
Java™ How to Program, 10/e

© Copyright 1992-2015 by Pearson Education, Inc. All Rights
Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

 Polymorphism

▪ Enables you to “program in the general” rather than “program

in the specific.”

▪ Polymorphism enables you to write programs that process

objects that share the same superclass as if they were all

objects of the superclass; this can simplify programming.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

 Example: Suppose we create a program that simulates
the movement of several types of animals for a
biological study. Classes Fish, Frog and Bird
represent the three types of animals under investigation.
▪ Each class extends superclass Animal, which contains a

method move and maintains an animal’s current location as x-
y coordinates. Each subclass implements method move.

▪ A program maintains an Animal array containing references
to objects of the various Animal subclasses. To simulate the
animals’ movements, the program sends each object the same
message once per second—namely, move.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

 Each specific type of Animal responds to a move message
in a unique way:
▪ a Fish might swim three feet
▪ a Frog might jump five feet
▪ a Bird might fly ten feet.

 The program issues the same message (i.e., move) to each
animal object, but each object knows how to modify its x-y
coordinates appropriately for its specific type of movement.

 Relying on each object to know how to “do the right thing”
in response to the same method call is the key concept of
polymorphism.

 The same message sent to a variety of objects has “many
forms” of results—hence the term polymorphism.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

 With polymorphism, we can design and implement

systems that are easily extensible

▪ New classes can be added with little or no modification to the

general portions of the program, as long as the new classes are

part of the inheritance hierarchy that the program processes

generically.

▪ The new classes simply “plug right in.”

▪ The only parts of a program that must be altered to

accommodate new classes are those that require direct

knowledge of the new classes that we add to the hierarchy.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

 Once a class implements an interface, all objects of that

class have an is-a relationship with the interface type,

and all objects of the class are guaranteed to provide

the functionality described by the interface.

 This is true of all subclasses of that class as well.

 Interfaces are particularly useful for assigning common

functionality to possibly unrelated classes.

▪ Allows objects of unrelated classes to be processed

polymorphically—objects of classes that implement the same

interface can respond to all of the interface method calls.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

 The chapter continues with an introduction to Java

interfaces, which are particularly useful for assigning

common functionality to possibly unrelated classes.

 This allows objects of these classes to be processed

polymorphically—objects of classes that implement the

same interface can respond to all of the interface

method calls.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

 Example: Quadrilaterals

▪ If Rectangle is derived from Quadrilateral, then a

Rectangle object is a more specific version of a

Quadrilateral.

▪ Any operation that can be performed on a Quadrilateral can

also be performed on a Rectangle.

▪ These operations can also be performed on other

Quadrilaterals, such as Squares, Parallelograms and

Trapezoids.

▪ Polymorphism occurs when a program invokes a method through a

superclass Quadrilateral variable—at execution time, the

correct subclass version of the method is called, based on the type of

the reference stored in the superclass variable.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

 Example: Space Objects in a Video Game
▪ A video game manipulates objects of classes Martian,
Venusian, Plutonian, SpaceShip and LaserBeam. Each
inherits from SpaceObject and overrides its draw method.

▪ A screen manager maintains a collection of references to objects of
the various classes and periodically sends each object the same
message—namely, draw.

▪ Each object responds in a unique way.
 A Martian object might draw itself in red with green eyes and the

appropriate number of antennae.

 A SpaceShip object might draw itself as a bright silver flying saucer.

 A LaserBeam object might draw itself as a bright red beam across the
screen.

▪ The same message (in this case, draw) sent to a variety of objects
has “many forms” of results.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

 A screen manager might use polymorphism to facilitate
adding new classes to a system with minimal
modifications to the system’s code.

 To add new objects to our video game:
▪ Build a class that extends SpaceObject and provides its

own draw method implementation.

▪ When objects of that class appear in the SpaceObject
collection, the screen-manager code invokes method draw,
exactly as it does for every other object in the collection,
regardless of its type.

▪ So the new objects simply “plug right in” without any
modification of the screen manager code by the programmer.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

 In the next example, we aim a superclass reference at a
subclass object.
▪ Invoking a method on a subclass object via a superclass reference

invokes the subclass functionality

▪ The type of the referenced object, not the type of the variable,
determines which method is called

 This example demonstrates that an object of a subclass can
be treated as an object of its superclass, enabling various
interesting manipulations.

 A program can create an array of superclass variables that
refer to objects of many subclass types.
▪ Allowed because each subclass object is an object of its superclass.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

 A superclass object cannot be treated as a subclass object,

because a superclass object is not an object of any of its

subclasses.

 The is-a relationship applies only up the hierarchy from a

subclass to its direct (and indirect) superclasses, and not

down the hierarchy.

 The Java compiler does allow the assignment of a

superclass reference to a subclass variable if you explicitly

cast the superclass reference to the subclass type

▪ A technique known as downcasting that enables a program to invoke

subclass methods that are not in the superclass.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

 When a superclass variable contains a reference to a
subclass object, and that reference is used to call a method,
the subclass version of the method is called.
▪ The Java compiler allows this “crossover” because an object of a

subclass is an object of its superclass (but not vice versa).

 When the compiler encounters a method call made through
a variable, the compiler determines if the method can be
called by checking the variable’s class type.
▪ If that class contains the proper method declaration (or inherits one),

the call is compiled.

 At execution time, the type of the object to which the
variable refers determines the actual method to use.
▪ This process is called dynamic binding.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

 Abstract classes

▪ Sometimes it’s useful to declare classes for which you never intend

to create objects.

▪ Used only as superclasses in inheritance hierarchies, so they are

sometimes called abstract superclasses.

▪ Cannot be used to instantiate objects—abstract classes are

incomplete.

▪ Subclasses must declare the “missing pieces” to become “concrete”

classes, from which you can instantiate objects; otherwise, these

subclasses, too, will be abstract.

 An abstract class provides a superclass from which other

classes can inherit and thus share a common design.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

 Classes that can be used to instantiate objects are called
concrete classes.

 Such classes provide implementations of every method
they declare (some of the implementations can be
inherited).

 Abstract superclasses are too general to create real
objects—they specify only what is common among
subclasses.

 Concrete classes provide the specifics that make it
reasonable to instantiate objects.

 Not all hierarchies contain abstract classes.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

 Programmers often write client code that uses only

abstract superclass types to reduce client code’s

dependencies on a range of subclass types.

▪ You can write a method with a parameter of an abstract

superclass type.

▪ When called, such a method can receive an object of any

concrete class that directly or indirectly extends the superclass

specified as the parameter’s type.

 Abstract classes sometimes constitute several levels of

a hierarchy.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

 You make a class abstract by declaring it with keyword abstract.
 An abstract class normally contains one or more abstract

methods.
▪ An abstract method is an instance method with keyword abstract in

its declaration, as in
public abstract void draw(); // abstract method

 Abstract methods do not provide implementations.
 A class that contains abstract methods must be an abstract class

even if that class contains some concrete (nonabstract) methods.
 Each concrete subclass of an abstract superclass also must

provide concrete implementations of each of the superclass’s
abstract methods.

 Constructors and static methods cannot be declared
abstract.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

 Cannot instantiate objects of abstract superclasses, but

you can use abstract superclasses to declare variables

▪ These can hold references to objects of any concrete class

derived from those abstract superclasses.

▪ We’ll use such variables to manipulate subclass objects

polymorphically.

 Can use abstract superclass names to invoke static
methods declared in those abstract superclasses.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

 Polymorphism is particularly effective for implementing so-
called layered software systems.

 Example: Operating systems and device drivers.
▪ Commands to read or write data from and to devices may have a

certain uniformity.

▪ Device drivers control all communication between the operating
system and the devices.

▪ A write message sent to a device-driver object is interpreted in the
context of that driver and how it manipulates devices of a specific
type.

▪ The write call itself really is no different from the write to any other
device in the system—place some number of bytes from memory
onto that device.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

 An object-oriented operating system might use an abstract
superclass to provide an “interface” appropriate for all
device drivers.
▪ Subclasses are formed that all behave similarly.
▪ The device-driver methods are declared as abstract methods in the

abstract superclass.
▪ The implementations of these abstract methods are provided in the

subclasses that correspond to the specific types of device drivers.

 New devices are always being developed.
▪ When you buy a new device, it comes with a device driver provided

by the device vendor and is immediately operational after you
connect it and install the driver.

 This is another elegant example of how polymorphism
makes systems extensible.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

 Use an abstract method and polymorphism to perform
payroll calculations based on the type of inheritance
hierarchy headed by an employee.

 Enhanced employee inheritance hierarchy requirements:
▪ A company pays its employees on a weekly basis. The employees are

of four types: Salaried employees are paid a fixed weekly salary
regardless of the number of hours worked, hourly employees are
paid by the hour and receive overtime pay (i.e., 1.5 times their
hourly salary rate) for all hours worked in excess of 40 hours,
commission employees are paid a percentage of their sales and
base-salaried commission employees receive a base salary plus a
percentage of their sales. For the current pay period, the company
has decided to reward salaried-commission employees by adding
10% to their base salaries. The company wants you to write a Java
application that performs its payroll calculations polymorphically.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

 abstract class Employee represents the general

concept of an employee.

 Subclasses: SalariedEmployee,

CommissionEmployee , HourlyEmployee and

BasePlusCommissionEmployee (an indirect

subclass)

 Fig. 10.2 shows the inheritance hierarchy for our

polymorphic employee-payroll application.

 Abstract class names are italicized in the UML.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

 Abstract superclass Employee declares the

“interface” to the hierarchy—that is, the set of methods

that a program can invoke on all Employee objects.

▪ We use the term “interface” here in a general sense to refer to

the various ways programs can communicate with objects of

any Employee subclass.

 Each employee has a first name, a last name and a

social security number defined in abstract superclass

Employee.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

 Class Employee (Fig. 10.4) provides methods
earnings and toString, in addition to the get and set
methods that manipulate Employee’s instance variables.

 An earnings method applies to all employees, but each
earnings calculation depends on the employee’s class.
▪ An abstract method—there is not enough information to

determine what amount earnings should return.

▪ Each subclass overrides earnings with an appropriate
implementation.

 Iterate through the array of Employees and call method
earnings for each Employee subclass object.
▪ Method calls processed polymorphically.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

 The diagram in Fig. 10.3 shows each of the five classes
in the hierarchy down the left side and methods
earnings and toString across the top.

 For each class, the diagram shows the desired results of
each method.

 Declaring the earnings method abstract
indicates that each concrete subclass must provide an
appropriate earnings implementation and that a
program will be able to use superclass Employee
variables to invoke method earnings
polymorphically for any type of Employee.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

 Fig. 10.9 creates an object of each of the four concrete.

▪ Manipulates these objects nonpolymorphically, via variables of

each object’s own type, then polymorphically, using an array

of Employee variables.

 While processing the objects polymorphically, the

program increases the base salary of each

BasePlusCommissionEmployee by 10%

▪ Requires determining the object’s type at execution time.

 Finally, the program polymorphically determines and

outputs the type of each object in the Employee array.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

 All calls to method toString and earnings are
resolved at execution time, based on the type of the
object to which currentEmployee refers.
▪ Known as dynamic binding or late binding.

▪ Java decides which class’s toString method to call at
execution time rather than at compile time

 A superclass reference can be used to invoke only
methods of the superclass—the subclass method
implementations are invoked polymorphically.

 Attempting to invoke a subclass-only method directly
on a superclass reference is a compilation error.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

 Every object knows its own class and can access this

information through the getClass method, which all

classes inherit from class Object.

▪ The getClass method returns an object of type Class (from

package java.lang), which contains information about the

object’s type, including its class name.

▪ The result of the getClass call is used to invoke getName to

get the object’s class name.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

 There are three proper ways to assign superclass and
subclass references to variables of superclass and subclass
types.

 Assigning a superclass reference to a superclass variable is
straightforward.

 Assigning a subclass reference to a subclass variable is
straightfor-ward.

 Assigning a subclass reference to a superclass variable is
safe, because the subclass object is an object of its
superclass.
▪ The superclass variable can be used to refer only to superclass

members.
▪ If this code refers to subclass-only mem-bers through the superclass

variable, the compiler reports errors.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

 A final method in a superclass cannot be overridden in

a subclass.

▪ Methods that are declared private are implicitly final,

because it’s not possible to override them in a subclass.

▪ Methods that are declared static are implicitly final.

▪ A final method’s declaration can never change, so all

subclasses use the same method implementation, and calls to

final methods are resolved at compile time—this is known

as static binding.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

 A final class cannot be extended to create a subclass.

▪ All methods in a final class are implicitly final.

 Class String is an example of a final class.

▪ If you were allowed to create a subclass of String, objects of

that subclass could be used wherever Strings are expected.

▪ Since class String cannot be extended, programs that use

Strings can rely on the functionality of String objects as

specified in the Java API.

▪ Making the class final also prevents programmers from

creating subclasses that might bypass security restrictions.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

 Do not call overridable methods from constructors.

 When creating a subclass object, this could lead to an overridden
method being called before the subclass object is fully initialized.

 Recall that when you construct a subclass object, its constructor first
calls one of the direct superclass’s constructors.

 If the superclass constructor calls an overridable method, the subclass’s
version of that method will be called by the superclass constructor—
before the subclass constructor’s body has a chance to execute.

 This could lead to subtle, difficult-to-detect errors if the subclass
method that was called depends on initialization that has not yet been
performed in the subclass constructor’s body.

 It’s acceptable to call a static method from a constructor.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

 Our next example reexamines the payroll system of
Section 10.5.

 Suppose that the company involved wishes to perform
several accounting operations in a single accounts payable
application
▪ Calculating the earnings that must be paid to each employee

▪ Calculate the payment due on each of several invoices (i.e., bills for
goods purchased)

 Both operations have to do with obtaining some kind of
payment amount.
▪ For an employee, the payment refers to the employee’s earnings.

▪ For an invoice, the payment refers to the total cost of the goods listed
on the invoice.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

 Interfaces offer a capability requiring that unrelated

classes implement a set of common methods.

 Interfaces define and standardize the ways in which

things such as people and systems can interact with one

another.

▪ Example: The controls on a radio serve as an interface between

radio users and a radio’s internal components.

▪ Can perform only a limited set of operations (e.g., change the

station, adjust the volume, choose between AM and FM)

▪ Different radios may implement the controls in different ways

(e.g., using push buttons, dials, voice commands).

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

 The interface specifies what operations a radio must

permit users to perform but does not specify how the

operations are performed.

 A Java interface describes a set of methods that can be

called on an object.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

 An interface declaration begins with the keyword

interface and contains only constants and abstract
methods.

▪ All interface members must be public.

▪ Interfaces may not specify any implementation details, such as

concrete method declarations and instance variables.

▪ All methods declared in an interface are implicitly public
abstract methods.

▪ All fields are implicitly public, static and final.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

 To use an interface, a concrete class must specify that it
implements the interface and must declare each method in
the interface with specified signature.
▪ Add the implements keyword and the name of the interface to the

end of your class declaration’s first line.

 A class that does not implement all the methods of the
interface is an abstract class and must be declared
abstract.

 Implementing an interface is like signing a contract with the
compiler that states, “I will declare all the methods
specified by the interface or I will declare my class
abstract.”

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

 An interface is often used when disparate classes (i.e.,

unrelated classes) need to share common methods and

constants.

▪ Allows objects of unrelated classes to be processed

polymorphically by responding to the same method calls.

▪ You can create an interface that describes the desired

functionality, then implement this interface in any classes that

require that functionality.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

 An interface is often used in place of an abstract
class when there is no default implementation to

inherit—that is, no fields and no default method

implementations.

 Like public abstract classes, interfaces are

typically public types.

 A public interface must be declared in a file with the

same name as the interface and the .java filename

extension.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

 Next example builds an application that can determine

payments for employees and invoices alike.

▪ Classes Invoice and Employee both represent things for

which the company must be able to calculate a payment

amount.

▪ Both classes implement the Payable interface, so a program

can invoke method getPaymentAmount on Invoice
objects and Employee objects alike.

▪ Enables the polymorphic processing of Invoices and

Employees.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

 Fig. 10.10 shows the accounts payable hierarchy.

 The UML distinguishes an interface from other classes
by placing «interface» above the interface name.

 The UML expresses the relationship between a class
and an interface through a realization.
▪ A class is said to “realize,” or implement, the methods of an

interface.

▪ A class diagram models a realization as a dashed arrow with a
hollow arrowhead pointing from the implementing class to the
interface.

 A subclass inherits its superclass’s realization
relationships.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

 Fig. 10.11 shows the declaration of interface

Payable.

 Interface methods are always public and

abstract, so they do not need to be declared as such.

 Interfaces can have any number of methods.

 Interfaces may also contain final and static.

constants

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

 Java does not allow subclasses to inherit from more

than one superclass, but it allows a class to inherit from

one superclass and implement as many interfaces as it

needs.

 To implement more than one interface, use a comma-

separated list of interface names after keyword

implements in the class declaration, as in:
public class ClassName extends SuperclassName

implements FirstInterface, SecondInterface, …

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

 When a class implements an interface, it makes a contract
with the compiler
▪ The class will implement each method in the interface or the class

will be declared abstract.
▪ Because class Employee does not provide a
getPaymentAmount method, the class must be declared
abstract.

▪ Any concrete subclass of the abstract class must implement the
interface methods to fulfill the contract.

▪ If the subclass does not do so, it too must be declared abstract.

 Each direct Employee subclass inherits the superclass’s
contract to implement method getPaymentAmount and
thus must implement this method to become a concrete
class for which objects can be instantiated.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

 Figure 10.14 contains a modified

SalariedEmployee class that extends Employee
and fulfills superclass Employee’s contract to

implement Payable method getPayment-
Amount.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

 Objects of any subclasses of a class that implements an

interface can also be thought of as objects of the interface

type.

 Thus, just as we can assign the reference of a

SalariedEmployee object to a superclass Employee
variable, we can assign the reference of a

SalariedEmployee object to an interface Payable
variable.

 Invoice implements Payable, so an Invoice object

also is a Payable object, and we can assign the reference

of an Invoice object to a Payable variable.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

 PayableInterfaceTest (Fig. 10.15) illustrates

that interface Payable can be used to process a set of

Invoices and Employees polymorphically in a

single application.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

 You’ll use interfaces extensively when developing Java

applications. The Java API contains numerous

interfaces, and many of the Java API methods take

interface arguments and return interface values.

 Figure 10.16 overviews a few of the more popular

interfaces of the Java API that we use in later chapters.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

 This section introduces Java SE 8’s new interface

features.

 We discuss these in more detail in later chapters.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

 Prior to Java SE 8, interface methods could be only public
abstract methods.

▪ An interface specified what operations an implementing class must

perform but not how the class should perform them.

 In Java SE 8, interfaces also may contain public default
methods with concrete default implementations that specify

how operations are performed when an implementing class

does not override the methods.

 If a class implements such an interface, the class also receives

the interface’s default implementations (if any).

 To declare a default method, place the keyword default before

the method’s return type and provide a concrete method

implementation.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

Adding Methods to Existing Interfaces

 Any class that implements the original interface will not break

when a default method is added.

▪ The class simply receives the new default method.

 When a class implements a Java SE 8 interface, the class

“signs a contract” with the compiler that says,

▪ “I will declare all the abstract methods specified by the interface or I

will declare my class abstract”

 The implementing class is not required to override the

interface’s default methods, but it can if necessary.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

Interfaces vs. abstract Classes

 Prior to Java SE 8, an interface was typically used

(rather than an abstract class) when there were no

implementation details to inherit—no fields and no

method implementations.

 With default methods, you can instead declare

common method implementations in interfaces,

which gives you more flexibility in designing your

classes.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

 Prior to Java SE 8, it was common to associate with an

interface a class containing static helper methods for

working with objects that implemented the interface.

 In Chapter 16, you’ll learn about class Collections which

contains many static helper methods for working with

objects that implement interfaces Collection, List, Set
and more.

 Collections method sort can sort objects of any class

that implements interface List.

 With static interface methods, such helper methods can

now be declared directly in interfaces rather than in separate

classes.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

 As of Java SE 8, any interface containing only one

abstract method is known as a functional interface.

 Functional interfaces that you’ll use in this book include:

▪ ActionListener (Chapter 12)—You’ll implement this interface to

define a method that’s called when the user clicks a button.

▪ Comparator (Chapter 16)—You’ll implement this interface to define

a method that can compare two objects of a given type to determine

whether the first object is less than, equal to or greater than the second.

▪ Runnable (Chapter 23)—You’ll implement this interface to define a

task that may be run in parallel with other parts of your program.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

 Shape classes have many similarities.

 Using inheritance, we can “factor out” the common

features from all three classes and place them in a

single shape superclass.

 Then, using variables of the superclass type, we can

manipulate objects of all three shape objects

polymorphically.

 Removing the redundancy in the code will result in a

smaller, more flexible program that is easier to

maintain.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

 Class MyBoundedShape can be used to factor out the

common features of classes MyOval and

MyRectangle.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

	Slide 1: Chapter 10 Object-Oriented Programming: Polymorphism and Interfaces
	Slide 2
	Slide 3
	Slide 4
	Slide 5: 10.1 Introduction
	Slide 6: 10.1 Introduction (Cont.)
	Slide 7: 10.1 Introduction (Cont.)
	Slide 8: 10.1 Introduction (Cont.)
	Slide 9: 10.1 Introduction (Cont.)
	Slide 10: 10.1 Introduction (Cont.)
	Slide 11: 10.2 Polymorphism Examples
	Slide 12: 10.2 Polymorphism Examples (Cont.)
	Slide 13: 10.2 Polymorphism Examples (Cont.)
	Slide 14
	Slide 15
	Slide 16: 10.3 Demonstrating Polymorphic Behavior
	Slide 17: 10.3 Demonstrating Polymorphic Behavior (Cont.)
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23: 10.3 Demonstrating Polymorphic Behavior (Cont.)
	Slide 24: 10.4 Abstract Classes and Methods
	Slide 25: 10.4 Abstract Classes and Methods (Cont.)
	Slide 26: 10.4 Abstract Classes and Methods (Cont.)
	Slide 27: 10.4 Abstract Classes and Methods (Cont.)
	Slide 28
	Slide 29
	Slide 30
	Slide 31: 10.4 Abstract Classes and Methods (Cont.)
	Slide 32: 10.4 Abstract Classes and Methods (Cont.)
	Slide 33: 10.4 Abstract Classes and Methods (Cont.)
	Slide 34: 10.5 Case Study: Payroll System Using Polymorphism
	Slide 35: 10.5 Case Study: Payroll System Using Polymorphism (Cont.)
	Slide 36
	Slide 37: 10.5 Case Study: Payroll System Using Polymorphism (Cont.)
	Slide 38: 10.5.1 Abstract Superclass Employee
	Slide 39: 10.5.1 Abstract Superclass Employee (Cont.)
	Slide 40
	Slide 41
	Slide 42
	Slide 43: 10.5.2 Concrete Subclass SalariedEmployee
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48: 10.5.3 Concrete Subclass HourlyEmployee
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53: 10.5.4 Concrete Subclass CommissionEmployee
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58: 10.5.5 Indirect Concrete Subclass BasePlusCommissionEmployee
	Slide 59
	Slide 60
	Slide 61
	Slide 62: 10.5.6 Polymorphic Processing, Operator instanceof and Downcasting
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69: 10.5.6 Polymorphic Processing, Operator instanceof and Downcasting (Cont.)
	Slide 70
	Slide 71
	Slide 72: 10.5.6 Polymorphic Processing, Operator instanceof and Downcasting (Cont.)
	Slide 73
	Slide 74: 10.6 Summary of the Allowed Assignments Between Superclass and Subclass Variables
	Slide 75: 10.7 final Methods and Classes
	Slide 76: 10.7 final Methods and Classes (Cont.)
	Slide 77
	Slide 78
	Slide 79: 10.8 A Deeper Explanation of Issues with Calling Methods from Constructors
	Slide 80: 10.9 Creating and Using Interfaces
	Slide 81: 10.9 Creating and Using Interfaces (Cont.)
	Slide 82: 10.9 Creating and Using Interfaces (Cont.)
	Slide 83: 10.9 Creating and Using Interfaces (Cont.)
	Slide 84
	Slide 85: 10.9 Creating and Using Interfaces (Cont.)
	Slide 86
	Slide 87: 10.9 Creating and Using Interfaces (Cont.)
	Slide 88: 10.9 Creating and Using Interfaces (Cont.)
	Slide 89
	Slide 90: 10.9.1 Developing a Payable Hierarchy
	Slide 91
	Slide 92: 10.9.1 Developing a Payable Hierarchy (Cont.)
	Slide 93
	Slide 94: 10.9.2 Interface Payable
	Slide 95
	Slide 96: 10.9.3 Class Invoice
	Slide 97
	Slide 98
	Slide 99
	Slide 100
	Slide 101
	Slide 102: 10.9.4 Modifying Class Employee to Implement Interface Payable
	Slide 103
	Slide 104
	Slide 105: 10.9.5 Modifying Class SalariedEmployee for Use in the Payable Hierarchy
	Slide 106
	Slide 107
	Slide 108
	Slide 109
	Slide 110
	Slide 111: 10.9.5 Modifying Class SalariedEmployee for Use in the Payable Hierarchy (Cont.)
	Slide 112: 10.9.6 Using Interface Payable to Process Invoices and Employees Polymorphically
	Slide 113
	Slide 114
	Slide 115
	Slide 116: 10.9.7 Some Common Interfaces of the Java API
	Slide 117
	Slide 118
	Slide 119: 10.10 Java SE 8 Interface Enhancements
	Slide 120: 10.10.1 default Interface Methods
	Slide 121: 10.10.1 default Interface Methods (Cont.)
	Slide 122
	Slide 123: 10.10.1 default Interface Methods (Cont.)
	Slide 124: 10.10.2 static Interface Methods (Cont.)
	Slide 125: 10.10.3 Functional Interfaces
	Slide 126: 10.11 (Optional) GUI and Graphics Case Study: Drawing with Polymorphism
	Slide 127
	Slide 128: 10.8 (Optional) GUI and Graphics Case Study: Drawing with Polymorphism (Cont.)
	Slide 129

