
2 // Testing CheckBoxFrame.
3 import javax.swing.JFrame;
4
5 public class CheckBoxTest
6 {
T public static void main(String[] args)
8 1
9 CheckBoxFrame checkBoxFrame = new CheckBoxFrame();
10 checkBoxFrame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
| checkBoxFrame.setSize(275, 100);
12 checkBoxFrame.setVisible(true);
13 }
14 } // end class CheckBoxTest
| £| JCheckBox Test [(] | £| JCheckBox Test [=[]
Watch the font stvle change Watch the font style change
[] Bold [] Halic /] Bold [] ttalic
’ | £ JCheckBox Test (= [=[] | £ JCheckBox Test [=][=[]
Watch the font syle change Watch the font siyle change
(] Bold [/] Halic ¥ Bold] ttalic

Fig. 12.18 |

Testing CheckBoxFrame.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

12.10.2 JRadioButton

» Radio buttons (declared with class JRadi1oButton)
are similar to checkboxes in that they have two

states—selected and
deselected).

not selected (also called

» Radio buttons normally appear as a group in which
only one button can be selected at a time.

» Used to represent mutually exclusive options.

» The logical relations

nip between radio buttons Is

maintained by a ButtonGroup object (package

javax.swing), w

nich organizes a group of buttons

and is not itself displayed in a user interface.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

// Creating

OO~ bh WN =

12 public clas
13 {

14 private
15 private
16 private
17 private
18 private
19 private
20 private
21 private
22 private
23 private

import java.
import java.
import java.
import java.
import javax.
import javax.
import javax.
10 1import javax.

// Fig. 12.19: RadioButtonFrame.java

radio buttons using ButtonGroup and JRadioButton.

awt.FlowlLayout;
awt.Font;
awt.event.IltemListener;
awt.event.ItemEvent;
swing.JFrame;
swing.JTextField;
swing.JRadioButton;
swing.ButtonGroup;

s RadioButtonFrame extends JFrame

final
final
final
final
final
final
final
final
final
final

JTextField textField; // used to display font changes
Font plainFont; // font for plain text

Font boldFont; // font for bold text

Font italicFont; // font for italic text

Font boldItalicFont; // font for bold and italic text
JRadioButton plain]JRadioButton; // selects plain text
JRadioButton boldJRadioButton; // selects bold text
JRadioButton italicJRadioButton; // selects italic text
JRadioButton boldItalicJRadioButton; // bold and italic
ButtonGroup radioGroup; // holds radio buttons

Fig. 12.19 | Creating radio buttons using ButtonGroup and JRadioButton. (Part
| of 4.)

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

24

25 // RadioButtonFrame constructor adds JRadioButtons to JFrame

26 public RadioButtonFrame()

27 {

28 super("RadioButton Test");

29 setLayout(new FlowLayout());

30

31 textField = new JTextField("Watch the font style change", 25);
32 add(textField); // add textField to JFrame

33

34 // create radio buttons

35 plainJRadioButton = new JRadioButton("Plain", true);

36 boldJRadioButton = new JRadioButton('Bold", false);

37 italicJRadioButton = new JRadioButton("Italic"”, false);

38 boldItalicJRadioButton = new JRadioButton("Bold/Italic”, false);
39 add(plain]RadioButton); // add plain button to JFrame

40 add(boldJRadioButton); // add bold button to JFrame

41 add(italicJRadioButton); // add italic button to JFrame

42 add(boldItaliclRadioButton); // add bold and italic button

43

Fig. 12.19 | Creating radio buttons using ButtonGroup and JRadioButton. (Part
2 of 4.)

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67

}

// create logical relationship between JRadioButtons
radioGroup = new ButtonGroup(); // create ButtonGroup
radioGroup.add(plainJRadioButton); // add plain to group
radioGroup.add(boldJRadioButton); // add bold to group
radioGroup.add(italicJRadioButton); // add italic to group
radioGroup.add(boldItalicJRadioButton); // add bold and italic

// create font objects

plainFont = new Font("Serif"”, Font.PLAIN, 14);

boldFont = new Font("Serif", Font.BOLD, 14);

italicFont = new Font("Serif", Font.ITALIC, 14);

boldItalicFont = new Font("Serif", Font.BOLD + Font.ITALIC, 14);
textField.setFont(plainFont);

// register events for JRadioButtons
plainJRadioButton.addItemlListener(

new RadioButtonHandler(plainFont));
boldJRadioButton.addItemListener(

new RadioButtonHandler(boldFont));
italicJRadioButton.addItemListener(

new RadioButtonHandler(italicFont));
boldItalicJRadioButton.addItemListener(

new RadioButtonHandler(boldItalicFont));

Fig. 12.19 | Creating radio buttons using ButtonGroup and JRadioButton. (Part

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

68

69 // private inner class to handle radio button events

70 private class RadioButtonHandler implements ItemlListener
4! {

72 private Font font; // font associated with this Tistener
73

74 public RadioButtonHandler(Font f)

75 {

76 font = f;

77 }

78

79 // handle radio button events

80 @Override

81 public void itemStateChanged(ItemEvent event)

82 {

83 textField.setFont(font);

84 }

85 }

86 1} // end class RadioButtonFrame

Fig. 12.19 | Creating radio buttons using ButtonGroup and JRadioButton. (Part
4 0f 4.)

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

S/ Fig. 12.20: RadioButtonTest.java

public static void main(String[]l args)

radioButtonFrame = new RadioButtonFrame();
setDefaultCloseOperation{JFrame. EXIT_ON_CLOSE);
setSize (300, 100);

setVisible(true);

1

2 // Testing RadioButtonFrame.
3 dimport javax.swing.JFrame;

4

5 public class RadioButtonTest
6 |

7

8 {

9 RadioButtonFrame

10 radioButtonFrame.

11 radioButtonFrame.

12 radioButtonFrame.

12 }

14 1} // end class RadioButtonTest

| £ RadioButton Test

(=l = = £ RadioButton Test (=@ =

Watch the font style change

Watch the font style change

(® Plain) Bold () lalic () Bolditalic () Plain (%Emld (_J ltalic () Bolditalic

Fig. 12.20 | Testing RadioButtonFrame. (Part | of 2]

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

|£| RadioButton Test =3 Ecl == |2 RadioButton Test o |[E 5]
Watch the font style change Watch the font siyle change
() Plain () Bold @}Italic () Bolditalic () Plain () Bold () ltalic %Elnldﬂtalic

Fig. 12.20 | Testing RadioButtonFrame. (Part 2 of 2]

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

12.10.2 JRad10Button (cont.)

» ButtonGroup method add associates a
JRad1oButton with the group.

» If more than one selected JRad10Button object is
added to the group, the selected one that was added
first will be selected when the GUI is displayed.

» JRad1oButtons, like JICheckBoxes, generate
ItemEvents when they are clicked.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

12.11 JComboBox; Using an Anonymous
Inner Class for Event Handling

» A combo box (sometimes called a drop-down list)
enables the user to select one item from a list.

» Combo boxes are implemented with class JComboBox,
which extends class JComponent.

» JComboBoXxes generate ItemEvents.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

// Fig. 12.21: ComboBoxFrame.java

// JComboBox that displays a Tist of image names.
import java.awt.FlowLayout;

import java.awt.event.ItemlListener;

import java.awt.event.ItemEvent;

import javax.swing.JFrame;

import javax.swing.JLabel;

import javax.swing.JComboBox;

import javax.swing.Icon;

10 1import javax.swing.Imagelcon;

OO~ bh WN =

12 public class ComboBoxFrame extends JFrame

13 {

14 private final JComboBox<String> images]ComboBox; // holds icon names
15 private final JLabel label; // displays selected icon

16

17 private static final String[] names =

18 {"bugl.gif", "bug2.gif", "travelbug.gif", "buganim.gif"};
19 private final Icon[] icons = {

20 new Imagelcon(getClass().getResource(names[0])),

21 new Imagelcon(getClass().getResource(names[1])),

22 new Imagelcon(getClass().getResource(names[2])),

23 new Imagelcon(getClass().getResource(names[3]))};

24

Fig. 12.21 | 3JComboBox that displays a list of image names. (Part | of 3.)

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

25 // ComboBoxFrame constructor adds JComboBox to JFrame

26 public ComboBoxFrame()

27 {

28 super("Testing JComboBox");

29 setLayout(new FlowLayout()); // set frame layout

30

31 imagesJComboBox = new JComboBox<String>(names); // set up JComboBox
32 imagesJComboBox . setMaximumRowCount(3); // display three rows
33

34 imagesJComboBox.addItemListener(

35 new ItemListener() // anonymous inner class

36 {

37 // handle JComboBox event

38 @verride

39 public void itemStateChanged(ItemEvent event)

40 {

41 // determine whether item selected

42 if (event.getStateChange() == ItemEvent.SELECTED)
43 label.setIcon(icons[

44 imagesJComboBox.getSelectedIndex()]);

45 }

46 } // end anonymous inner class

47); // end call to addItemlListener

48

Fig. 12.21 | 3JComboBox that displays a list of image names. (Part 2 of 3.)

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

49 add(imagesJComboBox); // add combo box to JFrame

50 Tabel = new JLabel(icons[0]); // display first dicon
51 add(label); // add label to JFrame
52 }

53 1} // end class ComboBoxFrame

Fig. 12.21 | 3ComboBox that displays a list of image names. (Part 3 of 3.)

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

1 // Fig. 12.22: ComboBoxTest.java

2 // Testing ComboBoxFrame.

3 import javax.swing.JFrame;

4

5 public class ComboBoxTest

6 {

7 public static void main(String[] args)

8 {

9 ComboBoxFrame comboBoxFrame = new ComboBoxFrame();
10 comboBoxFrame.setDefaul tCloseOperation(JFrame. EXIT_ON_CLOSE);
11 comboBoxFrame.setSize(350, 150);

12 comboBoxFrame.setVisible(true);

13 }

14 1} // end class ComboBoxTest

Fig. 12.22 | Testing ComboBoxFrame. (Part | of 2.)

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

| £ Testing JComboBox = el | £| Testing JComboBox [[=)
h“g1_¢ %
g1.q - bug1.qgif
bug?2.gif bug?2. gif
trav 0.gif |w travelbug.gif
Scroll box Scrollbar to scroll through the Scroll arrows
itemns in the list
| £ Testing JComboBox == |) |£] Testing JComboBox [E=n|E=R(55)

bug2 gif

travelbuq ulf

bug2.gif
travelbug.gif

buganim.gifk

Fig. 12.22 | Testing ComboBoxFrame. (Part 7 of 2.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

12.11 JComboBox; Using an Anonymous
Inner Class for Event Handling (cont.)

» The first item added to a JComboBoXx appears as the
currently selected item when the JComboBoX is
displayed.

» Other items are selected by clicking the JComboBoOX,
then selecting an item from the list that appears.

» JComboB0oX method setMaximumRowCount sets the
maximum number of elements that are displayed when
the user clicks the JComboBox.

» If there are additional items, the JComboBoX provides a
scrollbar that allows the user to scroll through all the
elements in the list.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

Look-and-Feel Observation 12.12

= Set the maximum row count for a JComboBoXx to a
number of rows that prevents the list from expanding
outside the bounds of the window in which it’s used.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

12.11 JComboBox; Using an Anonymous
Inner Class for Event Handling (cont.)

» An anonymous Inner class is an inner class that Is declared
without a name and typically appears Inside a method
declaration.

» As with other inner classes, an anonymous inner class can
access Its top-level class’s members.

» An anonymous inner class has limited access to the local
variables of the method 1n which it’s declared.

» Since an anonymous inner class has no name, one object of
the anonymous inner class must be created at the point
where the class Is declared.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

’,‘\g Software Engineering Observation 12.3
86X An anonymous inner class declared in a method can

= R
=25

access the instance variables and methods of the top-level
class object that declared it, as well as the method's
final local variables, but cannot access the method s
non-final local variables. As of Java SE 8, anonymous
inner classes may also access a methods “effectively

final” local variables—see Chapter 17 for more
information.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

12.11 JComboBox; Using an Anonymous
Inner Class for Event Handling (cont.)

» JComboBoXx method getSelectedIndex returns the
Index of the selected item.

» For each item selected from a JComboBoXx, another
Iitem 1s first deselected—so two ItemEvents occur
when an item iIs selected.

» ITtemEvent method getStateChange returns the type
of state change. ItemEvent.SELECTED indicates
that an 1tem was selected.

» In Section 17.9, we show how to use Java SE 8

lambdas to create event handlers.

> The compiler translates a lambda into an object of an
anonymous inner class.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

',i;y Software Engineering Observation 12.4

ey
- Y
Ay,

X, Like any other class, when an anonymous inner class
implements an interface, the class must implement every
abstract method in the interface.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

12.12 JL1st

» Alist displays a series of items from which the user
may select one or more items.

» Lists are created with class JL1st, which directly
extends class JComponent.

» Class JL1st—which like JComboBoX is a generic

class—supports single-selection lists (only one item to
be selected at a time) and multiple-selection lists (any
number of items to be selected).

» JL1sts generate ListSelectionEvents in single-
selection lists.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

// Fig. 12.23: ListFrame.java

// JList that displays a list of colors.

import java.awt.FlowLayout;

import java.awt.Color;

import javax.swing.JFrame;

import javax.swing.JList;

import javax.swing.J]ScrollPane;

import javax.swing.event.ListSelectionListener;
import javax.swing.event.ListSelectionEvent;

10 1import javax.swing.ListSelectionModel;

OO~ bh WN =

11

12 public class ListFrame extends JFrame

13 {

14 private final JList<String> color]List; // list to display colors
15 private static final String[] colorNames = {"Black"”, "Blue", "Cyan",
16 "Dark Gray", "Gray", "Green", "Light Gray", "Magenta",

17 "Orange", "Pink", "Red", "White", "Yellow"};

18 private static final Color[] colors = {Color.BLACK, Color.BLUE,
19 Color.CYAN, Color.DARK_CRAY, Color.GRAY, Color.GREEN,

20 Color.LIGHT_GRAY, Color.MAGENTA, Color.0ORANGE, Color.PINK,

21 Color.RED, Color.WHITE, Color.YELLOW};

22

Fig. 12.23 | 3List thatdisplays a list of colors. (Part | of 3.)

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

23 // ListFrame constructor add JScrollPane containing JList to JFrame
24 public ListFrame()

25 {

26 super("List Test");

27 setLayout(new FlowLayout());

28

29 color]List = new JList<String>(colorNames); // list of colorNames
30 color]List.setVisibleRowCount(5); // display five rows at once
31

32 // do not allow multiple selections

33 color]List.setSelectionMode(ListSelectionModel.SINGLE_SELECTION);
34

35 // add a JScrollPane containing JList to frame

36 add(new JScrollPane(color]JList));

37

Fig. 12.23 | JList that displays a list of colors. (Part 2 of 3.)

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

38 color]List.addListSelectionListener(

39 new ListSelectionListener() // anonymous inner class
40 {

41 // handle 1list selection events

42 @Override

43 public void valueChanged(ListSelectionEvent event)
44 {

45 getContentPane().setBackground(

46 colors[color]List.getSelectedIndex()]);

47 }

48 }

49 D

50 }

51 } // end class ListFrame

Fig. 12.23 | JList that displays a list of colors. (Part 3 of 3.)

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

1 // Fig. 12.24: ListTest.java

2 // Selecting colors from a JList.

3 dmport javax.swing.JFrame;

4

5 public class ListTest

6 {

T public static void main(String[] args)

8 {

9 ListFrame listFrame = new ListFrame(); // create ListFrame
10 TistFrame.setDefaul tCloseOperation(JFrame. EXIT _ON_CLOSE);
11 TistFrame.setSize(350, 150);

12 TistFrame.setVisible(true);

12 1

14 } // end class Listlest

(£ List Test = | | £ List Test

Fed

Orange
Pink

Dark Gray
Gray

Fig. 12.24 | Selecting colors from a JList.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

12.12 JL1st (cont.)

» setVisibleRowCount specifies the number of items visible in
the list.

» setSelectionMode specifies the list’s selection mode.

» Class ListSelectionModel (of package javax.swing)
declares selection-mode constants

> SINGLE_SELECTION (only one item to be selected at a time)

> SINGLE_INTERVAL_SELECTION (allows selection of several
contiguous items)

o MULTIPLE_INTERVAL_SELECTION (does not restrict the items
that can be selected).

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

12.12 JL1st (cont.)

» Unlike a JComboBoX, a JL1st does not provide a
scrollbar if there are more items in the list than the
number of visible rows.

> A JScrollPane object is used to provide the scrolling capability.

» addListSelectionListener registers a
ListSelectionListener (package
javax.swing.event) as the listener foraJL1st’s

selection events.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

12.12 JL1st (cont.)

» Each JFrame actually consists of three layers—the
background, the content pane and the glass pane.

» The content pane appears in front of the background and is
where the GUI components in the JFrame are displayed.

» The glass pane is displays tool tips and other items that should
appear in front of the GUI components on the screen.

» The content pane completely hides the background of the
JFrame.

» To change the background color behind the GUI components,
you must change the content pane’s background color.

» Method getContentPane returns a reference to the
JFrame’s content pane (an object of class Container).

» L1st method getSelectedIndex returns the selected item’s
Index.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

12.13 Multiple-Selection Lists

» Amultiple-selection list enables the user to select
many items froma JL1st.

» ASINGLE_INTERVAL_SELECTION list allows
selecting a contiguous range of items.

> To do so, click the first item, then press and hold the Shift
key while clicking the last item in the range.

» AMULTIPLE_INTERVAL_SELECTION list (the
default) allows continuous range selection as
described for a SINGLE_INTERVAL_SELECTION
list and allows miscellaneous items to be selected by
pressing and holding the Ctrl key while clicking each
Item to select.

> To deselect an item, press and hold the Ctrl key while
clicking the item a second time.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

// Fig. 12.25: MultipleSelectionFrame.java
// JList that allows multiple selections.
import java.awt.FlowLayout;

import java.awt.event.ActionlListener;
import java.awt.event.ActionEvent;

import javax.swing.JFrame;

import javax.swing.JList;

import javax.swing.JButton;

import javax.swing.JScrollPane;

10 1import javax.swing.ListSelectionModel;

OO~ bh WN =

11

12 public class MultipleSelectionFrame extends JFrame

13 {

14 private final JList<String> colorlList; // list to hold color names
15 private final JList<String> copylList; // list to hold copied names
16 private JButton copylButton; // button to copy selected names

17 private static final String[] colorNames = {"Black”, "Blue", "Cyan",
18 "Dark Gray", "Gray", "Green", "Light Gray", "Magenta", "Orange",
19 "Pink", "Red", "White", "Yellow"};

20

21 // MultipleSelectionFrame constructor

22 public MultipleSelectionFrame()

23 {

24 super("Multiple Selection Lists");

25 setLayout(new FlowLayout());

[2.25 | JList thatallows multiple selections. (Part | of 3.)

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48

color]List = new JList<String>(colorNames); // list of color names
color]List.setVisibleRowCount(5); // show five rows
color]List.setSelectionMode(

ListSelectionModel .MULTIPLE_INTERVAL_SELECTION);
add(new JScrollPane(color]List)); // add list with scrollpane

copylJButton = new JButton("Copy >>>");
copyJ]Button.addActionListener(
new ActionListener() // anonymous inner class
{
// handle button event
@Override
public void actionPerformed(ActionEvent event)
{
// place selected values in copylList
copyJList.setlListData(
color]List.getSelectedValuesList().toArray(
new String[0]));

}
)

Fig. 12.25 | JList thatallows multiple selections. (Part 2 of 3.)

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

49 add(copyJButton); // add copy button to JFrame

50

51 copyJList = new JList<String>(); // list to hold copied color names
52 copylList.setVisibleRowCount(5); // show 5 rows

53 copylList.setFixedCel IWidth(100); // set width

54 copyJList.setFixedCellHeight(l5); // set height

55 copyJList.setSelectionMode(

56 ListSelectionModel.SINGLE_INTERVAL_SELECTION);

57 add(new JScrollPane(copylList)); // add Tist with scrollpane

58 3

59 } // end class MultipleSelectionFrame

Fig. 12.25 | JList thatallows multiple selections. (Part 3 of 3.)

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

1 // Fig. 12.26: MultipleSelectionTest.java

2 // Testing MultipleSelectionFrame.

3 dimport javax.swing.JFrame;

4

5 public class MultipleSelectionTest

6 {

7 public static void main(String[] args)

8 {

9 MultipleSelectionFrame multipleSelectionFrame =
10 new MultipleSelectionFrame();

11 multipleSelectionFrame.setDefaultCloseOperation(
12 JFrame.EXIT_ON_CLOSE);

13 multipleSelectionFrame.setSize(350, 150);

14 multipleSelectionFrame.setVisible(true);

15 }

16 1} // end class MultipleSelectionTest

Fig. 12.26 | Testing MultipleSelectionFrame. (Part | of 2.)

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

| £/ Multiple Selection Lists o[- E | (]

EH:ulr

Black

Cyan
Cyan m Gray
Dark Gray h‘

Gray

Fig. 12.26 | TestingMultipleSelectionFrame. (Part2 of 2.)

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

<

12.13 Multiple-Selection Lists (cont.)

» If a JL1st does not contain items it will not diplay
ina FlowLayout.
> use JL1st methods setFixedCellWidth and
setFixedCellHeight to set the item width and height
» There are no events to indicate that a user has made
multiple selections in a multiple-selection list.
> An event generated by another GUI component (known as
an external event) specifies when the multiple selections in a
JL1st should be processed.
» Method setListData sets the items displayed in a
JL1Sst.

» Method getSelectedValues returns an array of
Objects representing the selected items in a

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

12.14 Mouse Event Handling

» Mouselistener and MouseMotionListener event-listener
Interfaces for handling mouse events.
> Any GUI component

» Package javax.swing.event contains interface
MouselnputListener, which extends interfaces

MouseListener and MouseMotionListener to create a
single interface containing all the methods.

» MouseListener and MouseMotionListener methods
are called when the mouse interacts with a Component if
appropriate event-listener objects are registered for that
Component.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

Methods of interﬁzce Mousel istener

public void mousePressed(MouseEvent event)

Called when a mouse button is pressed while the mouse cursor is on a component.

public void mouseClicked(MouseEvent event)

Called when a mouse button is pressed and released while the mouse cursor remains sta-
tionary on a component. Always preceded by a call to mousePressed and mouseReleased.

public void mouseReleased(MouseEvent event)

Called when a mouse button is released after being pressed. Always preceded by a call to
mousePressed and one or more calls to mouseDragged.

public void mouseEntered(MouseEvent event)

Called when the mouse cursor enters the bounds of a component.

public void mouseExited(MouseEvent event)

Called when the mouse cursor leaves the bounds of a component.

Fig. 12.27 | Mouselistener and MouseMotionL1istener interface methods.
(Part | of 2.)

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

Methods of interﬁzce MouseMotionlListener

public void mouseDragged(MouseEvent event)

Called when the mouse button is pressed while the mouse cursor is on a component and

the mouse is moved while the mouse button remains pressed. Always preceded by a call to
mousePressed. All drag events are sent to the component on which the user began to drag
the mouse.

public void mouseMoved(MouseEvent event)

Called when the mouse is moved (with no mouse buttons pressed) when the mouse cursor
is on a component. All move events are sent to the component over which the mouse is
currently positioned.

Fig. 12.27 | Mouselistener and MouseMotionL1istener interface methods.
(Part 2 of 2.)

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

<

12.14 Mouse Event Handling (cont.)

» Each mouse event-handling method receives a
MouseEvent object that contains information about the
mouse event that occurred, including the x- and y-
coordinates of the location where the event occurred.

Coordinates are measured from the upper-left corner of
the GUI component on which the event occurred.

The x-coordinates start at 0 and increase from left to
right. The y-coordinates start at O and increase from top to
bottom.

The methods and constants of class InputEvent (Mouse-
Event’s superclass) enable you to determine which
mouse button the user clicked.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

N Software Engineering Observation 12.5

uuuuu

‘_._.; Calls to mouseDragged are sent to the
MouseMotionListener for the Component on which
the drag started. Similarly, the mouseReleased call at
the end of a drag operation is sent to the
MouseL istener for the Component on which the drag
operation started.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

<

12.14 Mouse Event Handling (cont.)

» Interface MouseWheelListener enables applications to
respond to the rotation of a mouse wheel.

» Method mouseWheelMoved receives a
MouseWheelEvent as Its argument.

» Class MousewheelEvent (a subclass of Mouse-
Event) contains methods that enable the event handler
to obtain information about the amount of wheel
rotation.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

// Fig. 12.28: MouseTrackerFrame.java

// Mouse event handling.

import java.awt.Color;

import java.awt.BorderlLayout;

import java.awt.event.Mouselistener;
import java.awt.event.MouseMotionlListener;
import java.awt.event.MouseEvent;

import javax.swing.JFrame;

import javax.swing.JLabel;

10 1import javax.swing.JPanel;

OoOoO~NONBNDE WN=—

12 public class MouseTrackerFrame extends JFrame

13 {

14 private final JPanel mousePanel; // panel 1in which mouse events occur
I5 private final JLabel statusBar; // displays event information

16

Fig. 12.28 | Mouse event handling. (Part | of 5.)

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35

// MouseTrackerFrame constructor sets up GUI and
// registers mouse event handlers
public MouseTrackerFrame()

{

super("Demonstrating Mouse Events");

mousePanel = new JPanel();
mousePanel .setBackground(Color . WHITE);
add(mousePanel, BorderLayout.CENTER); // add panel to JFrame

statusBar = new JlLabel("Mouse outside JPanel");
add(statusBar, BorderlLayout.SOUTH); // add label to JFrame

// create and register listener for mouse and mouse motion events
MouseHandler handler = new MouseHandler();

mousePanel .addMouselistener(handler);

mousePanel .addMouseMotionListener(handler);

Fig. 12.28 | Mouse event handling. (Part 2 of 5.)

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55

private class MouseHandler implements Mouselistener,

{

MouseMotionlListener

// Mouselistener event handlers
// handle event when mouse released immediately after press
@Jverride
public void mouseClicked(MouseEvent event)’
{
statusBar.setText(String.format("Clicked at [%d, %d]",
event.getX(), event.getY()));

}

// handle event when mouse pressed
@ verride
public void mousePressed(MouseEvent event)
{
statusBar.setText(String.format("'Pressed at [%d, %d]",
event.getX(), event.getY()));

Fig. 12.28 | Mouse event handling. (Part 3 of 5.)

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

56 // handle event when mouse released

57 @verride

58 public void mouseReleased(MouseEvent event)
59 {

60 statusBar.setText(String.format("Released at [%d, %d]",
61 event.getX(), event.getY()));

62 }

63

64 // handle event when mouse enters area

65 @verride

66 public void mouseEntered(MouseEvent event)
67 {

68 statusBar.setText(String.format("Mouse entered at [%d, %d]",
69 event.getX(), event.getY()));

70 mousePanel .setBackground(Color.GREEN);

71 }

72

73 // handle event when mouse exits area

74 @verride

75 public void mouseExited(MouseEvent event)

76 {

77 statusBar.setText("'Mouse outside JPanel");
78 mousePanel .setBackground(Color.WHITE);

79 }

Fig. 12.28 | Mouse event handling. (Part 4 of 5.)

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

80

8l // MouseMotionListener event handlers

82 // handle event when user drags mouse with button pressed
83 @verride

84 public void mouseDragged(MouseEvent event)

85 {

86 statusBar.setText(String.format("Dragged at [%d, %d]",
87 event.getX(), event.getY()));

88 }

89

920 // handle event when user moves mouse

91 @ verride

92 public void mouseMoved(MouseEvent event)

93 {

94 statusBar.setText(String.format("Moved at [%d, %d]",
95 event.getX(), event.getY()));

96 }

97 } // end inner class MouseHandler

98 1} // end class MouseTrackerFrame

Fig. 12.28 | Mouse event handling. (Part S of 5.)

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

1 // Fig. 12.29: MouseTrackerFrame.java
2 // Testing MouseTrackerFrame.
3 dimport javax.swing.JFrame;
4
5 public class MouseTracker
6 {
7 public static void main(String[] args)
8 {
9 MouseTrackerFrame mouseTrackerFrame = new MouseTrackerFrame();
10 mouseTrackerFrame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
11 mouseTrackerFrame.setSize(300, 100);
12 mouseTrackerFrame.setVisible(true);
13 }
14 1} // end class MouseTracker
Fig. 12.29 | Testing MouseTrackerFrame. (Part | of 2.)

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

Dragged at [92, 31] Released at[99, 31]

Fig. 12.29 | TestingMouseTrackerFrame. (Part2 of 2.)

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

<

12.14 Mouse Event Handling (cont.)

» BorderLayout arranges component NORTH, SOUTH, EAST, WEST
and CENTER regions.

» BorderLayout sizes the component in the CENTER to use all
available space that is not occupied

» Methods addMouselistener and addMouseMotionListener
register MouseL1stenersand MouseMotionListeners,
respectively.

» MouseEvent methods getX and getY return the x- and y-
coordinates of the mouse at the time the event occurred.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

12.15 Adapter Classes

» Many event-listener interfaces contain multiple methods.

» An adapter class implements an interface and provides a
default implementation (with an empty method body) of
each method in the interface.

» You extend an adapter class to inherit the default
Implementation of every method and override only the
method(s) you need for event handling.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

hEZ Software Engineering Observation 12.6
BN When a class implements an interface, the class has an is-

a relationship with that interface. All direct and indirect
subclasses of that class inberit this interface. Thus, an
object of a class that extends an event-adapter class is an
object of the corresponding event-listener type (e.g., an
object of a subclass of MouseAdapter is a
MouselListener).

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

ComponentAdapter ComponentListener

ContainerAdapter ContainerListener
FocusAdapter FocusListener
KeyAdapter KeyListener
MouseAdapter MouselListener
MouseMotionAdapter MouseMotionlListener
WindowAdapter WindowlL1istener

Fig. 12.30 | Event-adapter classes and the interfaces they implement.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

I // Fig. 12.31: MouseDetailsFrame.java

2 // Demonstrating mouse clicks and distinguishing between mouse buttons.
3 import java.awt.BorderlLayout;

4 1import java.awt.event.MouseAdapter;

5 dimport java.awt.event.MouseEvent;

6 import javax.swing.JFrame;

7 import javax.swing.JLabel;

8

9 public class MouseDetailsFrame extends JFrame
10 {
11 private String details; // String displayed in the statusBar
12 private final JLabel statusBar; // JLabel at bottom of window
13

14 // constructor sets title bar String and register mouse 1listener
15 public MouseDetailsFrame()

16 {

17 super("Mouse clicks and buttons™);

18

19 statusBar = new JLabel("Click the mouse™);
20 add(statusBar, BorderlLayout.SOUTH);
21 addMouselListener(new MouseClickHandler()); // add handler
22 }
23

Fig. 12.31 | Demonstrating mouse clicks and distinguishing between mouse
buttons. (Part | of 2.)

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

24 // inner class to handle mouse events

25 private class MouseClickHandler extends MouseAdapter

26 {

27 // handle mouse-click event and determine which button was pressed
28 @verride

29 public void mouseClicked(MouseEvent event)

30 {

31 int xPos = event.getX(); // get x-position of mouse
32 int yPos = event.getY(); // get y-position of mouse
33

34 details = String.format("Clicked %d time(s)",

35 event.getClickCount());

36

37 if (event.isMetaDown()) // right mouse button

38 details += " with right mouse button";

39 else if (event.isAltDown()) // middle mouse button
40 details += " with center mouse button";

41 else // left mouse button

42 details += " with left mouse button";

43

44 statusBar.setText(details); // display message in statusBar
45 }

46 }

47 1} // end class MouseDetailsFrame

Fig. 12.31 | Demonstrating mouse clicks and distinguishing between mouse
Part 2 of 2.)

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

1 // Fig. 12.32: MouseDetails.java
2 // Testing MouseDetailsFrame.
3 dimport javax.swing.JFrame;
4
5 public class MouseDetails
6 {
7 public static void main(String[] args)
8 {
9 MouseDetailsFrame mouseDetailsFrame = new MouseDetailsFrame();
10 mouseDetailsFrame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
11 mouseDetailsFrame.setSize(400, 150);
12 mouseDetailsFrame.setVisible(true);
13 }
14 1} // end class MouseDetails
Fig. 12.32 | Testing MouseDetailsFrame. (Part | of 2.)

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

P

| £ Mouse Clicks and Buttons E',“]

| £ Mouse Clicks and Buttons E@

s

Click the mouse

Clicked 2 time(s) with left mouse buiton

| £:) Mouse Clicks and Buttons EE‘]
| £:| Mouse Clicks and Buttons EI@

s

Clicked 1 time(s) with right mouse bulton %

Clicked 5 time(s) with center mouse buiton

Fig. 12.32 | TestingMouseDetailsFrame. (Part2 of 2.)

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

Common Programming Error 12.3

% If you extend an adapter class and misspell the name of
the method you're overriding, and you do not declare the
method with @verride, your method simply becomes
another method in the class. This is a logic error that is
difficult to detect, since the program will call the empty
version of the method inberited from the adapter class.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

12.15 Adapter Classes (cont.)

» A mouse can have one, two or three buttons.

» Class MouseEvent inherits several methods from
InputEvent that can distinguish among mouse

buttons or mimic a multibutton mouse with a combined
keystroke and mouse-button click.

» Java assumes that every mouse contains a left mouse
button.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

12.15 Adapter Classes (cont.)

» In the case of a one- or two-button mouse, a Java
application assumes that the center mouse button is
clicked if the user holds down the Alt key and clicks
the left mouse button on a two-button mouse or the
only mouse button on a one-button mouse.

» In the case of a one-button mouse, a Java application
assumes that the right mouse button is clicked if the
user holds down the Meta key (sometimes called the
Command key or the “Apple” key on a Mac) and
clicks the mouse button.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

i sMetaDown () Returns true when the user clicks the right mouse button on a
mouse with two or three buttons. To simulate a right-mouse-
button click on a one-button mouse, the user can hold down
the Meta key on the keyboard and click the mouse button.

isA1tDown() Returns true when the user clicks the middle mouse button on a
mouse with three buttons. To simulate a middle-mouse-button
click on a one- or two-button mouse, the user can press the A/t
key and click the only or left mouse button, respectively.

Fig. 12.33 | InputEvent methods that help determine whether the right or
center mouse button was clicked.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

12.15 Adapter Classes (cont.)

» The number of consecutive mouse clicks Is returned by
MouseEvent method getClickCount.

» Methods isMetaDown and isAltDown determine which
mouse button the user clicked.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

<

12.16 JPanel Subclass for Drawing with
the Mouse

» Use a JPanel as a dedicated drawing area in which the
user can draw by dragging the mouse.

» Lightweight Swing components that extend class
JComponent (such as JPane 1) contain method
paintComponent
> called when a lightweight Swing component is

displayed

» Override this method to specify how to draw.
> Call the superclass version of paintComponent as

the first statement in the body of the overridden method
to ensure that the component displays correctly.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

<

12.16 JPanel Subclass for Drawing with
the Mouse (cont.)

» JComponent support transparency.

> To display a component correctly, the program must
determine whether the component is transparent.

> The code that determines this is in superclass
JComponent’s paintComponent implementation.

> When a component is transparent, paintComponent will
not clear its background

> When a component is opaque, paintComponent clears
the component’s background

> The transparency of a Swing lightweight component can be
set with method setOpaque (a Talse argument indicates
that the component is transparent).

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

Error-Prevention Tip 12.1
[n a JComponent subclass’s paintComponent meth-
od, the first statement should always call the superclass’s
paintComponent method to ensure that an object of
the subclass displays correctly.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

Common Programming Error 12.4

% If an overridden paintComponent method does not
call the superclass’s version, the subclass component may
not display properly. If an overridden paintCompo-
nent method calls the superclass’s version after other
drawing is performed, the drawing will be erased.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

1 // Fig. 12.34: PaintPanel.java
2 // Adapter class used to implement event handlers.
3 dimport java.awt.Point;
4 dimport java.awt.Graphics;
5 dimport java.awt.event.MouseEvent;
6 import java.awt.event.MouseMotionAdapter;
7 dimport java.util.ArraylList;
8 import javax.swing.JPanel;
9
10 public class PaintPanel extends JPanel
11 {
12 // Tist of Point references
13 private final ArraylList<Point> points = new ArraylList<>();
14
Fig. 12.34 | Adapter class used to implement event handlers. (Part | of 3.)

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

15 // set up GUI and register mouse event handler

16 public PaintPanel()

17 {

18 // handle frame mouse motion event

19 addMouseMotionListener(

20 new MouseMotionAdapter() // anonymous inner class
21 {

22 // store drag coordinates and repaint

23 @Override

24 public void mouseDragged(MouseEvent event)
25 {

26 points.add(event.getPoint());

27 repaint(); // repaint JFrame

28 }

29 }

30)

k]| }

32

33 // draw ovals in a 4-by-4 bounding box at specified locations on window
34 @verride

35 public void paintComponent(Graphics g)

36 {

37 super.paintComponent(g); // clears drawing area
38

Fig. 12.34 | Adapter class used to implement event handlers. (Part 2 of 3.)

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

39 // draw all points

40 for (Point point : points)
41 g.fil110val (point.x, point.y, 4, 4);
42 }

43 } // end class PaintPanel

Fig. 12.34 | Adapter class used to implement event handlers. (Part 3 of 3.)

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

<
12.16 JPanel Subclass for Drawing with

the Mouse (cont.)

» Class Point (package java.awt) represents an x-y

coordinate.
> We use objects of this class to store the coordinates of each mouse

drag event.
» Class Graphics Is used to draw.
» MouseEvent method getPoint obtains the Po1nt where

the event occurred.
» Method repaint (inherited from Component) indicates
that a Component should be refreshed on the screen as

soon as possible.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

Look-and-Feel Observation 12.13

& Calling repaint for a Swing GUI component indicates
that the component should be refreshed on the screen as
soon as possible. The component’s background is cleared
only it the component is opague. IComponent method
setOpaque can be passed a boolean argument indi-
cating whether the component is opaque (true) or
transparent (false).

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

<
12.16 JPanel Subclass for Drawing with
the Mouse (cont.)

» Graphics method fillOval draws a solid oval.

> Four parameters represent a rectangular area (called the
bounding box) in which the oval is displayed.

> The first two are the upper-left x-coordinate and the upper-
left y-coordinate of the rectangular area.

> The last two represent the rectangular area’s width and
height.

» Method 1 110val draws the oval so it touches the
middle of each side of the rectangular area.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

Look-and-Feel Observation 12.14

= Drawing on any GUI component is performed with co-
ordinates that are measured from the upper-left corner
(0, 0) of that GUI component, not the upper-left corner
of the screen.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

I // Fig. 12.35: Painter.java

2 // Testing PaintPanel.

3 import java.awt.BorderlLayout;

4 1import javax.swing.JFrame;

5 dimport javax.swing.JLabel;

6

7 public class Painter

8 {

9 public static void main(String[] args)

10 {

11 // create JFrame

12 JFrame application = new JFrame("A simple paint program");
13

14 PaintPanel paintPanel = new PaintPanel();

15 application.add(paintPanel, BorderlLayout.CENTER);

16

17 // create a label and place it in SOUTH of BorderLayout
18 application.add(new JLabel("'Drag the mouse to draw"),
19 BorderLayout.SOUTH) ;
20
21 application.setDefaul tCloseOperation(JFrame.EXIT_ON_CLOSE);
22 application.setSize(400, 200);
23 application.setVisible(true);
24 }

25 1} // end class Painter

12.35 | Testing PaintPanel. (Part | of 2.)

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

| | A simple paint program (==]

TAVA
How {g
PTO T‘ nm

Drag the mouse to draw

Fig. 12.35 | Testing PaintPanel. (Part2 of 2.)

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

12.17 Key Event Handling

» KeyL1stener interface for handling key events.

» Key events are generated when keys on the keyboard are
pressed and released.

» AKeyL1stener must define methods keyPressed,
keyReleased and keyTyped
o each receives a KeyEvent as its argument

» Class KeyEvent is a subclass of InputEvent.

» Method keyPressed is called in response to pressing any
key.

» Method keyTyped is called in response to pressing any key
that is not an action key.

» Method keyRe leased is called when the key is released
after any keyPressed or keyTyped event.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

1 // Fig. 12.36: KeyDemoFrame.java

2 // Key event handling.

3 dimport java.awt.Color;

4 import java.awt.event.KeylListener;

5 dimport java.awt.event.KeyEvent;

6 import javax.swing.JFrame;

7 import javax.swing.JTextArea;

8

9 public class KeyDemoFrame extends JFrame implements KeylListener
10 {

11 private final String linel = ""; // first line of text area
12 private final String 1ine2 = ""; // second line of text area
13 private final String 1ine3 = ""; // third Tine of text area
14 private final JTextArea textArea; // text area to display output
15

Fig. 12.36 |

Key event handling. (Part | of 4.)

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38

// KeyDemoFrame constructor
public KeyDemoFrame()

{
super("Demonstrating Keystroke Events");
textArea = new JTextArea(l0, 15); // set up JTextArea
textArea.setText("Press any key on the keyboard...");
textArea.setEnabled(false);
textArea.setDisabledTextColor(Color.BLACK);
add(textArea); // add text area to JFrame
addKeyListener(this); // allow frame to process key events

}

// handle press of any key

@verride

public void keyPressed(KeyEvent event)

{

Tinel = String.format("Key pressed: %s",
KeyEvent.getKeyText(event.getKeyCode())); // show pressed key
setLines2and3(event); // set output lines two and three

Fig. 12.36 | Key event handling. (Part 2 of 4.)

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55

// handle release of any key
@lverride
public void keyReleased(KeyEvent event)
{
Tinel = String.format("Key released: %s",
KeyEvent.getKeyText(event.getKeyCode())); // show released key
setlLines2and3(event); // set output lines two and three

}

// handle press of an action key
@Override

public void keyTyped(KeyEvent event)
{

Tinel = String.format("Key typed: %s", event.getKeyChar());
setLines2and3(event); // set output lines two and three

Fig. 12.36 | Key event handling. (Part 3 of 4.)

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

56 // set second and third Tines of output

57 private void setLines2and3(KeyEvent event)

58 {

59 Tine2 = String.format("This key is %san action key",

60 (event.isActionKey() ? "" : "not "));

61

62 String temp = KeyEvent.getKeyModifiersText(event.getModifiers());
63

64 Tine3 = String.format("Modifier keys pressed: %s",

65 (temp.equals("") ? "none" : temp)); // output modifiers
66

67 textArea.setText(String. format("%s\n%s\n%s\n",

68 Tinel, Tine2, 1ine3)); // output three lTines of text

69 }

70 } // end class KeyDemoFrame

Fig. 12.36 | Key event handling. (Part 4 of 4.)

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

1 // Fig. 12.37: KeyDemo.java

2 // Testing KeyDemoFrame.

3 import javax.swing.JFrame;

4

5 public class KeyDemo

6 {

7 public static void main(String[] args)

8 {

9 KeyDemoFrame keyDemoFrame = new KeyDemoFrame();
10 keyDemoFrame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
11 keyDemoFrame.setSize(350, 100);

12 keyDemoFrame.setVisible(true);

13 }

14 1} // end class KeyDemo

Fig. 12.37 | Testing KeyDemoFrame. (Part | of 2.)

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

P

-

s

| £:| Demonstrating Keystroke Events E@ | £:| Demonstrating Keystroke Events E@
Keytyped: a Key released: A
This key is not an action key This key is not an action key
Modifier keys pressed: none Maodifier keys pressed: none
| £ Demonstrating Keystroke Events E@ | £:| Demonstrating Keystroke Events E@
Key pressed: Shift Key typed: L
This key is not an action key This keyis not an action key
Modifier keys pressed: Shift Madifier keys pressed: Shift
| £:| Demonstrating Keystroke Events E\@
Key released: L
This keyis not an action key
Muodifier keys pressed: Shift
| £:| Demonstrating Keystroke Events E@ | £:| Demonstrating Keystroke Events E@

Key pressed: F1
This key is an action key
Modifier keys pressed: none

Key released: F1
This key is an action key
Modifier keys pressed: none

Fig. 12.37 | Testing KeyDemoFrame, (Part 2 of 2.)

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

12.17 Key Event Handling (cont.)

>

4

Registers key event handlers with method addKeyListener
from class Component.

KeyEvent method getKeyCode gets the virtual key code of
the pressed key.

KeyEvent contains virtual key-code constants that represents
every key on the keyboard.

Value returned by getKeyCode can be passed to static
KeyEvent method getKeyText to get a string containing the
name of the key that was pressed.

KeyEvent method getKeyChar (which returns a char) gets
the Unicode value of the character typed.

KeyEvent method isActionKey determines whether the key
In the event was an action key.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

12.17 Key Event Handling (cont.)

» Method getModifiers determines whether any
modifier keys (such as Shift, Alt and Ctrl) were
pressed when the key event occurred.
> Result can be passed to static KeyEvent method

getKeyModifiersText to get a string containing the names of
the pressed modifier keys.

» TnputEvent methods isAltDown, isControlDown,
isMetaDown and isShiftDown each return a
boo1ean indicating whether the particular key was
pressed during the key event.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

12.18 Introduction to Layout Managers

» Layout managers arrange GUI components in a container
for presentation purposes

» Can use for basic layout capabilities

» Enable you to concentrate on the basic look-and-feel—the
layout manager handles the layout details.

» Layout managers implement interface LayoutManager (in
package Java awt).

» contailner’s setLayout method takes an object that
Implements the LayoutManager interface as an
argument.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

12.18 Introduction to Layout Managers
(cont.)

» There are three ways for you to arrange components
In a GUI:
- Absolute positioning
- Greatest level of control.

- Set Container’slayoutto null.
- Specify the absolute position of each GUI component with
respect to the upper-left corner of the Container by

using Component methods setS1ze and
setLocationor setBounds.

- Must specify each GUI component’s size.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

12.18 Introduction to Layout Managers
(cont.)

o Layout managers
- Simpler and faster than absolute positioning.
- Makes your GUIs more resizable.

- Lose some control over the size and the precise
positioning of each component.

> Visual programming in an IDE
- Use tools that make it easy to create GUIs.

- Allows you to drag and drop GUI components from a tool
box onto a design area.

* 'You can then position, size and align GUI components as
you like.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

Look-and-Feel Observation 12.15

= Most Java IDEs provide GUI design tools for visually de-
signing a GUL the tools then write Java code that creates
the GUI. Such tools often provide greater control over the

size, position and alignment of GUI components than do
the built-in layout managers.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

Look-and-Feel Observation 12.16

r [ts possible to set a Containers’s layout to null, which
indicates that no layout manager should be used. In a
Container without a layout manager, you must posi-
tion and size the components and take care that, on re-
size events, all components are repositioned as necessary.
A component’s resize events can be processed by a
ComponentListener.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

FlowLayout Default for javax.swing.JPanel. Places components sequentially, left to
right, in the order they were added. It’s also possible to specify the order
of the components by using the Container method add, which takes a
Component and an integer index position as arguments.

BorderLayout Default for IFrames (and other windows). Arranges the components
into five areas: NORTH, SOUTH, EAST, WEST and CENTER.

GridLayout Arranges the components into rows and columns.

Fig. 12.38 | Layout managers.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

12.18.1 FlowLayout

» FlowLayout is the simplest layout manager.

» GUI components placed from left to right in the order in
which they are added to the container.

» When the edge of the container is reached, components
continue to display on the next line.

» FlowLayout allows GUI components to be left aligned,
centered (the default) and right aligned.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

Look-and-Feel Observation 12.17

= Each individual container can have only one layout
manager, but multiple containers in the same applica-
tion can each use different layout managers.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

OoOoO~NONBNDE WN=—

// Fig. 12.39: FlowlLayoutFrame.java

// FlowLayout allows components to flow over multiple lines.
import java.awt.FlowLayout;

import java.awt.Container;

import java.awt.event.ActionListener;

import java.awt.event.ActionEvent;

import javax.swing.JFrame;

import javax.swing.JButton;

public class FlowLayoutFrame extends JFrame

{
private
private
private
private
private

final
final
final
final
final

JButton TeftJButton; // button to set alignment left
JButton center]Button; // button to set alignment center
JButton right]Button; // button to set alignment right
FlowLayout layout; // layout object

Container container; // container to set layout

Fig. 12.39 | FlowLayout allows components to flow over multiple lines. (Part | of
4.)

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

18 // set up GUI and register button listeners

19 public FlowLayoutFrame()

20 {

21 super("FlowLayout Demo");

22

23 Tayout = new FlowLayout();

24 container = getContentPane(); // get container to layout
25 setlLayout(layout);

26

27 // set up left]JButton and register listener

28 left]Button = new JButton("Left");

29 add(leftJButton); // add Left button to frame

30 TeftJButton.addActionListener(

31 new ActionListener() // anonymous inner class

32 {

33 // process left]JButton event

34 @Override

35 public void actionPerformed(ActionEvent event)
36 {

37 Tayout.setAlignment(FlowlLayout.LEFT);

38

Fig. 12.39 | FlowLayout allows components to flow over multiple lines. (Part 2 of
4)

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

39 // realign attached components

40 Tayout. layoutContainer(container);

41 }

42 }

43);

44

45 // set up center]Button and register listener
46 center]Button = new JButton("Center™);

47 add(center]Button); // add Center button to frame
48 center]Button.addActionListener(

49 new ActionListener() // anonymous inner class
50 {

51 // process center]Button event

52 @Override

53 public void actionPerformed(ActionEvent event)
54 {

55 Tayout.setAlignment(FlowlLayout.CENTER) ;
56

57 // realign attached components

58 Tayout.layoutContainer(container);

59 }

60 3

61 D

Fig. 12.39 | FlowLayout allows components to flow over multiple lines. (Part 3 of
4.)

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

62

63 // set up right]JButton and register listener

64 rightJButton = new JButton("Right");

65 add(right]Button); // add Right button to frame
66 rightJButton.addActionListener(

67 new ActionListener() // anonymous inner class
68 {

69 // process right]JButton event

70 @0Override

71 public void actionPerformed(ActionEvent event)
72 {

73 Tayout.setAlignment(Flowlayout .RIGHT);
74

75 // realign attached components

76 layout. layoutContainer(container);

77 3

78 }

79)

80 } // end FlowLayoutFrame constructor

81 1} // end class FlowLayoutFrame

Fig. 12.39 | FlowLayout allows components to flow over multiple lines. (Part 4 of
4.)

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

1 // Fig. 12.40: FlowLayoutDemo. java

2 // Testing FlowLayoutFrame.

3 import javax.swing.JFrame;

4

5 public class FlowLayoutDemo

6 {

7 public static void main(String[] args)

8 {

9 FlowLayoutFrame flowLayoutFrame = new FlowlLayoutFrame();
10 flowLayoutFrame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
11 flowLayoutFrame.setSize(300, 75);

12 flowLayoutFrame.setVisible(true);

13 }

14 1} // end class FlowlLayoutDemo

Fig. 12.40 | Testing FlowLayoutFrame. (Part | of 2.)

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

| Lett || center || Right |

|- FlowLayout Demo (=@ & | | 2 Flowtayout Demo =8 fon

(LeﬂC;l Center | | Right |

| Lett | | CenterL\kJ | Right |

|| FlowLayout Demo [= [E &S] | | (2] Flowlayout Demo =3 EOl £

| Left | | center || Rigmli

12| Flowlaye... [= |/ 5 =)

l Left J [Center&

Right

Fig. 12.40 | Testing FlowLayoutFrame. (Part 2 of 2.}

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

12.18.1 FlowLayout (cont.)

» FlowLayout method setAlignment changes the alignment

for the FlowLayout.
° FlowlLayout.LEFT
° FlowlLayout.CENTER
° FlowLayout.RIGHT
» LayoutManager interface method layoutContainer

(which iIs inherited by all layout managers) specifies that a
container should be rearranged based on the adjusted

layout.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

12.18.2 BorderLayout

» BorderLayout
> the default layout manager for a Jframe

o arranges components into five regions: NORTH, SOUTH,
EAST, WEST and CENTER.

> NORTH corresponds to the top of the container.

» BorderLayout implements interface
LayoutManager2 (a subinterface of
LayoutManager that adds several methods for
enhanced layout processing).

» BorderLayout limits a Container to at most
five components—one In each region.

> The component placed in each region can be a container to
which other components are attached.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

I // Fig. 12.41: BorderLayoutFrame.java

2 // BorderlLayout containing five buttons.

3 import java.awt.BorderlLayout;

4 import java.awt.event.ActionlListener;

5 import java.awt.event.ActionEvent;

6 import javax.swing.JFrame;

7 import javax.swing.JButton;

8

9 public class BorderLayoutFrame extends JFrame implements ActionListener
10 {
11 private final JButton[] buttons; // array of buttons to hide portions
12 private static final String[] names = {"Hide North", "Hide South",
13 "Hide East", "Hide West", "Hide Center"};

14 private final BorderLayout layout;

15

16 // set up GUI and event handling

17 public BorderLayoutFrame()

18 {

19 super("BorderLayout Demo");
20
21 lTayout = new BorderLayout(5, 5); // 5 pixel gaps
22 setLayout(Tayout);
23 buttons = new JButton[names.length];
24

Fig. 12.41 | BorderLayout containing five buttons. (Part | of 3.)

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

25 // create JButtons and register listeners for them

26 for (int count = 0; count < names.length; count++)
27 {

28 buttons[count] = new JButton(names[count]);
29 buttons[count].addActionListener(this);

30 }

31

32 add(buttons[0], BorderlLayout.NORTH);

33 add(buttons[1], BorderlLayout.SOUTH);

34 add(buttons[2], BorderlLayout.EAST);

35 add(buttons[3], BorderlLayout.WEST);

36 add(buttons[4], BorderlLayout.CENTER);

37 }

38

Fig. 12.41 | BorderLayout containing five buttons. (Part 2 of 3.)

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

39 // handle button events

40 @verride

41 public void actionPerformed(ActionEvent event)

42 {

43 // check event source and lay out content pane correspondingly
44 for (JButton button : buttons)

45 {

46 if (event.getSource() == button)

47 button.setVisible(false); // hide the button that was clicked
48 else

49 button.setVisible(true); // show other buttons

50 }

51

52 Tayout.layoutContainer(getContentPane()); // lay out content pane
53 }

54 } // end class BorderLayoutFrame

Fig. 12.41 | BorderLayout containing five buttons. (Part 3 of 3.)

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

12.18.2 BorderLayout (cont.)

» BorderLayout constructor arguments specify the
number of pixels between components that are
arranged horizontally (horizontal gap space) and
between components that are arranged vertically
(vertical gap space), respectively.
> The default is one pixel of gap space horizontally and

vertically.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

Look-and-Feel Observation 12.18

= If no region is specified when adding a Component to a
BorderLayout, the layout manager assumes that the
Component should be added to region BorderLay-
out.CENTER.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

Common Programming Error 12.5

When more than one component is added to a region in
a BorderLayout, only the last component added to
that region will be displayed. There’s no error that indi-

cates this problem.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

1 // Fig. 12.42: BorderLayoutDemo.java

2 // Testing BorderLayoutFrame.

3 dimport javax.swing.JFrame;

4

5 public class BorderLayoutDemo

6 {

7 public static void main(String[] args)

8 {

9 BorderLayoutFrame borderLayoutFrame = new BorderLayoutFrame();
10 borderLayoutFrame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
11 borderLayoutFrame.setSize(300, 200);

12 borderLayoutFrame.setVisible(true);

13 }

14 1} // end class BorderLayoutDemo

Fig. 12.42 | Testing BorderLayoutFrame. (Part | of 3.)

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

horizontal |=| BorderLayout Demo F=n|Eol(=<3 |<:| BorderLayout Demo B S
gap ~=l. Hide North |
Hide West Hide Center Hide East
Hide West Hide Center Hide East
vertical
) . .
24P | Hide South J | Hide South J
|<:| BorderLayout Demo F=N|E=l(|£:| BorderLayout Demo [E S
| Hide North H (L Hide North |
Hide Center Hide East
Hide West Hide Center Hide East
{ Hide South J

Fig. 12.42 | Testing BorderLayoutFrame. (Part 2 of 3.)

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

|£| BorderLayout Demo [F=RI=N| = £/ BorderLayout Demo =0 =H|t>=

[Hide North | | Hide North |
Hide West Hide Center Hide West Hide East

| Hide South H (L Hide South |

Fig. 12.42 | Testing BorderLayoutFrame. (Part 3 of 3.)

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

12.18.3 GridLayout

» GridLayout divides the container into a grid of rows

and columns.
> Implements interface LayoutManager.
- Every Component has the same width and height.

> Components are added starting at the top-left cell of the grid
and proceeding left to right until the row is full. Then the
process continues left to right on the next row of the grid,

and so on.
» Container method validate recomputes the
container’s layout based on the current layout
manager and the current set of displayed GUI

components.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

I // Fig. 12.43: GridLayoutFrame.java

2 // GridLayout containing six buttons.

3 import java.awt.GridLayout;

4 1import java.awt.(Container;

5 import java.awt.event.ActionListener;

6 import java.awt.event.ActionEvent;

7 import javax.swing.JFrame;

8 import javax.swing.JButton;

9
10 public class GridLayoutFrame extends JFrame implements ActionListener
11 {
12 private final JButton[] buttons; // array of buttons
13 private static final String[] names =
14 { "one", "two", "three", "four", "five", "six" };
15 private boolean toggle = true; // toggle between two layouts
16 private final Container container; // frame container
17 private final GridlLayout gridLayoutl; // first gridlayout
18 private final GridlLayout gridlLayout2; // second gridlayout
19

Fig. 12.43 | GridlLayout containing six buttons. (Part | of 3.)

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

20 // no-argument constructor

21 public GridLayoutFrame()

22 {

23 super("GridLayout Demo™);

24 gridLayoutl = new GridLayout(2, 3, 5, 5); // 2 by 3; gaps of 5
25 gridLayout2 = new GridLayout(3, 2); // 3 by 2; no gaps

26 container = getContentPane();

27 setLayout(gridLayoutl);

28 buttons = new JButton[names.length];

29

30 for (int count = 0; count < names.length; count++)

31 {

32 buttons[count] = new JButton(names[count]);

33 buttons[count].addActionListener(this); // register listener
34 add(buttons[count]); // add button to JFrame

35 }

36 }

37

Fig. 12.43 | GridlLayout containing six buttons. (Part 2 of 3.)

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

38 // handle button events by toggling between layouts

39 @verride

40 public void actionPerformed(ActionEvent event)
41 {

42 if (toggle) // set layout based on toggle
43 container.setlLayout(gridlLayout2);

44 else

45 container.setlLayout(gridLayoutl);

46

47 toggle = !toggle;

48 container.validate(); // re-lay out container
49 }

50 1} // end class GridlLayoutFrame

Fig. 12.43 | GridLayout containing six buttons. (Part 3 of 3.)

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

1 // Fig. 12.44: GridLayoutDemo.java

2 // Testing GridlLayoutFrame.

3 dmport javax.swing.JFrame;

4

5 public class GridLayoutDemo

6 {

7 public static void main(String[] args)

8 {

9 GridLayoutFrame gridLayoutFrame = new GridlLayoutFrame();
10 gridLayoutFrame.setDefaultCloseOperation{JFrame .EXIT_ON_CLOSE);
11 gridLayoutFrame.setSize(300, 200);

12 gridLayoutFrame.setVisible(true);

13 }

14 1} // end class GridLayoutDemo

|| GridLayout Demo =l =[] | £:| GridLayout Demo =n ===

one
one two three b

s

three faur

four five SiX)
five SiX

Fig. 12.44 | Testing GridLayoutFrame.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

12.19 Using Panels to Manage More

Complex Layouts

4

Complex GUIs often require that each component be placed in
an exact location.

> Often consist of multiple panels, with each panel’s
components arranged In a specific layout.

Class JPanel extends JComponent and JComponent
extends class Container, so every JPanel isa
Container.

Every JPanel may have components, including other panels,
attached to it with Container method add.

JPane can be used to create a more complex layout in
which several components are in a specific area of another
container.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

1 // Fig. 12.45: PanelFrame.java

2 // Using a JPanel to help lay out components.
3 dimport java.awt.GridlLayout;

4 import java.awt.BorderlLayout;

5 dimport javax.swing.JFrame;

6 import javax.swing.JPanel;

7 dimport javax.swing.JButton;

8

9 public class PanelFrame extends JFrame

10 {

11 private final JPanel button]Panel; // panel to hold buttons
12 private final JButton[] buttons;

13

14 // no-argument constructor

15 public PanelFrame()

16 {

17 super("Panel Demo");

I8 buttons = new JButton[5];

19 buttonJPanel = new JPanel();
20 buttonJPanel.setlLayout(new GridLayout(l, buttons.length));
21

Fig. 12.45 | JPanel with five JButtons in a GridLayout attached to the SOUTH
region of a BorderLayout. (Part | of 2.)

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

22 // create and add buttons

23 for (int count = 0; count < buttons.length; count++)

24 {

25 buttons[count] = new JButton("Button " + (count + 1));

26 buttonJPanel.add(buttons[count]); // add button to panel
27 }

28

29 add(button]Panel, BorderLayout.SOUTH); // add panel to JFrame
30 }

31 } // end class PanelFrame

Fig. 12.45 | JPanel with five JButtons in a GridLayout attached to the SOUTH
region of a BorderLayout. (Part 2 of 2.)

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

1 // Fig. 12.46: PanelDemo. java

2 // Testing PanelFrame.

3 dmport javax.swing.JFrame;

4

5 public class PanelDemo extends JFrame

6 {

T public static void main(String[] args)

8 {

9 PanelFrame panelFrame = new PanelFrame();
10 panelFrame.setDefaultCloselperation(JFrame. EXIT _ON_CLOSE);
11 panelFrame.setSize(450, 200);

12 panelFrame.setVisible(true);

12 1

14 } // end class PanelDemo

| £ Panel Demo EI@

| Buton1 || Butonz || Buton3 || Button4 | Buttons |

Fig. 12.46 | Testing PanelFrame.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

12.20 JTeXtArea

» A JTextArea provides an area for manipulating multiple
lines of text.
» JTextArea is asubclass of JTTextComponent,

which declares common methods for JTextFields,
JTextAreas and several other text-based GUI

components.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

I // Fig. 12.47: TextAreaFrame.java

2 // Copying selected text from one JText area to another.

3 1import java.awt.event.ActionListener;

4 import java.awt.event.ActionEvent;

5 dimport javax.swing.Box;

6 import javax.swing.JFrame;

7 1import javax.swing.JTextArea;

8 import javax.swing.JButton;

9 dimport javax.swing.J]ScrollPane;
10
Il public class TextAreaFrame extends JFrame
12 {

13 private final JTextArea textAreal; // displays demo string
14 private final JTextArea textArea2; // highlighted text is copied here
15 private final JButton copylButton; // initiates copying of text
16

17 // no-argument constructor

18 public TextAreaFrame()

19 {
20 super("TextArea Demo");
21 Box box = Box.createHorizontalBox(); // create box
22 String demo = "This 1is a demo string to\n" +
23 "i1Tustrate copying text\nfrom one textarea to \n" +
24 "another textarea using an\nexternal event\n";

Fig. 12.47 | Copying selected text from one JTextArea to another. (Part | of 2.)

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

25

26 textAreal = new JTextArea(demo, 10, 15);

27 box.add(new JScrollPane(textAreal)); // add scrollpane
28

29 copylJButton = new JButton("Copy >>>"); // create copy button
30 box.add(copylButton); // add copy button to box

31 copyJButton.addActionListener(

32 new ActionListener() // anonymous inner class

33 {

34 // set text in textAreal to selected text from textAreal
35 @Override

36 public void actionPerformed(ActionEvent event)

37 {

38 textAreal.setText(textAreal.getSelectedText());
39 }

40 }

41)

42

43 textArea2 = new JTextArea(l0, 15);

44 textAreal.setEditable(false);

45 box.add(new JScrollPane(textArea2)); // add scrollpane
46

47 add(box); // add box to frame

48 }

49 1} // end class TextAreaFrame

12.47 | Copying selected text from one JTextArea to another. (Part 2 of 2.)

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

1 // Fig. 12.48: TextAreaDemo.java

2 // Testing TextAreaFrame.

3 dmport javax.swing.JFrame;

4

5 public class TextAreaDemo

6 {

T public static void main(String[] args)

8 {

9 TextAreaFrame textAreaFrame = new TextAreaFrame();
10 textAreaFrame.setDefaultCloselperation(JFrame. EXIT _ON_CLOSE);
11 textAreaFrame.setSize(425, 200);

12 textAreaFrame.setVisible(true);

12 1

14 } // end class TextAreaDemo

|2 TextArea Demo === |2 TextArea Deme (===
K This is a demo string to R This is a demo string to R
illustrate copying text illustrate copying text
from one textarea to from one textarea to
another textarea using ar another textarea using ar
external event Copy === external event
v A ¥ ¥
<X 3 <K > LN — < -

Fig. 12.48 | Testing TextAreaFrame.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

12.20 JTeXtArea

» A JTextArea provides an area for manipulating multiple
lines of text.

» JTextArea is asubclass of JTextComponent.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

Look-and-Feel Observation 12.19

= To provide line wrapping functionality for a JTextAr-
ea, invoke JTextArea method setlLineWrap with a

true argument.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

12.20 JTextArea (cont.)

» Box is a subclass of Container that uses a BoxLayout to
arrange the GUI components horizontally or vertically.

» Box static method createHorizontalBox creates a Box that
arranges components left to right in the order that they are
attached.

» JTextArea method getSelectedText (inherited from
JTextComponent) returns the selected text from a
JTextArea.

» JTextArea method setText changes the text in a
JTextArea.

» When text reaches the right edge of a JTextArea the text
can wrap to the next line.

> Referred to as line wrapping.
- By default, JTextArea does not wrap lines.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

12.20 JTextArea (cont.)

» You can set the horizontal and vertical scrollbar
policies of a JScrol 1 Pane when it’s constructed.

» You can also use JScrol1Pane methods
setHorizontalScrollBarPolicy and
setVerticalScrollBarPolicy to change the scrollbar
policies.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

12.20 JTextArea (cont.)

» Class JScrol 1Pane declares the constants

- JScrollPane.VERTICAL_SCROLLBAR_ALWAYS
JScrollPane.HORIZONTAL_SCROLLBAR_ALWAYS

> to Indicate that a scrollbar should always appear, constants

« JScrollPane.VERTICAL_SCROLLBAR_AS_NEEDED
JScrollPane.HORIZONTAL_SCROLLBAR_AS_NEEDED

> to Indicate that a scrollbar should appear only if necessary
(the defaults) and constants

« JScrollPane.VERTICAL_SCROLLBAR_NEVER
JScrollPane.HORIZONTAL_SCROLLBAR_NEVER

> to Indicate that a scrollbar should never appear.

» If policy Is set to
HORIZONTAL_SCROLLBAR_NEVER, a
JTextArea attached to the JScrol 1 Pane will

automatically wrap lines.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

	Slide 1: Chapter 12 GUI Components: Part 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5: 12.1 Introduction
	Slide 6
	Slide 7: 12.1 Introduction (cont.)
	Slide 8: 12.1 Introduction (cont.)
	Slide 9
	Slide 10: 12.2 Java’s Nimbus Look-and-Feel
	Slide 11: 12.2 Java’s Nimbus Look-and-Feel (cont.)
	Slide 12: 12.2 Java’s Nimbus Look-and-Feel (cont.)
	Slide 13: 12.2 Java’s Nimbus Look-and-Feel (cont.)
	Slide 14: 12.3 Simple GUI-Based Input/Output with JOptionPane
	Slide 15
	Slide 16
	Slide 17
	Slide 18: 12.3 Simple GUI-Based Input/Output with JOptionPane (cont.)
	Slide 19
	Slide 20
	Slide 21: 12.3 Simple GUI-Based Input/Output with JOptionPane (cont.)
	Slide 22: 12.3 Simple GUI-Based Input/Output with JOptionPane (cont.)
	Slide 23
	Slide 24
	Slide 25: 12.4 Overview of Swing Components
	Slide 26
	Slide 27: 12.4 Overview of Swing Components (cont.)
	Slide 28: 12.4 Overview of Swing Components (cont.)
	Slide 29
	Slide 30
	Slide 31: 12.4 Overview of Swing Components (cont.)
	Slide 32: 12.4 Overview of Swing Components (cont.)
	Slide 33: 12.4 Overview of Swing Components (cont.)
	Slide 34: 12.5 Displaying Text and Images in a Window
	Slide 35: 12.5 Displaying Text and Images in a Window (cont.)
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41: 12.5 Displaying Text and Images in a Window (cont.)
	Slide 42: 12.5 Displaying Text and Images in a Window (cont.)
	Slide 43: 12.5 Displaying Text and Images in a Window (cont.)
	Slide 44: 12.5 Displaying Text and Images in a Window (cont.)
	Slide 45
	Slide 46
	Slide 47: 12.5 Displaying Text and Images in a Window (cont.)
	Slide 48: 12.5 Displaying Text and Images in a Window (cont.)
	Slide 49: 12.5 Displaying Text and Images in a Window (cont.)
	Slide 50: 12.5 Displaying Text and Images in a Window (cont.)
	Slide 51
	Slide 52: 12.5 Displaying Text and Images in a Window (cont.)
	Slide 53: 12.6 Text Fields and an Introduction to Event Handling with Nested Classes
	Slide 54: 12.6 Text Fields and an Introduction to Event Handling with Nested Classes (cont.)
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61: 12.6 Text Fields and an Introduction to Event Handling with Nested Classes (cont.)
	Slide 62: 12.6 Text Fields and an Introduction to Event Handling with Nested Classes (cont.)
	Slide 63: 12.6 Text Fields and an Introduction to Event Handling with Nested Classes (cont.)
	Slide 64: 12.6 Text Fields and an Introduction to Event Handling with Nested Classes (cont.)
	Slide 65: 12.6 Text Fields and an Introduction to Event Handling with Nested Classes (cont.)
	Slide 66: 12.6 Text Fields and an Introduction to Event Handling with Nested Classes (cont.)
	Slide 67: 12.6 Text Fields and an Introduction to Event Handling with Nested Classes (cont.)
	Slide 68: 12.6 Text Fields and an Introduction to Event Handling with Nested Classes (cont.)
	Slide 69: 12.6 Text Fields and an Introduction to Event Handling with Nested Classes (cont.)
	Slide 70
	Slide 71
	Slide 72
	Slide 73: 12.7 Common GUI Event Types and Listener Interfaces
	Slide 74
	Slide 75: 12.7 Common GUI Event Types and Listener Interfaces (cont.)
	Slide 76
	Slide 77: 12.7 Common GUI Event Types and Listener Interfaces (cont.)
	Slide 78: 12.8 How Event Handling Works
	Slide 79
	Slide 80: 12.8 How Event Handling Works (cont.)
	Slide 81: 12.8 How Event Handling Works (cont.)
	Slide 82: 12.8 How Event Handling Works (cont.)
	Slide 83
	Slide 84: 12.9 JButton
	Slide 85
	Slide 86: 12.9 JButton (cont.)
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91
	Slide 92
	Slide 93
	Slide 94: 12.9 JButton (cont.)
	Slide 95
	Slide 96
	Slide 97: 12.9 JButton (cont.)
	Slide 98
	Slide 99: 12.10 Buttons That Maintain State
	Slide 100: 12.10.1 JCheckBox
	Slide 101
	Slide 102
	Slide 103
	Slide 104
	Slide 105: 12.10.2 JRadioButton
	Slide 106
	Slide 107
	Slide 108
	Slide 109
	Slide 110
	Slide 111
	Slide 112: 12.10.2 JRadioButton (cont.)
	Slide 113: 12.11 JComboBox; Using an Anonymous Inner Class for Event Handling
	Slide 114
	Slide 115
	Slide 116
	Slide 117
	Slide 118
	Slide 119: 12.11 JComboBox; Using an Anonymous Inner Class for Event Handling (cont.)
	Slide 120
	Slide 121: 12.11 JComboBox; Using an Anonymous Inner Class for Event Handling (cont.)
	Slide 122
	Slide 123: 12.11 JComboBox; Using an Anonymous Inner Class for Event Handling (cont.)
	Slide 124
	Slide 125: 12.12 JList
	Slide 126
	Slide 127
	Slide 128
	Slide 129
	Slide 130: 12.12 JList (cont.)
	Slide 131: 12.12 JList (cont.)
	Slide 132: 12.12 JList (cont.)
	Slide 133: 12.13 Multiple-Selection Lists
	Slide 134
	Slide 135
	Slide 136
	Slide 137
	Slide 138
	Slide 139: 12.13 Multiple-Selection Lists (cont.)
	Slide 140: 12.14 Mouse Event Handling
	Slide 141
	Slide 142
	Slide 143: 12.14 Mouse Event Handling (cont.)
	Slide 144
	Slide 145: 12.14 Mouse Event Handling (cont.)
	Slide 146
	Slide 147
	Slide 148
	Slide 149
	Slide 150
	Slide 151
	Slide 152
	Slide 153: 12.14 Mouse Event Handling (cont.)
	Slide 154: 12.15 Adapter Classes
	Slide 155
	Slide 156
	Slide 157
	Slide 158
	Slide 159
	Slide 160
	Slide 161
	Slide 162: 12.15 Adapter Classes (cont.)
	Slide 163: 12.15 Adapter Classes (cont.)
	Slide 164
	Slide 165: 12.15 Adapter Classes (cont.)
	Slide 166: 12.16 JPanel Subclass for Drawing with the Mouse
	Slide 167: 12.16 JPanel Subclass for Drawing with the Mouse (cont.)
	Slide 168
	Slide 169
	Slide 170
	Slide 171
	Slide 172
	Slide 173: 12.16 JPanel Subclass for Drawing with the Mouse (cont.)
	Slide 174
	Slide 175: 12.16 JPanel Subclass for Drawing with the Mouse (cont.)
	Slide 176
	Slide 177
	Slide 178
	Slide 179: 12.17 Key Event Handling
	Slide 180
	Slide 181
	Slide 182
	Slide 183
	Slide 184
	Slide 185
	Slide 186: 12.17 Key Event Handling (cont.)
	Slide 187: 12.17 Key Event Handling (cont.)
	Slide 188: 12.18 Introduction to Layout Managers
	Slide 189: 12.18 Introduction to Layout Managers (cont.)
	Slide 190: 12.18 Introduction to Layout Managers (cont.)
	Slide 191
	Slide 192
	Slide 193
	Slide 194: 12.18.1 FlowLayout
	Slide 195
	Slide 196
	Slide 197
	Slide 198
	Slide 199
	Slide 200
	Slide 201
	Slide 202: 12.18.1 FlowLayout (cont.)
	Slide 203: 12.18.2 BorderLayout
	Slide 204
	Slide 205
	Slide 206
	Slide 207: 12.18.2 BorderLayout (cont.)
	Slide 208
	Slide 209
	Slide 210
	Slide 211
	Slide 212
	Slide 213: 12.18.3 GridLayout
	Slide 214
	Slide 215
	Slide 216
	Slide 217
	Slide 218: 12.19 Using Panels to Manage More Complex Layouts
	Slide 219
	Slide 220
	Slide 221
	Slide 222: 12.20 JTextArea
	Slide 223
	Slide 224
	Slide 225
	Slide 226: 12.20 JTextArea
	Slide 227
	Slide 228: 12.20 JTextArea (cont.)
	Slide 229: 12.20 JTextArea (cont.)
	Slide 230: 12.20 JTextArea (cont.)

