
Java How to Program, 10/e

© Copyright 1992-2015 by Pearson Education, Inc. All Rights
Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

 A graphical user interface (GUI) presents a user-

friendly mechanism for interacting with an application.

◦ Pronounced “GOO-ee”

◦ Gives an application a distinctive “look-and-feel.”

◦ Consistent, intuitive user-interface components give users a

sense of familiarity

◦ Learn new applications more quickly and use them more

productively.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

 Built from GUI components.

◦ Sometimes called controls or widgets—short for window

gadgets.

 User interacts via the mouse, the keyboard or another

form of input, such as voice recognition.

 IDEs

◦ Provide GUI design tools to specify a component’s size,

location and other attributes in a visual manner by using the

mouse, keyboard and drag-and-drop.

◦ Generate the GUI code for you.

◦ Greatly simplify creating GUIs, but each IDE has different

capabilities and generates different code.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

 Example of a GUI: SwingSet3 application (Fig. 12.1)

http://www.oracle.com/technetwork/java/javase/
downloads/index.html

 title bar at top contains the window’s title.

 menu bar contains menus (File and View).

 In the top-right region of the window is a set of buttons

◦ Typically, users press buttons to perform tasks.

 In the GUI Components area of the window is a combo

box;

◦ User can click the down arrow at the right side of the box to select

from a list of items.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

 Swing has a cross-platform look-and-feel known as

Nimbus.

 We’ve configured our systems to use Nimbus as the

default look-and-feel.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

 Three ways to use Nimbus:

◦ Set it as the default for all Java applications that run on

your computer.

◦ Set it as the look-and-feel when you launch an

application by passing a command-line argument to the

java command.

◦ Set it as the look-and-feel programatically in your

application (Section 22.6).

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

 To set Nimbus as the default for all Java applications:
◦ Create a text file named swing.properties in the lib

folder of both your JDK installation folder and your JRE
installation folder.

◦ Place the following line of code in the file:
swing.defaultlaf=
com.sun.java.swing.plaf.nimbus.
NimbusLookAndFeel

 In addition to the standalone JRE, there is a JRE nested in
your JDK’s installation folder. If you are using an IDE that
depends on the JDK (e.g., NetBeans), you may also need to
place the swing.properties file in the nested jre
folder’s lib folder.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

 To select Nimbus on an application-by-application

basis:

◦ Place the following command-line argument after the java
command and before the application’s name when you run the

application:

-Dswing.defaultlaf=
com.sun.java.swing.plaf.nimbus.
NimbusLookAndFeel

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

 Most applications use windows or dialog boxes (also called

dialogs) to interact with the user.

 JOptionPane (package javax.swing) provides prebuilt

dialog boxes for input and output

◦ Displayed via static JOptionPane methods.

 Figure 12.2 uses two input dialogs to obtain integers from

the user and a message dialog to display the sum of the

integers the user enters.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

 JOptionPane static method showInputDialog
displays an input dialog, using the method’s String
argument as a prompt.
◦ The user types characters in the text field, then

clicks OK or presses the Enter key to submit the
String to the program.
◦ Clicking OK dismisses (hides) the dialog.
◦ Can input only Strings. Typical of most GUI

components.
◦ If the user clicks Cancel, returns null.
◦ JOptionPane dialog are dialog—the user cannot

interact with the rest of the application while dialog
is displayed.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

 Converting Strings to int Values
◦ Integer class’s static method parseInt converts its
String argument to an int value and might throw a
NumberFormatException.

 Message Dialogs
◦ JOptionPane static method showMessageDialog

displays a message dialog.
◦ The first argument helps determine where to position the

dialog.
 If null, the dialog box is displayed at the center of your screen.

◦ The second argument is the message to display.
◦ The third argument is the String that should appear in the

title bar at the top of the dialog.
◦ The fourth argument is the type of message dialog to

display.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

 Message Dialogs

◦ A JOption-Pane.PLAIN_MESSAGE dialog does not display an

icon to the left of the message.

 JOptionPane online documentation:

◦ http://docs.oracle.com/javase/7/docs/api/j
avax/swing/JOptionPane.html

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

 Swing GUI components located in package javax.swing.

 Abstract Window Toolkit (AWT) in package java.awt is another
set of GUI components in Java.
◦ When a Java application with an AWT GUI executes on different Java

platforms, the application’s GUI components display differently on each
platform.

 Together, the appearance and the way in which the user interacts
with the application are known as that application’s look-and-
feel.

 Swing GUI components allow you to specify a uniform look-
and-feel for your application across all platforms or to use each
platform’s custom look-and-feel.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

 Most Swing components are not tied to actual GUI
components of the underlying platform.
◦ Known as lightweight components.

 AWT components are tied to the local platform and are
called heavyweight components, because they rely on the
local platform’s windowing system to determine their
functionality and their look-and-feel.

 Several Swing components are heavyweight components.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

 Class Component (package java.awt) declares
many of the attributes and behaviors common to the
GUI components in packages java.awt and
javax.swing.

 Most GUI components extend class Component
directly or indirectly.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

 Class Container (package java.awt) is a subclass
of Component.

 Components are attached to Containers so that
they can be organized and displayed on the screen.

 Any object that is a Container can be used to
organize other Components in a GUI.

 Because a Container is a Component, you can
place Containers in other Containers to help
organize a GUI.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

 Class JComponent (package javax.swing) is a

subclass of Container.

 JComponent is the superclass of all lightweight

Swing components, all of which are also

Containers.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

 Some common lightweight component
features supported by JComponent include:
◦ pluggable look-and-feel
◦ Shortcut keys (called mnemonics)
◦ Common event-handling capabilities for components

that initiate the same actions in an application.
◦ tool tips
◦ Support for accessibility
◦ Support for user-interface localization

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

 Most windows that can contain Swing GUI components are
instances of class JFrame or a subclass of JFrame.

 JFrame is an indirect subclass of class
java.awt.Window

 Provides the basic attributes and behaviors of a window
◦ a title bar at the top
◦ buttons to minimize, maximize and close the window

 Most of our examples will consist of two classes
◦ a subclass of JFrame that demonstrates new GUI concepts
◦ an application class in which main creates and displays the

application’s primary window.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

 In a large GUI
◦ Difficult to identify the purpose of every component.

◦ Provide text stating each component’s purpose.

 Such text is known as a label and is created with class
JLabel—a subclass of JComponent.
◦ Displays read-only text, an image, or both text and an image.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

 JFrame’s constructor uses its String argument as the
text in the window’s title bar.

 Must attach each GUI component to a container, such as a
JFrame.

 You typically must decide where to position each GUI
component.
◦ Known as specifying the layout of the GUI components.

◦ Java provides several layout managers that can help you position
components.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

 Many IDEs provide GUI design tools in which you can
specify the exact size and location of a component

 IDE generates the GUI code for you
 Greatly simplifies GUI creation
 To ensure that this book’s examples can be used with any

IDE, we did not use an IDE to create the GUI code
 We use Java’s layout managers in our GUI examples

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

 FlowLayout
◦ GUI components are placed in a container from left to right

in the order in which the program attaches them to the
container.

◦ When there is no more room to fit components left to right,
components continue to display left to right on the next line.

◦ If the container is resized, a FlowLayout reflows the
components to accommodate the new width of the container,
possibly with fewer or more rows of GUI components.

 Method setLayout is inherited from class
Container.
◦ argument must be an object of a class that implements the
LayoutManager interface (e.g., FlowLayout).

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

 JLabel constructor can receive a String specifying the
label’s text.

 Method setToolTipText (inherited by JLabel from
JComponent) specifies the tool tip that is displayed when
the user positions the mouse cursor over a JComponent
(such as a JLabel).

 You attach a component to a container using the add
method, which is inherited indirectly from class
Container.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

 Icons enhance the look-and-feel of an application and are
also commonly used to indicate functionality.

 An icon is normally specified with an Icon (package
javax.swing) argument to a constructor or to the
component’s setIcon method.

 ImageIcon (package javax.swing) supports several
image formats, including Graphics Interchange Format
(GIF), Portable Network Graphics (PNG) and Joint
Photographic Experts Group (JPEG).

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

 getClass().getResource("bug1.png")
◦ Invokes method getClass (inherited indirectly from class
Object) to retrieve a reference to the Class object that
represents the LabelFrame class declaration.

◦ Next, invokes Class method getResource, which returns
the location of the image as a URL.

◦ The ImageIcon constructor uses the URL to locate the
image, then loads it into memory.

◦ The class loader knows where each class it loads is located
on disk. Method getResource uses the Class object’s
class loader to determine the location of a resource, such as
an image file.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

 A JLabel can display an Icon.
 JLabel constructor can receive text and an Icon.
◦ The last constructor argument indicates the justification of

the label’s contents.
◦ Interface SwingConstants (package javax.swing)

declares a set of common integer constants (such as
SwingConstants.LEFT,
SwingConstants.CENTER and
SwingConstants.RIGHT) that are used with many
Swing components.

◦ By default, the text appears to the right of the image when a
label contains both text and an image.

◦ The horizontal and vertical alignments of a JLabel can be
set with methods setHorizontalAlignment and
setVerticalAlignment, respectively.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

 Class JLabel provides methods to change a JLabel’s
appearance after it has been instantiated.

 Method setText sets the text displayed on the label.
 Method getText retrieves  the JLabel’s current text.
 Method setIcon specifies the Icon to display.
 Method getIcon retrieves  the current Icon displayed on

a label.
 Methods setHorizontalTextPosition and
setVerticalTextPosition specify the text position in the
label.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

 By default, closing a window simply hides the window.

 Calling method setDefaultCloseOperation (inherited from class
JFrame) with the argument JFrame.EXIT_ON_CLOSE indicates
that the program should terminate when the window is closed by
the user.

 Method setSize specifies the width and height of the window in
pixels.

 Method setVisible with the argument true displays the window
on the screen.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

 GUIs are event driven.

 When the user interacts with a GUI component, the

interaction—known as an event—drives the program to

perform a task.

 The code that performs a task in response to an event is

called an event handler, and the process of responding

to events is known as event handling.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

 JTextFields and JPasswordFields (package javax.swing).

 JTextField extends class JTextComponent (package
javax.swing.text), which provides many features common
to Swing’s text-based components.

 Class JPasswordField extends JTextField and adds
methods that are specific to processing passwords.

 JPasswordField shows that characters are being typed as the
user enters them, but hides the actual characters with an echo
character.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

 When the user types data into a JTextField or a

JPasswordField, then presses Enter, an event

occurs.

 You can type only in the text field that is “in focus.”

 A component receives the focus when the user clicks

the component.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

 Before an application can respond to an event for a

particular GUI component, you must perform several

coding steps:

 Create a class that represents the event handler.

 Implement an appropriate interface, known as an event-

listener interface, in the class from Step 1.

 Indicate that an object of the class from Steps 1 and 2

should be notified when the event occurs. This is known

as registering the event handler.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

 All the classes discussed so far were so-called top-level

classes—that is, they were not declared inside another

class.

 Java allows you to declare classes inside other

classes—these are called nested classes.

◦ Can be static or non-static.

◦ Non-static nested classes are called inner classes and are

frequently used to implement event handlers.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

 Before an object of an inner class can be created, there must first
be an object of the top-level class that contains the inner class.

 This is required because an inner-class object implicitly has a
reference to an object of its top-level class.

 There is also a special relationship between these objects—the
inner-class object is allowed to directly access all the variables
and methods of the outer class.

 A nested class that is static does not require an object of its
top-level class and does not implicitly have a reference to an
object of the top-level class.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

 Inner classes can be declared public, protected
or private.

 Since event handlers tend to be specific to the

application in which they are defined, they are often

implemented as private inner classes.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

 GUI components can generate many events in response

to user interactions.

 Each event is represented by a class and can be

processed only by the appropriate type of event

handler.

 Normally, a component’s supported events are

described in the Java API documentation for that

component’s class and its superclasses.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

 When the user presses Enter in a JTextField or
JPasswordField, an ActionEvent (package
java.awt.event) occurs.

 Processed by an object that implements the interface
ActionListener (package java.awt.event).

 To handle ActionEvents, a class must implement
interface ActionListener and declare method
actionPerformed.
◦ This method specifies the tasks to perform when an ActionEvent

occurs.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

 Must register an object as the event handler for each

text field.

 addActionListener registers an ActionListener
object to handle ActionEvents.

 After an event handler is registered the object listens

for events.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

 The component with which the user interacts is the event
source.

 ActionEvent method getSource (inherited from class
EventObject) returns a reference to the event source.

 ActionEvent method getActionCommand obtains the
text the user typed in the text field that generated the event.

 JPasswordField method getPassword returns the
password’s characters as an array of type char.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

 Figure 12.11 illustrates a hierarchy containing many

event classes from the package java.awt.event.

 Used with both AWT and Swing components.

 Additional event types that are specific to Swing GUI

components are declared in package javax.swing.event.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

 Delegation event model—an event’s processing is
delegated to an object (the event listener) in the
application.

 For each event-object type, there is typically a
corresponding event-listener interface.

 Many event-listener types are common to both Swing and
AWT components.
◦ Such types are declared in package
java.awt.event, and some of them are shown in
Fig. 12.12.

 Additional event-listener types that are specific to Swing
components are declared in package
javax.swing.event.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

 Each event-listener interface specifies one or more

event-handling methods that must be declared in the

class that implements the interface.

 When an event occurs, the GUI component with which

the user interacted notifies its registered listeners by

calling each listener’s appropriate event-handling

method.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

 How the event-handling mechanism works:
 Every JComponent has a variable listenerList that

refers to an EventListenerList (package
javax.swing.event).

 Maintains references to registered listeners in the
listenerList.

 When a listener is registered, a new entry is placed in the
component’s listenerList.

 Every entry also includes the listener’s type.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

 How does the GUI component know to call
actionPerformed rather than another method?

◦ Every GUI component supports several event types,
including mouse events, key events and others.

◦ When an event occurs, the event is dispatched only to the
event listeners of the appropriate type.

◦ Dispatching is simply the process by which the GUI
component calls an event-handling method on each of its
listeners that are registered for the event type that occurred.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

 Each event type has one or more corresponding event-listener
interfaces.
◦ ActionEvents are handled by ActionListeners
◦ MouseEvents are handled by MouseListeners and
MouseMotionListeners

◦ KeyEvents are handled by KeyListeners
 When an event occurs, the GUI component receives (from the

JVM) a unique event ID specifying the event type.
◦ The component uses the event ID to decide the listener type

to which the event should be dispatched and to decide which
method to call on each listener object.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

 For an ActionEvent, the event is dispatched to every

registered ActionListener’s actionPerformed
method.

 For a Mouse-Event, the event is dispatched to every

registered MouseListener or

MouseMotionListener, depending on the mouse event

that occurs.

◦ The MouseEvent’s event ID determines which of the several

mouse event-handling methods are called.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

 A button is a component the user clicks to trigger a
specific action.

 Several types of buttons
◦ command buttons
◦ checkboxes
◦ toggle buttons
◦ radio buttons

 Button types are subclasses of AbstractButton
(package javax.swing), which declares the
common features of Swing buttons.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

 A command button generates an ActionEvent when

the user clicks it.

 Command buttons are created with class JButton.

 The text on the face of a JButton is called a button

label.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

 A JButton can display an Icon.
 A JButton can also have a rollover Icon
◦ displayed when the user positions the mouse over the JButton.
◦ The icon on the JButton changes as the mouse moves in and out of

the JButton’s area on the screen.

 AbstractButton method setRolloverIcon specifies the
image displayed on the JButton when the user positions
the mouse over it.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

 JButtons, like JTextFields, generate

ActionEvents that can be processed by any

ActionListener object.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

 Three types of state buttons—JToggleButton,
JCheckBox and JRadioButton—that have on/off or
true/false values.

 Classes JCheckBox and JRadioButton are
subclasses of JToggleButton.

 JRadioButtons are grouped together and are
mutually exclusive—only one in the group can be
selected at any time

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

 JTextField method setFont (inherited by JTextField
indirectly from class Component) sets the font of the
JTextField to a new Font (package java.awt).

 String passed to the JCheckBox constructor is the
checkbox label that appears to the right of the JCheckBox by
default.

 When the user clicks a JCheckBox, an ItemEvent occurs.
◦ Handled by an ItemListener object, which must implement method
itemStateChanged.

 An ItemListener is registered with method
addItemListener.

 JCheckBox method isSelected returns true if a
JCheckBox is selected.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

 Radio buttons (declared with class JRadioButton)
are similar to checkboxes in that they have two
states—selected and not selected (also called
deselected).

 Radio buttons normally appear as a group in which
only one button can be selected at a time.

 Used to represent mutually exclusive options.
 The logical relationship between radio buttons is

maintained by a ButtonGroup object (package
javax.swing), which organizes a group of buttons
and is not itself displayed in a user interface.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

 ButtonGroup method add associates a

JRadioButton with the group.

 If more than one selected JRadioButton object is

added to the group, the selected one that was added

first will be selected when the GUI is displayed.

 JRadioButtons, like JCheckBoxes, generate

ItemEvents when they are clicked.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

 A combo box (sometimes called a drop-down list)

enables the user to select one item from a list.

 Combo boxes are implemented with class JComboBox,
which extends class JComponent.

 JComboBoxes generate ItemEvents.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

 The first item added to a JComboBox appears as the
currently selected item when the JComboBox is
displayed.

 Other items are selected by clicking the JComboBox,
then selecting an item from the list that appears.

 JComboBox method setMaximumRowCount sets the
maximum number of elements that are displayed when
the user clicks the JComboBox.

 If there are additional items, the JComboBox provides a
scrollbar that allows the user to scroll through all the
elements in the list.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

 An anonymous inner class is an inner class that is declared
without a name and typically appears inside a method
declaration.

 As with other inner classes, an anonymous inner class can
access its top-level class’s members.

 An anonymous inner class has limited access to the local
variables of the method in which it’s declared.

 Since an anonymous inner class has no name, one object of
the anonymous inner class must be created at the point
where the class is declared.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

 JComboBox method getSelectedIndex returns the
index of the selected item.

 For each item selected from a JComboBox, another
item is first deselected—so two ItemEvents occur
when an item is selected.

 ItemEvent method getStateChange returns the type
of state change. ItemEvent.SELECTED indicates
that an item was selected.

 In Section 17.9, we show how to use Java SE 8
lambdas to create event handlers.
◦ The compiler translates a lambda into an object of an

anonymous inner class.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

 A list displays a series of items from which the user
may select one or more items.

 Lists are created with class JList, which directly
extends class JComponent.

 Class JList—which like JComboBox is a generic
class—supports single-selection lists (only one item to
be selected at a time) and multiple-selection lists (any
number of items to be selected).

 JLists generate ListSelectionEvents in single-
selection lists.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

 setVisibleRowCount specifies the number of items visible in
the list.

 setSelectionMode specifies the list’s selection mode.
 Class ListSelectionModel (of package javax.swing)

declares selection-mode constants
◦ SINGLE_SELECTION (only one item to be selected at a time)
◦ SINGLE_INTERVAL_SELECTION (allows selection of several

contiguous items)
◦ MULTIPLE_INTERVAL_SELECTION (does not restrict the items

that can be selected).

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

 Unlike a JComboBox, a JList does not provide a
scrollbar if there are more items in the list than the
number of visible rows.
◦ A JScrollPane object is used to provide the scrolling capability.

 addListSelectionListener registers a
ListSelectionListener (package
javax.swing.event) as the listener for aJList’s
selection events.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

 Each JFrame actually consists of three layers—the
background, the content pane and the glass pane.

 The content pane appears in front of the background and is
where the GUI components in the JFrame are displayed.

 The glass pane is displays tool tips and other items that should
appear in front of the GUI components on the screen.

 The content pane completely hides the background of the
JFrame.

 To change the background color behind the GUI components,
you must change the content pane’s background color.

 Method getContentPane returns a reference to the
JFrame’s content pane (an object of class Container).

 List method getSelectedIndex returns the selected item’s
index.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

 A multiple-selection list enables the user to select
many items from a JList.

 A SINGLE_INTERVAL_SELECTION list allows
selecting a contiguous range of items.
◦ To do so, click the first item, then press and hold the Shift

key while clicking the last item in the range.

 A MULTIPLE_INTERVAL_SELECTION list (the
default) allows continuous range selection as
described for a SINGLE_INTERVAL_SELECTION
list and allows miscellaneous items to be selected by
pressing and holding the Ctrl key while clicking each
item to select.
◦ To deselect an item, press and hold the Ctrl key while

clicking the item a second time.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

 If a JList does not contain items it will not diplay
in a FlowLayout.
◦ use JList methods setFixedCellWidth and
setFixedCellHeight to set the item width and height

 There are no events to indicate that a user has made
multiple selections in a multiple-selection list.
◦ An event generated by another GUI component (known as

an external event) specifies when the multiple selections in a
JList should be processed.

 Method setListData sets the items displayed in a
JList.

 Method getSelectedValues returns an array of
Objects representing the selected items in a
JList.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

 MouseListener and MouseMotionListener event-listener
interfaces for handling mouse events.
◦ Any GUI component

 Package javax.swing.event contains interface
MouseInputListener, which extends interfaces
MouseListener and MouseMotionListener to create a
single interface containing all the methods.

 MouseListener and MouseMotionListener methods
are called when the mouse interacts with a Component if
appropriate event-listener objects are registered for that
Component.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

 Each mouse event-handling method receives a
MouseEvent object that contains information about the
mouse event that occurred, including the x- and y-
coordinates of the location where the event occurred.

 Coordinates are measured from the upper-left corner of
the GUI component on which the event occurred.

 The x-coordinates start at 0 and increase from left to
right. The y-coordinates start at 0 and increase from top to
bottom.

 The methods and constants of class InputEvent (Mouse-
Event’s superclass) enable you to determine which
mouse button the user clicked.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

 Interface MouseWheelListener enables applications to
respond to the rotation of a mouse wheel.

 Method mouseWheelMoved receives a
MouseWheelEvent as its argument.

 Class MouseWheelEvent (a subclass of Mouse-
Event) contains methods that enable the event handler
to obtain information about the amount of wheel
rotation.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

 BorderLayout arranges component NORTH, SOUTH, EAST, WEST
and CENTER regions.

 BorderLayout sizes the component in the CENTER to use all
available space that is not occupied

 Methods addMouseListener and addMouseMotionListener
register MouseListeners and MouseMotionListeners,
respectively.

 MouseEvent methods getX and getY return the x- and y-
coordinates of the mouse at the time the event occurred.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

 Many event-listener interfaces contain multiple methods.

 An adapter class implements an interface and provides a

default implementation (with an empty method body) of

each method in the interface.

 You extend an adapter class to inherit the default

implementation of every method and override only the

method(s) you need for event handling.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

 A mouse can have one, two or three buttons.

 Class MouseEvent inherits several methods from

InputEvent that can distinguish among mouse

buttons or mimic a multibutton mouse with a combined

keystroke and mouse-button click.

 Java assumes that every mouse contains a left mouse

button.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

 In the case of a one- or two-button mouse, a Java
application assumes that the center mouse button is
clicked if the user holds down the Alt key and clicks
the left mouse button on a two-button mouse or the
only mouse button on a one-button mouse.

 In the case of a one-button mouse, a Java application
assumes that the right mouse button is clicked if the
user holds down the Meta key (sometimes called the
Command key or the “Apple” key on a Mac) and
clicks the mouse button.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

 The number of consecutive mouse clicks is returned by

MouseEvent method getClickCount.

 Methods isMetaDown and isAltDown determine which

mouse button the user clicked.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

 Use a JPanel as a dedicated drawing area in which the
user can draw by dragging the mouse.

 Lightweight Swing components that extend class
JComponent (such as JPanel) contain method
paintComponent
◦ called when a lightweight Swing component is

displayed

 Override this method to specify how to draw.

◦ Call the superclass version of paintComponent as
the first statement in the body of the overridden method
to ensure that the component displays correctly.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

 JComponent support transparency.

◦ To display a component correctly, the program must
determine whether the component is transparent.

◦ The code that determines this is in superclass
JComponent’s paintComponent implementation.

◦ When a component is transparent, paintComponent will
not clear its background

◦ When a component is opaque, paintComponent clears
the component’s background

◦ The transparency of a Swing lightweight component can be
set with method setOpaque (a false argument indicates
that the component is transparent).

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

 Class Point (package java.awt) represents an x-y
coordinate.
◦ We use objects of this class to store the coordinates of each mouse

drag event.

 Class Graphics is used to draw.

 MouseEvent method getPoint obtains the Point where
the event occurred.

 Method repaint (inherited from Component) indicates
that a Component should be refreshed on the screen as
soon as possible.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

 Graphics method fillOval draws a solid oval.
◦ Four parameters represent a rectangular area (called the

bounding box) in which the oval is displayed.

◦ The first two are the upper-left x-coordinate and the upper-
left y-coordinate of the rectangular area.

◦ The last two represent the rectangular area’s width and
height.

 Method fillOval draws the oval so it touches the
middle of each side of the rectangular area.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

 KeyListener interface for handling key events.
 Key events are generated when keys on the keyboard are

pressed and released.
 A KeyListener must define methods keyPressed,
keyReleased and keyTyped
◦ each receives a KeyEvent as its argument

 Class KeyEvent is a subclass of InputEvent.
 Method keyPressed is called in response to pressing any

key.
 Method keyTyped is called in response to pressing any key

that is not an action key.
 Method keyReleased is called when the key is released

after any keyPressed or keyTyped event.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

 Registers key event handlers with method addKeyListener
from class Component.

 KeyEvent method getKeyCode gets the virtual key code of
the pressed key.

 KeyEvent contains virtual key-code constants that represents
every key on the keyboard.

 Value returned by getKeyCode can be passed to static
KeyEvent method getKeyText to get a string containing the
name of the key that was pressed.

 KeyEvent method getKeyChar (which returns a char) gets
the Unicode value of the character typed.

 KeyEvent method isActionKey determines whether the key
in the event was an action key.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

 Method getModifiers determines whether any
modifier keys (such as Shift, Alt and Ctrl) were
pressed when the key event occurred.
◦ Result can be passed to static KeyEvent method
getKeyModifiersText to get a string containing the names of
the pressed modifier keys.

 InputEvent methods isAltDown, isControlDown,
isMetaDown and isShiftDown each return a
boolean indicating whether the particular key was
pressed during the key event.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

 Layout managers arrange GUI components in a container
for presentation purposes

 Can use for basic layout capabilities
 Enable you to concentrate on the basic look-and-feel—the

layout manager handles the layout details.
 Layout managers implement interface LayoutManager (in

package java.awt).
 Container’s setLayout method takes an object that

implements the LayoutManager interface as an
argument.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

 There are three ways for you to arrange components

in a GUI:

◦ Absolute positioning

 Greatest level of control.

 Set Container’s layout to null.

 Specify the absolute position of each GUI component with

respect to the upper-left corner of the Container by

using Component methods setSize and

setLocation or setBounds.

 Must specify each GUI component’s size.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

◦ Layout managers

 Simpler and faster than absolute positioning.

 Makes your GUIs more resizable.

 Lose some control over the size and the precise

positioning of each component.

◦ Visual programming in an IDE

 Use tools that make it easy to create GUIs.

 Allows you to drag and drop GUI components from a tool

box onto a design area.

 You can then position, size and align GUI components as

you like.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

 FlowLayout is the simplest layout manager.

 GUI components placed from left to right in the order in

which they are added to the container.

 When the edge of the container is reached, components

continue to display on the next line.

 FlowLayout allows GUI components to be left aligned,

centered (the default) and right aligned.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

 FlowLayout method setAlignment changes the alignment

for the FlowLayout.

◦ FlowLayout.LEFT

◦ FlowLayout.CENTER

◦ FlowLayout.RIGHT

 LayoutManager interface method layoutContainer
(which is inherited by all layout managers) specifies that a

container should be rearranged based on the adjusted

layout.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

 BorderLayout
◦ the default layout manager for a Jframe
◦ arranges components into five regions: NORTH, SOUTH,
EAST, WEST and CENTER.

◦ NORTH corresponds to the top of the container.

 BorderLayout implements interface
LayoutManager2 (a subinterface of
LayoutManager that adds several methods for
enhanced layout processing).

 BorderLayout limits a Container to at most
five components—one in each region.
◦ The component placed in each region can be a container to

which other components are attached.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

 BorderLayout constructor arguments specify the

number of pixels between components that are

arranged horizontally (horizontal gap space) and

between components that are arranged vertically

(vertical gap space), respectively.

◦ The default is one pixel of gap space horizontally and

vertically.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

 GridLayout divides the container into a grid of rows
and columns.
◦ Implements interface LayoutManager.
◦ Every Component has the same width and height.
◦ Components are added starting at the top-left cell of the grid

and proceeding left to right until the row is full. Then the
process continues left to right on the next row of the grid,
and so on.

 Container method validate recomputes the
container’s layout based on the current layout
manager and the current set of displayed GUI
components.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

 Complex GUIs often require that each component be placed in
an exact location.
◦ Often consist of multiple panels, with each panel’s

components arranged in a specific layout.
 Class JPanel extends JComponent and JComponent

extends class Container, so every JPanel is a
Container.

 Every JPanel may have components, including other panels,
attached to it with Container method add.

 JPanel can be used to create a more complex layout in
which several components are in a specific area of another
container.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

 A JTextArea provides an area for manipulating multiple

lines of text.

 JTextArea is a subclass of JTextComponent,

which declares common methods for JTextFields,

JTextAreas and several other text-based GUI

components.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

 A JTextArea provides an area for manipulating multiple

lines of text.

 JTextArea is a subclass of JTextComponent.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

 Box is a subclass of Container that uses a BoxLayout to
arrange the GUI components horizontally or vertically.

 Box static method createHorizontalBox creates a Box that
arranges components left to right in the order that they are
attached.

 JTextArea method getSelectedText (inherited from
JTextComponent) returns the selected text from a
JTextArea.

 JTextArea method setText changes the text in a
JTextArea.

 When text reaches the right edge of a JTextArea the text
can wrap to the next line.
◦ Referred to as line wrapping.
◦ By default, JTextArea does not wrap lines.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

 You can set the horizontal and vertical scrollbar

policies of a JScrollPane when it’s constructed.

 You can also use JScrollPane methods

setHorizontalScrollBarPolicy and

setVerticalScrollBarPolicy to change the scrollbar

policies.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

 Class JScrollPane declares the constants
 JScrollPane.VERTICAL_SCROLLBAR_ALWAYS
JScrollPane.HORIZONTAL_SCROLLBAR_ALWAYS

◦ to indicate that a scrollbar should always appear, constants
 JScrollPane.VERTICAL_SCROLLBAR_AS_NEEDED
JScrollPane.HORIZONTAL_SCROLLBAR_AS_NEEDED

◦ to indicate that a scrollbar should appear only if necessary
(the defaults) and constants
 JScrollPane.VERTICAL_SCROLLBAR_NEVER
JScrollPane.HORIZONTAL_SCROLLBAR_NEVER

◦ to indicate that a scrollbar should never appear.

 If policy is set to
HORIZONTAL_SCROLLBAR_NEVER, a
JTextArea attached to the JScrollPane will
automatically wrap lines.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

	Slide 1: Chapter 12 GUI Components: Part 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5: 12.1 Introduction
	Slide 6
	Slide 7: 12.1 Introduction (cont.)
	Slide 8: 12.1 Introduction (cont.)
	Slide 9
	Slide 10: 12.2 Java’s Nimbus Look-and-Feel
	Slide 11: 12.2 Java’s Nimbus Look-and-Feel (cont.)
	Slide 12: 12.2 Java’s Nimbus Look-and-Feel (cont.)
	Slide 13: 12.2 Java’s Nimbus Look-and-Feel (cont.)
	Slide 14: 12.3 Simple GUI-Based Input/Output with JOptionPane
	Slide 15
	Slide 16
	Slide 17
	Slide 18: 12.3 Simple GUI-Based Input/Output with JOptionPane (cont.)
	Slide 19
	Slide 20
	Slide 21: 12.3 Simple GUI-Based Input/Output with JOptionPane (cont.)
	Slide 22: 12.3 Simple GUI-Based Input/Output with JOptionPane (cont.)
	Slide 23
	Slide 24
	Slide 25: 12.4 Overview of Swing Components
	Slide 26
	Slide 27: 12.4 Overview of Swing Components (cont.)
	Slide 28: 12.4 Overview of Swing Components (cont.)
	Slide 29
	Slide 30
	Slide 31: 12.4 Overview of Swing Components (cont.)
	Slide 32: 12.4 Overview of Swing Components (cont.)
	Slide 33: 12.4 Overview of Swing Components (cont.)
	Slide 34: 12.5 Displaying Text and Images in a Window
	Slide 35: 12.5 Displaying Text and Images in a Window (cont.)
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41: 12.5 Displaying Text and Images in a Window (cont.)
	Slide 42: 12.5 Displaying Text and Images in a Window (cont.)
	Slide 43: 12.5 Displaying Text and Images in a Window (cont.)
	Slide 44: 12.5 Displaying Text and Images in a Window (cont.)
	Slide 45
	Slide 46
	Slide 47: 12.5 Displaying Text and Images in a Window (cont.)
	Slide 48: 12.5 Displaying Text and Images in a Window (cont.)
	Slide 49: 12.5 Displaying Text and Images in a Window (cont.)
	Slide 50: 12.5 Displaying Text and Images in a Window (cont.)
	Slide 51
	Slide 52: 12.5 Displaying Text and Images in a Window (cont.)
	Slide 53: 12.6 Text Fields and an Introduction to Event Handling with Nested Classes
	Slide 54: 12.6 Text Fields and an Introduction to Event Handling with Nested Classes (cont.)
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61: 12.6 Text Fields and an Introduction to Event Handling with Nested Classes (cont.)
	Slide 62: 12.6 Text Fields and an Introduction to Event Handling with Nested Classes (cont.)
	Slide 63: 12.6 Text Fields and an Introduction to Event Handling with Nested Classes (cont.)
	Slide 64: 12.6 Text Fields and an Introduction to Event Handling with Nested Classes (cont.)
	Slide 65: 12.6 Text Fields and an Introduction to Event Handling with Nested Classes (cont.)
	Slide 66: 12.6 Text Fields and an Introduction to Event Handling with Nested Classes (cont.)
	Slide 67: 12.6 Text Fields and an Introduction to Event Handling with Nested Classes (cont.)
	Slide 68: 12.6 Text Fields and an Introduction to Event Handling with Nested Classes (cont.)
	Slide 69: 12.6 Text Fields and an Introduction to Event Handling with Nested Classes (cont.)
	Slide 70
	Slide 71
	Slide 72
	Slide 73: 12.7 Common GUI Event Types and Listener Interfaces
	Slide 74
	Slide 75: 12.7 Common GUI Event Types and Listener Interfaces (cont.)
	Slide 76
	Slide 77: 12.7 Common GUI Event Types and Listener Interfaces (cont.)
	Slide 78: 12.8 How Event Handling Works
	Slide 79
	Slide 80: 12.8 How Event Handling Works (cont.)
	Slide 81: 12.8 How Event Handling Works (cont.)
	Slide 82: 12.8 How Event Handling Works (cont.)
	Slide 83
	Slide 84: 12.9 JButton
	Slide 85
	Slide 86: 12.9 JButton (cont.)
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91
	Slide 92
	Slide 93
	Slide 94: 12.9 JButton (cont.)
	Slide 95
	Slide 96
	Slide 97: 12.9 JButton (cont.)
	Slide 98
	Slide 99: 12.10 Buttons That Maintain State
	Slide 100: 12.10.1 JCheckBox
	Slide 101
	Slide 102
	Slide 103
	Slide 104
	Slide 105: 12.10.2 JRadioButton
	Slide 106
	Slide 107
	Slide 108
	Slide 109
	Slide 110
	Slide 111
	Slide 112: 12.10.2 JRadioButton (cont.)
	Slide 113: 12.11 JComboBox; Using an Anonymous Inner Class for Event Handling
	Slide 114
	Slide 115
	Slide 116
	Slide 117
	Slide 118
	Slide 119: 12.11 JComboBox; Using an Anonymous Inner Class for Event Handling (cont.)
	Slide 120
	Slide 121: 12.11 JComboBox; Using an Anonymous Inner Class for Event Handling (cont.)
	Slide 122
	Slide 123: 12.11 JComboBox; Using an Anonymous Inner Class for Event Handling (cont.)
	Slide 124
	Slide 125: 12.12 JList
	Slide 126
	Slide 127
	Slide 128
	Slide 129
	Slide 130: 12.12 JList (cont.)
	Slide 131: 12.12 JList (cont.)
	Slide 132: 12.12 JList (cont.)
	Slide 133: 12.13 Multiple-Selection Lists
	Slide 134
	Slide 135
	Slide 136
	Slide 137
	Slide 138
	Slide 139: 12.13 Multiple-Selection Lists (cont.)
	Slide 140: 12.14 Mouse Event Handling
	Slide 141
	Slide 142
	Slide 143: 12.14 Mouse Event Handling (cont.)
	Slide 144
	Slide 145: 12.14 Mouse Event Handling (cont.)
	Slide 146
	Slide 147
	Slide 148
	Slide 149
	Slide 150
	Slide 151
	Slide 152
	Slide 153: 12.14 Mouse Event Handling (cont.)
	Slide 154: 12.15 Adapter Classes
	Slide 155
	Slide 156
	Slide 157
	Slide 158
	Slide 159
	Slide 160
	Slide 161
	Slide 162: 12.15 Adapter Classes (cont.)
	Slide 163: 12.15 Adapter Classes (cont.)
	Slide 164
	Slide 165: 12.15 Adapter Classes (cont.)
	Slide 166: 12.16 JPanel Subclass for Drawing with the Mouse
	Slide 167: 12.16 JPanel Subclass for Drawing with the Mouse (cont.)
	Slide 168
	Slide 169
	Slide 170
	Slide 171
	Slide 172
	Slide 173: 12.16 JPanel Subclass for Drawing with the Mouse (cont.)
	Slide 174
	Slide 175: 12.16 JPanel Subclass for Drawing with the Mouse (cont.)
	Slide 176
	Slide 177
	Slide 178
	Slide 179: 12.17 Key Event Handling
	Slide 180
	Slide 181
	Slide 182
	Slide 183
	Slide 184
	Slide 185
	Slide 186: 12.17 Key Event Handling (cont.)
	Slide 187: 12.17 Key Event Handling (cont.)
	Slide 188: 12.18 Introduction to Layout Managers
	Slide 189: 12.18 Introduction to Layout Managers (cont.)
	Slide 190: 12.18 Introduction to Layout Managers (cont.)
	Slide 191
	Slide 192
	Slide 193
	Slide 194: 12.18.1 FlowLayout
	Slide 195
	Slide 196
	Slide 197
	Slide 198
	Slide 199
	Slide 200
	Slide 201
	Slide 202: 12.18.1 FlowLayout (cont.)
	Slide 203: 12.18.2 BorderLayout
	Slide 204
	Slide 205
	Slide 206
	Slide 207: 12.18.2 BorderLayout (cont.)
	Slide 208
	Slide 209
	Slide 210
	Slide 211
	Slide 212
	Slide 213: 12.18.3 GridLayout
	Slide 214
	Slide 215
	Slide 216
	Slide 217
	Slide 218: 12.19 Using Panels to Manage More Complex Layouts
	Slide 219
	Slide 220
	Slide 221
	Slide 222: 12.20 JTextArea
	Slide 223
	Slide 224
	Slide 225
	Slide 226: 12.20 JTextArea
	Slide 227
	Slide 228: 12.20 JTextArea (cont.)
	Slide 229: 12.20 JTextArea (cont.)
	Slide 230: 12.20 JTextArea (cont.)

