
Java™ How to Program, 10/e

© Copyright 1992-2015 by Pearson Education, Inc. All Rights
Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

 Exception handling

 Exception—an indication of a problem that occurs
during a program’s execution.
▪ The name “exception” implies that the problem occurs

infrequently.

 With exception handling, a program can continue
executing (rather than terminating) after dealing with a
problem.
▪ Mission-critical or business-critical computing.

▪ Robust and fault-tolerant programs (i.e., programs that can
deal with problems as they arise and continue executing).

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

 ArrayIndexOutOfBoundsException occurs
when an attempt is made to access an element past
either end of an array.

 ClassCastException occurs when an attempt is
made to cast an object that does not have an is-a
relationship with the type specified in the cast operator.

 A NullPointerException occurs when a null
reference is used where an object is expected.

 Only classes that extend Throwable (package
java.lang) directly or indirectly can be used with
exception handling.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

 Exceptions are thrown (i.e., the exception occurs) by a
method detects a problem and is unable to handle it.

 Stack trace—information displayed when an exception
occurs and is not handled.

 Information includes:
▪ The name of the exception in a descriptive message that

indicates the problem that occurred

▪ The method-call stack (i.e., the call chain) at the time it
occurred. Represents the path of execution that led to the
exception method by method.

 This information helps you debug the program.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

 Java does not allow division by zero in integer arithmetic.

▪ Throws an ArithmeticException.

▪ Can arise from a several problems, so an error message (e.g.,

“/ by zero”) provides more specific information.

 Java does allow division by zero with floating-point values.

▪ Such a calculation results in the value positive or negative infinity

▪ Floating-point value that displays as Infinity or -Infinity.

▪ If 0.0 is divided by 0.0, the result is NaN (not a number), which is

represented as a floating-point value that displays as NaN.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

 Last line of the stack trace started the call chain.

 Each line contains the class name and method followed

by the filename and line number.

 The top row of the call chain indicates the throw

point—the initial point at which the exception

occurred.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

 Prior examples that input numeric values assumed that the

user would input a proper integer value.

 Users sometimes make mistakes and input noninteger

values.

 An InputMismatchException occurs when Scanner
method nextInt receives a String that does not

represent a valid integer.

 If a stack trace contains “Unknown Source” for a

particular method, the debugging symbols for that method’s

class were not available to the JVM—this is typically the

case for the classes of the Java API.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

 The application in Fig. 11.2 uses exception handling to

process any ArithmeticExceptions and

InputMistmatchExceptions that arise.

 If the user makes a mistake, the program catches and

handles (i.e., deals with) the exception—in this case,

allowing the user to try to enter the input.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

 try block encloses

▪ code that might throw an exception

▪ code that should not execute if an exception occurs.

 Consists of the keyword try followed by a block of

code enclosed in curly braces.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

 catch block (also called a catch clause or exception

handler) catches and handles an exception.

▪ Begins with the keyword catch followed by an exception

parameter in parentheses and a block of code enclosed in curly

braces.

 At least one catch block or a finally block

(Section 11.6) must immediately follow the try block.

 The exception parameter identifies the exception type

the handler can process.

▪ The parameter’s name enables the catch block to interact

with a caught exception object.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

 When an exception occurs in a try block, the catch
block that executes is the first one whose type matches

the type of the exception that occurred.

 Use the System.err (standard error stream) object to

output error messages.

▪ By default, displays data to the command prompt.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

Multi-catch
 If the bodies of several catch blocks are identical, you can use the

multi-catch feature (introduced in Java SE 7) to catch those
exception types in a single catch handler and perform the same task.

 The syntax for a multi-catch is:
 catch (Type1 | Type2 | Type3 e)

 Each exception type is separated from the next with a vertical bar (|).

 The preceding line of code indicates that any of the types (or their
subclasses) can be caught in the exception handler.

 Any number of Throwable types can be specified in a multi-catch.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

 Uncaught exception—one for which there are no matching
catch blocks.

 Recall that previous uncaught exceptions caused the
application to terminate early.
▪ This does not always occur as a result of uncaught exceptions.

 Java uses a multithreaded model of program execution.
▪ Each thread is a concurrent activity.

▪ One program can have many threads.

▪ If a program has only one thread, an uncaught exception will cause
the program to terminate.

▪ If a program has multiple threads, an uncaught exception will
terminate only the thread in which the exception occurred.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

 If an exception occurs in a try block, the try block

terminates immediately and program control transfers

to the first matching catch block.

 After the exception is handled, control resumes after

the last catch block.

 Known as the termination model of exception handling.

▪ Some languages use the resumption model of exception

handling, in which, after an exception is handled, control

resumes just after the throw point.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

 If no exceptions are thrown in a try block, the catch
blocks are skipped and control continues with the first

statement after the catch blocks

▪ We’ll learn about another possibility when we discuss the

finally block in Section 11.6.

 The try block and its corresponding catch and/or

finally blocks form a try statement.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

 When a try block terminates, local variables declared
in the block go out of scope.
▪ The local variables of a try block are not accessible in the

corresponding catch blocks.

 When a catch block terminates, local variables
declared within the catch block (including the
exception parameter) also go out of scope.

 Any remaining catch blocks in the try statement are
ignored, and execution resumes at the first line of code
after the try…catch sequence.
▪ A finally block, if one is present.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

 throws clause—specifies the exceptions a method
might throw if problems occur.
▪ Must appear after the method’s parameter list and before the

body.

▪ Contains a comma-separated list of the exception types.

 May be thrown by statements in the method’s body or by methods
called from there.

▪ Clients of a method with a throws clause are thus informed
that the method might throw exceptions.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

 When a method throws an exception, the method

terminates and does not return a value, and its local

variables go out of scope.

▪ If the local variables were references to objects and there were

no other references to those objects, the objects would be

available for garbage collection.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

 Exception handling is designed to process synchronous

errors, which occur when a statement executes.

 Common examples in this book:

▪ out-of-range array indices

▪ arithmetic overflow

▪ division by zero

▪ invalid method parameters

▪ thread interruption

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

 Exception handling is not designed to process problems

associated with asynchronous events

▪ disk I/O completions

▪ network message arrivals

▪ mouse clicks and keystrokes

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

 Exception classes inherit directly or indirectly from
class Exception, forming an inheritance hierarchy.
▪ Can extend this hierarchy with your own exception classes.

 Figure 11.3 shows a small portion of the inheritance
hierarchy for class Throwable (a subclass of Object),
which is the superclass of class Exception.
▪ Only Throwable objects can be used with the exception-

handling mechanism.

 Class Throwable has two subclasses: Exception
and Error.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

 Class Exception and its subclasses represent

exceptional situations that can occur in a Java program

▪ These can be caught and handled by the application.

 Class Error and its subclasses represent abnormal

situations that happen in the JVM.

▪ Errors happen infrequently.

▪ These should not be caught by applications.

▪ Applications usually cannot recover from Errors.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

 Checked exceptions vs. unchecked exceptions.
▪ Compiler enforces a catch-or-declare requirement for checked

exceptions.

 An exception’s type determines whether it is checked or
unchecked.

 Direct or indirect subclasses of class RuntimeException (package
java.lang) are unchecked exceptions.

 Typically caused by defects in your program’s code, e.g.:

 ArrayIndexOutOfBoundsExceptions

 ArithmeticExceptions

 Subclasses of Exception but not RuntimeException are
checked exceptions.
▪ Caused by conditions that are not in the control of the program—e.g., in

file processing, the program can’t open a file if it does not exist.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

 The compiler checks each method call and method

declaration to determine whether the method throws a

checked exception.

▪ If so, the compiler verifies that the checked exception is caught

or is declared in a throws clause—this is known as the

catch-or-declare requirement.

 throws clause specifies the exceptions a method

throws.

▪ Such exceptions are typically not caught in the method’s body.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

 To satisfy the catch part of the catch-or-declare

requirement, the code that generates the exception must be

wrapped in a try block and must provide a catch handler

for the checked-exception type (or one of its superclasses).

 To satisfy the declare part of the catch-or-declare

requirement, the method must provide a throws clause

containing the checked-exception type after its parameter

list and before its method body.

 If the catch-or-declare requirement is not satisfied, the

compiler will issue an error message.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

 The compiler does not examine the code to determine

whether an unchecked exception is caught or declared.

▪ These typically can be prevented by proper coding.

▪ For example, an ArithmeticException can be avoided if

a method ensures that the denominator is not zero before

performing.

 Unchecked exceptions are not required to be listed in a

method’s throws clause.

▪ Even if they are, it’s not required that such exceptions be

caught by an application.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

 If a catch handler is written to catch superclass

exception objects, it can also catch all objects of that

class’s subclasses.

 This enables catch to handle related exceptions

polymorphically.

 You can catch each subclass individually if those

exceptions require different processing.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

 If multiple catch blocks match a particular exception

type, only the first matching catch block executes.

 It’s a compilation error to catch the exact same type in

two different catch blocks associated with a

particular try block.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

 Programs that obtain certain resources must return them to the

system to avoid so-called resource leaks.

▪ In programming languages such as C and C++, the most common

resource leak is a memory leak.

▪ Java automatically garbage collects memory no longer used by

programs, thus avoiding most memory leaks.

▪ Other types of resource leaks can occur.

 Files, database connections and network connections that are not

closed properly might not be available for use in other programs.

 The finally block (which consists of the finally
keyword, followed by code enclosed in curly braces),

sometimes referred to as the finally clause, is optional.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

 finally block will execute whether or not an

exception is thrown in the corresponding try block.

 finally block will execute if a try block exits by

using a return, break or continue statement or

simply by reaching its closing right brace.

 finally block will not execute if the application

exits early from a try block by calling method

System.exit.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

 If an exception that occurs in a try block cannot be caught
by one of that try block’s catch handlers, control
proceeds to the finally block.

 Then the program passes the exception to the next outer
try block—normally in the calling method—where an
associated catch block might catch it.
▪ This process can occur through many levels of try blocks.

▪ The exception could go uncaught.

 If a catch block throws an exception, the finally block
still executes.
▪ Then the exception is passed to the next outer try block—again,

normally in the calling method.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

 Because a finally block always executes, it typically

contains resource-release code.

 Suppose a resource is allocated in a try block.

▪ If no exception occurs, control proceeds to the finally block,

which frees the resource. Control then proceeds to the first statement

after the finally block.

▪ If an exception occurs, the try block terminates. The program

catches and processes the exception in one of the corresponding

catch blocks, then the finally block releases the resource and

control proceeds to the first statement after the finally block.

▪ If the program doesn’t catch the exception, the finally block still

releases the resource and an attempt is made to catch the exception

in a calling method.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

 System.out and System.err are streams—a
sequence of bytes.
▪ System.out (the standard output stream) displays output

▪ System.err (the standard error stream) displays errors

 Output from these streams can be redirected (e.g., to a
file).

 Using two different streams enables you to easily
separate error messages from other output.
▪ Data output from System.err could be sent to a log file

▪ Data output from System.out can be displayed on the
screen

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

 throw statement—indicates that an exception has

occurred.

▪ Used to throw exceptions.

▪ Indicates to client code that an error has occurred.

▪ Specifies an object to be thrown.

▪ The operand of a throw can be of any class derived from

class Throwable.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

 Rethrow an exception

▪ Done when a catch block, cannot process that exception or

can only partially process it.

▪ Defers the exception handling (or perhaps a portion of it) to

another catch block associated with an outer try statement.

 Rethrow by using the throw keyword, followed by a

reference to the exception object that was just caught.

 When a rethrow occurs, the next enclosing try block

detects the exception, and that try block’s catch
blocks attempt to handle it.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

 Stack unwinding—When an exception is thrown but not
caught in a particular scope, the method-call stack is
“unwound”

 An attempt is made to catch the exception in the next
outer try block.

 All local variables in the unwound method go out of scope
and control returns to the statement that originally invoked
that method.

 If a try block encloses that statement, an attempt is made
to catch the exception.

 If a try block does not enclose that statement or if the
exception is not caught, stack unwinding occurs again.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

 Sometimes a method responds to an exception by throwing
a different exception type that is specific to the current
application.

 If a catch block throws a new exception, the original
exception’s information and stack trace are lost.

 Earlier Java versions provided no mechanism to wrap the
original exception information with the new exception’s
information.
▪ This made debugging such problems particularly difficult.

 Chained exceptions enable an exception object to maintain
the complete stack-trace information from the original
exception.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

 Sometimes it’s useful to declare your own exception

classes that are specific to the problems that can occur

when another programmer uses your reusable classes.

 A new exception class must extend an existing

exception class to ensure that the class can be used with

the exception-handling mechanism.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

 A typical new exception class contains only four

constructors:

▪ one that takes no arguments and passes a default error message

String to the superclass constructor;

▪ one that receives a customized error message as a String
and passes it to the superclass constructor;

▪ one that receives a customized error message as a String
and a Throwable (for chaining exceptions) and passes both

to the superclass constructor;

▪ and one that receives a Throwable (for chaining exceptions)

and passes it to the superclass constructor.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

 Programmers spend significant amounts of time

maintaining and debugging code.

 To facilitate these tasks and to improve the overall

design, they can specify the expected states before and

after a method’s execution.

 These states are called preconditions and

postconditions, respectively.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

 A precondition must be true when a method is invoked.

▪ Describes constraints on method parameters and any other

expectations the method has about the current state of a

program just before it begins executing.

▪ If the preconditions are not met, the method’s behavior is

undefined.

▪ You should never expect consistent behavior if the

preconditions are not satisfied.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

 A postcondition is true after the method successfully
returns.
▪ Describes constraints on the return value and any other side

effects the method may have.

▪ When calling a method, you may assume that a method fulfills
all of its postconditions.

▪ If writing your own method, document all postconditions so
that others know what to expect when they call your method,
and you should make certain that your method honors all its
postconditions if its preconditions are met.

 When preconditions or postconditions are not met,
methods typically throw exceptions.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

 As an example, examine String method charAt, which

has one int parameter—an index in the String.

▪ For a precondition, method charAt assumes that index is greater

than or equal to zero and less than the length of the String.

▪ If the precondition is met, the postcondition states that the method

will return the character at the position in the String specified by

the parameter index.

▪ Otherwise, the method throws an Index-Out-Of-Bounds-
Exception.

▪ We trust that method charAt satisfies its postcondition, provided

that we meet the precondition.

▪ We need not be concerned with the details of how the method

actually retrieves the character at the index.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

 Some programmers state preconditions and

postconditions informally as part of the general method

specification, while others prefer a more formal

approach by explicitly defining them.

 State the preconditions and postconditions in a

comment before the method declaration.

 Stating the preconditions and postconditions before

writing a method will also help guide you as you

implement the method.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

 When implementing and debugging a class, it’s

sometimes useful to state conditions that should be true

at a particular point in a method.

 Assertions help ensure a program’s validity by catching

potential bugs and identifying possible logic errors

during development.

 Preconditions and postconditions are two types of

assertions.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

 Java includes two versions of the assert statement for
validating assertions programatically.

 assert evaluates a boolean expression and, if false,
throws an AssertionError (a subclass of Error).

assert expression;

 throws an AssertionError if expression is false.

assert expression1 : expression2;

 evaluates expression1 and throws an AssertionError with
expression2 as the error message if expression1 is false.

 Can be used to programmatically implement preconditions
and postconditions or to verify any other intermediate states
that help you ensure your code is working correctly.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

 You use assertions primarily for debugging and

identifying logic errors in an application.

 You must explicitly enable assertions when executing a

program

▪ They reduce performance.

▪ They are unnecessary for the program’s user.

 To enable assertions, use the java command’s -ea
command-line option, as in

java -ea AssertTest

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

 Typically resource-release code should be placed in a

finally block to ensure that a resource is released,

regardless of whether there were exceptions when the

resource was used in the corresponding try block.

 An alternative notation—the try-with-resources

statement (introduced in Java SE 7)—simplifies writing

code in which you obtain one or more resources, use

them in a try block and release them in a

corresponding finally block.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

 For example, a file-processing application could
process a file with a try-with-resources statement to

ensure that the file is closed properly when it’s no

longer needed.

 Each resource must be an object of a class that

implements the AutoCloseable interface—and thus

provides a close method.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

 The general form of a try-with-resources statement is
try (ClassName theObject = new ClassName())

{

// use theObject here

}

catch (Exception e)

{

// catch exceptions that occur while using the resource

}

 ClassName is a class that implements the

AutoCloseable interface.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

 This code creates an object of type ClassName and uses

it in the try block, then calls its close method to

release any resources used by the object.

 The try-with-resources statement implicitly calls the

Object’s close method at the end of the try block.

 You can allocate multiple resources in the parentheses

following try by separating them with a semicolon (;).

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

	Slide 1: Chapter 11 Exception Handling: A Deeper Look
	Slide 2
	Slide 3
	Slide 4: 11.1 Introduction
	Slide 5: 11.1 Introduction (Cont.)
	Slide 6
	Slide 7: 11.2 Example: Divide by Zero without Exception Handling
	Slide 8: 11.2 Example: Divide by Zero without Exception Handling (Cont.)
	Slide 9
	Slide 10
	Slide 11
	Slide 12: 11.2 Example: Divide by Zero without Exception Handling (Cont.)
	Slide 13: 11.2 Example: Divide by Zero without Exception Handling (Cont.)
	Slide 14: 11.3 Example: Handling ArithmeticExceptions and InputMismatchExceptions
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19: 11.3 Example: Handling ArithmeticExceptions and InputMismatchExceptions (Cont.)
	Slide 20
	Slide 21: 11.3 Example: Handling ArithmeticExceptions and InputMismatchExceptions (Cont.)
	Slide 22: 11.3 Example: Handling ArithmeticExceptions and InputMismatchExceptions (Cont.)
	Slide 23
	Slide 24: 11.3 Example: Handling ArithmeticExceptions and InputMismatchExceptions (Cont.)
	Slide 25: 11.3 Example: Handling ArithmeticExceptions and InputMismatchExceptions (Cont.)
	Slide 26: 11.3 Example: Handling ArithmeticExceptions and InputMismatchExceptions (Cont.)
	Slide 27: 11.3 Example: Handling ArithmeticExceptions and InputMismatchExceptions (Cont.)
	Slide 28: 11.3 Example: Handling ArithmeticExceptions and InputMismatchExceptions (Cont.)
	Slide 29: 11.3 Example: Handling ArithmeticExceptions and InputMismatchExceptions (Cont.)
	Slide 30
	Slide 31: 11.3 Example: Handling ArithmeticExceptions and InputMismatchExceptions (Cont.)
	Slide 32: 11.4 When to Use Exception Handling
	Slide 33: 11.4 When to Use Exception Handling (Cont.)
	Slide 34
	Slide 35
	Slide 36
	Slide 37: 11.5 Java Exception Hierarchy
	Slide 38: 11.5 Java Exception Hierarchy (Cont.)
	Slide 39
	Slide 40: 11.5 Java Exception Hierarchy (Cont.)
	Slide 41: 11.5 Java Exception Hierarchy (Cont.)
	Slide 42: 11.5 Java Exception Hierarchy (Cont.)
	Slide 43
	Slide 44
	Slide 45
	Slide 46: 11.5 Java Exception Hierarchy (Cont.)
	Slide 47
	Slide 48: 11.5 Java Exception Hierarchy (Cont.)
	Slide 49: 11.5 Java Exception Hierarchy (Cont.)
	Slide 50
	Slide 51
	Slide 52
	Slide 53: 11.6 finally Block
	Slide 54
	Slide 55: 11.6 finally Block (Cont.)
	Slide 56
	Slide 57
	Slide 58: 11.6 finally Block (Cont.)
	Slide 59: 11.6 finally Block (Cont.)
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64: 11.6 finally Block (Cont.)
	Slide 65: 11.6 finally Block (Cont.)
	Slide 66
	Slide 67
	Slide 68
	Slide 69: 11.6 finally Block (Cont.)
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74: 11.7 Stack Unwinding and Obtaining Information from an Exception Object
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82: 11.8 Chained Exceptions
	Slide 83
	Slide 84
	Slide 85
	Slide 86: 11.9 Declaring New Exception Types
	Slide 87: 11.9 Declaring New Exception Types (cont.)
	Slide 88
	Slide 89
	Slide 90
	Slide 91: 11.10 Preconditions and Postconditions
	Slide 92: 11.10 Preconditions and Postconditions (Cont.)
	Slide 93: 11.10 Preconditions and Postconditions (Cont.)
	Slide 94: 11.10 Preconditions and Postconditions (Cont.)
	Slide 95: 11.10 Preconditions and Postconditions (Cont.)
	Slide 96: 11.11 Assertions
	Slide 97: 11.11 Assertions (Cont.)
	Slide 98: 11.11 Assertions (Cont.)
	Slide 99
	Slide 100
	Slide 101: 11.12 try-with-Resources: Automatic Resource Deallocation
	Slide 102: 11.12 try-with-Resources: Automatic Resource Deallocation (cont.)
	Slide 103: 11.12 try-with-Resources: Automatic Resource Deallocation (cont.)
	Slide 104
	Slide 105: 11.13 (New in Java SE 7) try-with-Resources: Automatic Resource Deallocation (cont.)

