
Java™ How to Program, 10/e

© Copyright 1992-2015 by Pearson Education, Inc. All Rights
Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

 Deeper look at building classes, controlling access to

members of a class and creating constructors.

 Show how to throw an exception to indicate that a

problem has occurred.

 Composition—a capability that allows a class to have

references to objects of other classes as members.

 More details on enum types.

 Discuss static class members and final instance

variables in detail.

 Show how to organize classes in packages to help

manage large applications and promote reuse.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

 Class Time1 represents the time of day.

 private int instance variables hour, minute and

second represent the time in universal-time format

(24-hour clock format in which hours are in the range

0–23, and minutes and seconds are each in the range 0–

59).

 public methods setTime,

toUniversalString and toString.

▪ Clled the public services or the public interface that the class

provides to its clients.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

 Class Time1 does not declare a constructor, so the

compiler supplies a default constructor.

 Each instance variable implicitly receives the default

int value.

 Instance variables also can be initialized when they are

declared in the class body, using the same initialization

syntax as with a local variable.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

Method setTime and Throwing Exceptions

 Method setTime (lines 12–25) declares three int
parameters and uses them to set the time.

 Lines 15–16 test each argument to determine whether

the value is outside the proper range.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

Method setTime and Throwing Exceptions (cont.)

 For incorrect values, setTime throws an exception of type

IllegalArgumentException (lines 18–19)

▪ Notifies the client code that an invalid argument was passed to the

method.

▪ Can use try...catch to catch exceptions and attempt to recover from

them.

▪ The class instance creation expression in the throw statement (line 18)

creates a new object of type IllegalArgumentException. In this

case, we call the constructor that allows us to specify a custom error

message.

▪ After the exception object is created, the throw statement immediately

terminates method setTime and the exception is returned to the calling

method that attempted to set the time.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

Software Engineering of the Time1 Class Declaration

 The instance variables hour, minute and second
are each declared private.

 The actual data representation used within the class is

of no concern to the class’s clients.

 Reasonable for Time1 to represent the time internally

as the number of seconds since midnight or the number

of minutes and seconds since midnight.

 Clients could use the same public methods and get

the same results without being aware of this.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

Java SE 8—Date/Time API

 Rather than building your own date and time classes, you’ll

typically reuse the ones provided by the Java API.

 Java SE 8 introduces a new Date/Time API—defined by the

classes in the package java.time—applications built with Java

SE 8 should use the Date/Time API’s capabilities, rather than

those in earlier Java versions.

▪ fixes various issues with the older classes and provides more robust,

easier-to-use capabilities for manipulating dates, times, time zones,

calendars and more.

 We use some Date/Time API features in Chapter 23.

 Learn more about the Date/Time API’s classes at:
▪ download.java.net/jdk8/docs/api/java/time/
package-summary.html

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

 Access modifiers public and private control access to
a class’s variables and methods.
▪ Chapter 9 introduces access modifier protected.

 public methods present to the class’s clients a view of the
services the class provides (the class’s public interface).

 Clients need not be concerned with how the class
accomplishes its tasks.
▪ For this reason, the class’s private variables and private

methods (i.e., its implementation details) are not accessible to its
clients.

 private class members are not accessible outside the
class.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

 Every object can access a reference to itself with
keyword this.

 When a an instance method is called for a particular
object, the method’s body implicitly uses keyword
this to refer to the object’s instance variables and
other methods.
▪ Enables the class’s code to know which object should be

manipulated.

▪ Can also use keyword this explicitly in an instance method’s
body.

 Can use the this reference implicitly and explicitly.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

 When you compile a .java file containing more than

one class, the compiler produces a separate class file

with the .class extension for every compiled class.

 When one source-code (.java) file contains multiple

class declarations, the compiler places both class files

for those classes in the same directory.

 A source-code file can contain only one public
class—otherwise, a compilation error occurs.

 Non-public classes can be used only by other classes

in the same package.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

 SimpleTime declares three private instance
variables—hour, minute and second.

 If parameter names for the constructor that are identical to
the class’s instance-variable names.

 We use the this reference to refer to the instance
variables.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

 Overloaded constructors enable objects of a class to be

initialized in different ways.

 To overload constructors, simply provide multiple

constructor declarations with different signatures.

 Recall that the compiler differentiates signatures by the

number of parameters, the types of the parameters and

the order of the parameter types in each signature.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

 Class Time2 (Fig. 8.5) contains five overloaded

constructors that provide convenient ways to initialize

objects.

 The compiler invokes the appropriate constructor by

matching the number, types and order of the types of

the arguments specified in the constructor call with the

number, types and order of the types of the parameters

specified in each constructor declaration.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

 A program can declare a so-called no-argument constructor
that is invoked without arguments.

 Such a constructor simply initializes the object as specified
in the constructor’s body.

 Using this in method-call syntax as the first statement in
a constructor’s body invokes another constructor of the
same class.
▪ Popular way to reuse initialization code provided by another of the

class’s constructors rather than defining similar code in the no-
argument constructor’s body.

 Once you declare any constructors in a class, the compiler
will not provide a default constructor.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

Notes Regarding Class Time2’s set and get Methods and
Constructors

 Methods can access a class’s private data directly without calling
the get methods.

 However, consider changing the representation of the time from
three int values (requiring 12 bytes of memory) to a single int
value representing the total number of seconds that have elapsed
since midnight (requiring only four bytes of memory).
▪ If we made such a change, only the bodies of the methods that access the
private data directly would need to change—in particular, the three-
argument constructor, the setTime method and the individual set and
get methods for the hour, minute and second.

▪ There would be no need to modify the bodies of methods
toUniversalString or toString because they do not access the
data directly.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

 Designing the class in this manner reduces the likelihood of
programming errors when altering the class’s
implementation.

 Similarly, each Time2 constructor could be written to
include a copy of the appropriate statements from the three-
argument constructor.
▪ Doing so may be slightly more efficient, because the extra

constructor calls are eliminated.
▪ But, duplicating statements makes changing the class’s internal data

representation more difficult.
▪ Having the Time2 constructors call the constructor with three

arguments requires any changes to the implementation of the three-
argument constructor be made only once.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

 Every class must have at least one constructor.
 If you do not provide any constructors in a class’s declaration,

the compiler creates a default constructor that takes no
arguments when it’s invoked.

 The default constructor initializes the instance variables to the
initial values specified in their declarations or to their default
values (zero for primitive numeric types, false for boolean
values and null for references).

 Recall that if your class declares constructors, the compiler will
not create a default constructor.
▪ In this case, you must declare a no-argument constructor if default

initialization is required.
▪ Like a default constructor, a no-argument constructor is invoked with

empty parentheses.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

 Set methods are also commonly called mutator

methods, because they typically change an object’s

state—i.e., modify the values of instance variables.

 Get methods are also commonly called accessor

methods or query methods.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

 It would seem that providing set and get capabilities is
essentially the same as making a class’s instance variables
public.
▪ A public instance variable can be read or written by any method

that has a reference to an object that contains that variable.

▪ If an instance variable is declared private, a public get method
certainly allows other methods to access it, but the get method can
control how the client can access it.

▪ A public set method can—and should—carefully scrutinize at-
tempts to modify the variable’s value to ensure valid values.

 Although set and get methods provide access to private
data, it is restricted by the implementation of the methods.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

 Validity Checking in Set Methods

 The benefits of data integrity do not follow
automatically simply because instance variables are
declared private—you must provide validity
checking.

 Predicate Methods

 Another common use for accessor methods is to test
whether a condition is true or false—such methods are
often called predicate methods.
▪ Example: ArrayList’s isEmpty method, which returns
true if the ArrayList is empty and false otherwise.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

 A class can have references to objects of other classes

as members.

 This is called composition and is sometimes referred to

as a has-a relationship.

 Example: An AlarmClock object needs to know the

current time and the time when it’s supposed to sound

its alarm, so it’s reasonable to include two references to

Time objects in an AlarmClock object.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

 The basic enum type defines a set of constants

represented as unique identifiers.

 Like classes, all enum types are reference types.

 An enum type is declared with an enum declaration,

which is a comma-separated list of enum constants

 The declaration may optionally include other

components of traditional classes, such as constructors,

fields and methods.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

 Each enum declaration declares an enum class with
the following restrictions:
▪ enum constants are implicitly final.
▪ enum constants are implicitly static.
▪ Any attempt to create an object of an enum type with

operator new results in a compilation error.

 enum constants can be used anywhere constants can
be used, such as in the case labels of switch
statements and to control enhanced for statements.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

 enum declarations contain two parts—the enum constants and
the other members of the enum type.

 An enum constructor can specify any number of parameters
and can be overloaded.

 For every enum, the compiler generates the static method
values that returns an array of the enum’s constants.

 When an enum constant is converted to a String, the
constant’s identifier is used as the String representation.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

 Use the static method range of class EnumSet (declared

in package java.util) to access a range of an enum’s

constants.

▪ Method range takes two parameters—the first and the last enum
constants in the range

▪ Returns an EnumSet that contains all the constants between these

two constants, inclusive.

 The enhanced for statement can be used with an

EnumSet just as it can with an array.

 Class EnumSet provides several other static methods.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

 Every object uses system resources, such as memory.
▪ Need a disciplined way to give resources back to the system when

they’re no longer needed; otherwise, “resource leaks” might occur.

 The JVM performs automatic garbage collection to reclaim
the memory occupied by objects that are no longer used.
▪ When there are no more references to an object, the object is eligible

to be collected.

▪ Collection typically occurs when the JVM executes its garbage
collector, which may not happen for a while, or even at all before a
program terminates.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

 So, memory leaks that are common in other languages

like C and C++ (because memory is not automatically

reclaimed in those languages) are less likely in Java,

but some can still happen in subtle ways.

 Resource leaks other than memory leaks can also occur.

▪ An app may open a file on disk to modify its contents.

▪ If the app does not close the file, it must terminate before any

other app can use the file.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

A Note about Class Object’s finalize Method

 Every class in Java has the methods of class Object
(package java.lang), one of which is method finalize.

 You should never use method finalize, because it can

cause many problems and there’s uncertainty as to whether

it will ever get called before a program terminates.

 The original intent of finalize was to allow the

garbage collector to perform termination housekeeping on

an object just before reclaiming the object’s memory.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

 Now, it’s considered better practice for any class that uses

system resources—such as files on disk—to provide a

method that programmers can call to release resources

when they’re no longer needed in a program.

 AutoClosable objects reduce the likelihood of resource

leaks when you use them with the try-with-resources

statement.

 As its name implies, an AutoClosable object is closed

automatically, once a try-with-resources statement finishes

using the object.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

 In certain cases, only one copy of a particular variable

should be shared by all objects of a class.

▪ A static field—called a class variable—is used in such cases.

 A static variable represents classwide

information—all objects of the class share the same

piece of data.

▪ The declaration of a static variable begins with the

keyword static.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

 Static variables have class scope—they can be used in all of the class’s
methods.

 Can access a class’s public static members through a reference to
any object of the class, or by qualifying the member name with the
class name and a dot (.), as in Math.random().

 private static class members can be accessed by client code only
through methods of the class.

 static class members are available as soon as the class is loaded into
memory at execution time.

 To access a public static member when no objects of the class
exist (and even when they do), prefix the class name and a dot (.) to
the static member, as in Math.PI.

 To access a private static member when no objects of the class
exist, provide a public static method and call it by qualifying its
name with the class name and a dot.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

 A static method cannot access a class’s instance
variables and instance methods, because a static
method can be called even when no objects of the class
have been instantiated.
▪ For the same reason, the this reference cannot be used in a
static method.

▪ The this reference must refer to a specific object of the class,
and when a static method is called, there might not be any
objects of its class in memory.

 If a static variable is not initialized, the compiler
assigns it a default value—in this case 0, the default
value for type int.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

 String objects in Java are immutable—they cannot
be modified after they are created.
▪ Therefore, it’s safe to have many references to one String

object.

▪ This is not normally the case for objects of most other classes
in Java.

 If String objects are immutable, you might wonder
why are we able to use operators + and += to
concatenate String objects.

 String-concatenation actually results in a new String
object containing the concatenated values—the original
String objects are not modified.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

 In a typical app, the garbage collector might eventually

reclaim the memory for any objects that are eligible for

collection.

 The JVM does not guarantee when, or even whether,

the garbage collector will execute.

 When the garbage collector does execute, it’s possible

that no objects or only a subset of the eligible objects

will be collected.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

 A static import declaration enables you to import the

static members of a class or interface so you can

access them via their unqualified names in your class—

that is, the class name and a dot (.) are not required

when using an imported static member.

 Two forms

▪ One that imports a particular static member (which is

known as single static import)

▪ One that imports all static members of a class (which is

known as static import on demand)

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

 The following syntax imports a particular static member:
import static packageName.ClassName.staticMemberName;

 where packageName is the package of the class, ClassName is
the name of the class and staticMemberName is the name of the
static field or method.

 The following syntax imports all static members of a class:
import static packageName.ClassName.*;

 where packageName is the package of the class and ClassName
is the name of the class.
▪ * indicates that all static members of the specified class should be

available for use in the class(es) declared in the file.

 static import declarations import only static class
members.

 Regular import statements should be used to specify the
classes used in a program.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

 The principle of least privilege is fundamental to good

software engineering.

▪ Code should be granted only the amount of privilege and access that

it needs to accomplish its designated task, but no more.

▪ Makes your programs more robust by preventing code from

accidentally (or maliciously) modifying variable values and calling

methods that should not be accessible.

 Keyword final specifies that a variable is not modifiable

(i.e., it’s a constant) and any attempt to modify it is an error.
private final int INCREMENT;

▪ Declares a final (constant) instance variable INCREMENT of type

int.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

 final variables can be initialized when they are

declared or by each of the class’s constructors so that

each object of the class has a different value.

 If a class provides multiple constructors, every one

would be required to initialize each final variable.

 A final variable cannot be modified by assignment

after it’s initialized.

 If a final variable is not initialized, a compilation

error occurs.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

 If no access modifier is specified for a method or

variable when it’s declared in a class, the method or

variable is considered to have package access.

 In a program uses multiple classes from the same

package, these classes can access each other’s package-

access members directly through references to objects

of the appropriate classes, or in the case of static
members through the class name.

 Package access is rarely used.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

 In earlier chapters, we demonstrated monetary calculations

using values of type double.

▪ some double values are represented approximately.

 Any application that requires precise floating-point

calculations—such as those in financial applications—should

instead use class BigDecimal (from package

java.math).

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

Interest Calculations Using BigDecimal

 Figure 8.16 reimplements the interest calculation example of

Fig. 5.6 using objects of class BigDecimal to perform the

calculations.

 We also introduce class NumberFormat (package

java.text) for formatting numeric values as locale-specific

Strings—for example, in the U.S. locale, the value 1234.56,

would be formatted as "1,234.56", whereas in many

European locales it would be formatted as "1.234,56".

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

Rounding BigDecimal Values

 In addition to precise calculations, BigDecimal also gives you

control over how values are rounded—by default all calculations are

exact and no rounding occurs.

 If you do not specify how to round BigDecimal values and a

given value cannot be represented exactly—such as the result of 1

divided by 3, which is 0.3333333…—an

ArithmeticException occurs.

 You can specify the rounding mode for BigDecimal by supplying

a MathContext object (package java.math) to class

BigDecimal’s constructor when you create a BigDecimal. You

may also provide a MathContext to various BigDecimal
methods that perform calculations.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

 Class MathContext contains several pre-configured

MathContext objects that you can learn about at

▪ http://docs.oracle.com/javase/7/docs/api/java/
math/MathContext.html

 By default, each pre-configured MathContext uses so

called “bankers rounding” as explained for the

RoundingMode constant HALF_EVEN at:

▪ http://docs.oracle.com/javase/7/docs/api/java/
math/RoundingMode.html#HALF_EVEN

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

Scaling BigDecimal Values

 A BigDecimal’s scale is the number of digits to the right of its

decimal point. If you need a BigDecimal rounded to a specific

digit, you can call BigDecimal method setScale.

 For example, the following expression returns a BigDecimal with

two digits to the right of the decimal point and using bankers

rounding:

▪ amount.setScale(2, RoundingMode.HALF_EVEN)

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

 The next example stores information about the displayed

shapes so that we can reproduce them each time the system

calls paintComponent.

 We’ll make “smart” shape classes that can draw themselves

by using a Graphics object.

 Figure 8.18 declares class MyLine, which has all these

capabilities.

 Method paintComponent in class DrawPanel iterates

through an array of MyLine objects.

▪ Each iteration calls the draw method of the current MyLine object

and passes it the Graphics object for drawing on the panel.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

	Slide 1: Chapter 8 Classes and Objects: A Deeper Look
	Slide 2
	Slide 3
	Slide 4: 8.1 Introduction
	Slide 5: 8.2 Time Class Case Study
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13: 8.2 Time Class Case Study (Cont.)
	Slide 14: 8.2 Time Class Case Study (Cont.)
	Slide 15: 8.2 Time Class Case Study (Cont.)
	Slide 16: 8.2 Time Class Case Study (Cont.)
	Slide 17
	Slide 18
	Slide 19: 8.2 Time Class Case Study (Cont.)
	Slide 20: 8.3 Controlling Access to Members
	Slide 21
	Slide 22
	Slide 23
	Slide 24: 8.4 Referring to the Current Object’s Members with the this Reference
	Slide 25: 8.4 Referring to the Current Object’s Members with the this Reference (Cont.)
	Slide 26
	Slide 27
	Slide 28
	Slide 29: 8.4 Referring to the Current Object’s Members with the this Reference (Cont.)
	Slide 30
	Slide 31
	Slide 32: 8.5 Time Class Case Study: Overloaded Constructors
	Slide 33: 8.5 Time Class Case Study: Overloaded Constructors (Cont.)
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45: 8.5 Time Class Case Study: Overloaded Constructors (Cont.)
	Slide 46: 8.5 Time Class Case Study: Overloaded Constructors (Cont.)
	Slide 47: 8.5 Time Class Case Study: Overloaded Constructors (Cont.)
	Slide 48: 8.6 Default and No-Argument Constructors
	Slide 49
	Slide 50
	Slide 51: 8.7 Notes on Set and Get Methods
	Slide 52: 8.7 Notes on Set and Get Methods (Cont.)
	Slide 53
	Slide 54
	Slide 55: 8.7 Notes on Set and Get Methods (Cont.)
	Slide 56
	Slide 57
	Slide 58: 8.8 Composition
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65: 8.9 enum Types
	Slide 66: 8.9 Enum Types (Cont.)
	Slide 67: 8.9 Enum Types (Cont.)
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72: 8.9 Enum Types (Cont.)
	Slide 73
	Slide 74: 8.10 Garbage Collection
	Slide 75: 8.10 Garbage Collection (Cont.)
	Slide 76: 8.10 Garbage Collection (Cont.)
	Slide 77: 8.10 Garbage Collection (Cont.)
	Slide 78
	Slide 79: 8.11 static Class Members
	Slide 80
	Slide 81: 8.11 static Class Members (Cont.)
	Slide 82
	Slide 83: 8.11 static Class Members (Cont.)
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89: 8.11 static Class Members (Cont.)
	Slide 90
	Slide 91
	Slide 92: 8.11 static Class Members (Cont.)
	Slide 93: 8.12 static Import
	Slide 94: 8.12 static Import (Cont.)
	Slide 95
	Slide 96
	Slide 97: 8.13 final Instance Variables
	Slide 98: 8.13 final Instance Variables (cont.)
	Slide 99
	Slide 100
	Slide 101
	Slide 102
	Slide 103: 8.14 Package Access
	Slide 104
	Slide 105
	Slide 106
	Slide 107: 8.15 Using BigDecimal for Precise Monetary Calculations
	Slide 108
	Slide 109
	Slide 110
	Slide 111: 8.15 Using BigDecimal for Precise Monetary Calculations (Cont.)
	Slide 112: 8.15 Using BigDecimal for Precise Monetary Calculations (Cont.)
	Slide 113: 8.15 Using BigDecimal for Precise Monetary Calculations (Cont.)
	Slide 114: 8.15 Using BigDecimal for Precise Monetary Calculations (Cont.)
	Slide 115: 8.16 (Optional) GUI and Graphics Case Study: Using Objects with Graphics
	Slide 116
	Slide 117
	Slide 118
	Slide 119
	Slide 120
	Slide 121
	Slide 122

