Chapter 8
Classes and Objects:
A Deeper Look

Java™ How to Program, 10/e

© Copyright 1992-2015 by Pearson Education, Inc. All Rights
Reserved.



OBJECTIVES
In this chapter you'll:

m Use the throw statement to indicate that a problem has occurred.

m Use keyword this in a constructor to call another constructor in the same class.
m Use static variables and methods.

m Import static members of a class.

m Use the enum type to create sets of constants with unique identifiers.

m Declare enum constants with parameters.

m Use BigDecimal for precise monetary calculations.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.




0 O 0 00 0 0 O o

8.1
8.2
8.3
8.4
8.5
8.6
8.7
8.8
8.9
.10
A1
A2
A3
14
A5
16
A7

Introduction

Time Class Case Study

Controlling Access to Members

Referring to the Current Object’s Members with the th1is Reference
Time Class Case Study: Overloaded Constructors

Default and No-Argument Constructors

Notes on Set and Get Methods

Composition

enum Types

Garbage Collection

static Class Members

static Import

final Instance Variables

Package Access

Using BigDecimal for Precise Monetary Calculations

(Optional) GUI and Graphics Case Study: Using Objects with Graphics
Wrap-Up

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.




8.1 Introduction

» Deeper look at building classes, controlling access to
members of a class and creating constructors.

» Show how to throw an exception to indicate that a
problem has occurred.

» Composition—a capability that allows a class to have
references to objects of other classes as members.

» More details on enum types.

» Discuss static class members and final instance
variables in detail.

» Show how to organize classes in packages to help

manage large applications and promote reuse.

A

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.



8.2 Time Class Case Study

» Class T1mel represents the time of day.

» private 1nt instance variables hour, minute and
second represent the time in universal-time format
(24-hour clock format in which hours are in the range
0-23, and minutes and seconds are each in the range 0—
59).

» pub11c methods setTime,

touniversalStringand toString.

= Clled the public services or the public interface that the class
provides to its clients.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.




1 // Fig. 8.1: Timel.java

2 // Timel class declaration maintains the time in 24-hour format.
3

4 public class Timel

5 {

6 private int hour; // 0 - 23

7 private int minute; // O - 59

8 private int second; // 0 - 59

9

10 // set a new time value using universal time; throw an
11 // exception if the hour, minute or second is invalid

12 public void setTime(int hour, int minute, int second)

13 {

14 // validate hour, minute and second

15 if Chour < O || hour >= 24 || minute < O || minute >= 60 ||
16 second < 0 || second >= 60)

17 {

18 throw new I1legalArgumentException(

19 "hour, minute and/or second was out of range");
20 }
21

Fig. 8.1 | Timel class declaration maintains the time in 24-hour format. (Part I of
2.)

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.




22 this.hour = hour;

23 this.minute = minute;

24 this.second = second;

25 }

26

27 // convert to String in universal-time format (HH:MM:SS)

28 public String toUniversalString()

29 {

30 return String.format("%02d:%02d:%02d", hour, minute, second);
31 }

32

33 // convert to String in standard-time format (H:MM:SS AM or PM)
34 public String toString()

35 {

36 return String.format("%d:%02d:%02d %s",

37 (Chour == 0 || hour == 12) ? 12 : hour % 12),

38 minute, second, Chour < 12 ? "AM" : "PM"));

39 }

40 } // end class Timel

Fig. 8.1 | Timel class declaration maintains the time in 24-hour format. (Part 2 of
2.)

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.




P,m, Software Engineering Observation 8.1
05

. For a method like setTime in Fig. 8.1, validate all of
the method s arguments before using them to set instance
variable values to ensure that the object’s data is
modified only if all the arguments are valid.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.




% Software Engineering Observation 8.2
S8 Recall from Chapter 3 that methods declared with access

modifier private can be called only by other methods
of the class in which the private methods are declared.
Such methods are commonly referred to as utility
methods or helper methods because they re typically used
to support the operation of the class’s other methods.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.




1 // Fig. 8.2: TimelTest.java

2 // Timel object used in an app.

3

4 public class TimelTest

5 {

6 public static void main(String[] args)

7 {

8 // create and initialize a Timel object

9 Timel time = new Timel(); // invokes Timel constructor
10

11 // output string representations of the time

12 displayTime("After time object is created", time);
13 System.out.println();

14

I5 // change time and output updated time

16 time.setTime(1l3, 27, 0);

17 displayTime("After calling setTime", time);

I8 System.out.println();

19

Fig. 8.2 | Timel object used in an app. (Part | of 3.)

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.




20 // attempt to set time with invalid values

21 try

22 {

23 time.setTime(99, 99, 99); // all values out of range

24 }

25 catch (ITlegalArgumentException e)

26 {

27 System.out.printf("Exception: %s%n%n", e.getMessage());

28 }

29

30 // display time after attempt to set invalid values

31 displayTime("After calling setTime with invalid values”, time);
32 }

33

34 // displays a Timel object in 24-hour and 12-hour formats

35 private static void displayTime(String header, Timel t)

36 {

37 System.out.printf("%sknUniversal time: %s%nStandard time: %s%n",
38 header, t.toUniversalString(), t.toString());

39 }

40 } // end class TimelTest

Fig. 8.2 | Timel object used in an app. (Part 2 of 3.)

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.




After time object is created
Universal time: 00:00:00
Standard time: 12:00:00 AM

After calling setTime
Universal time: 13:27:06
Standard time: 1:27:06 PM

Exception: hour, minute and/or second was out of range

After calling setTime with invalid values
Universal time: 13:27:06
Standard time: 1:27:00 PM

Fig. 8.2 | Timel object used in an app. (Part 3 of 3.)

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.




8.2 Time Class Case Study (Cont.)

» Class T1mel does not declare a constructor, so the
compiler supplies a default constructor.

» Each instance variable implicitly receives the default
1nt value.

» Instance variables also can be initialized when they are

declared in the class body, using the same initialization
syntax as with a local variable.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.




8.2 Time Class Case Study (Cont.)

Method set77me and Throwing Exceptions

» Method setTime (lines 12-25) declares three 1nt
parameters and uses them to set the time.

» Lines 15-16 test each argument to determine whether
the value Is outside the proper range.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.




8.2 Time Class Case Study (Cont.)

Method set77me and Throwing Exceptions (cont.)

» For incorrect values, setT1me throws an exception of type
I1legalArgumentException (lines 18-19)

Notifies the client code that an invalid argument was passed to the
method.

Can use try...catch to catch exceptions and attempt to recover from
them.

The class instance creation expression in the throw statement (line 18)
creates a new object of type I'11egalArgumentException. In this
case, we call the constructor that allows us to specify a custom error
message.

After the exception object is created, the throw statement immediately
terminates method setTime and the exception is returned to the calling
method that attempted to set the time.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.



8.2 Time Class Case Study (Cont.)

Software Engineering of the 77me1 Class Declaration

» The instance variables hour, minute and second
are each declared private.

» The actual data representation used within the class is
of no concern to the class’s clients.

» Reasonable for T1mel to represent the time internally
as the number of seconds since midnight or the number
of minutes and seconds since midnight.

» Clients could use the same pub 11 c methods and get

the same results without being aware of this.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.



‘ C[czsses szmplzﬁ/ programming, because the clzmt can use
only a class’s pub 11 c methods. Such methods are usually
client oriented rather than implementation oriented.
Clients are neither aware of, nor involved in, a class’s
implementation. Clients generally care about what the
class does but not how the class does 1it.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.




A [nterﬁzces c/mnge less ﬁequent[y than zmp/emenmnom
When an implementation changes, implementation-
dependent code must change accordingly. Hiding the
implementation reduces the possibility that other
program parts will become dependent on class
implementation details.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.




8.2 Time Class Case Study (Cont.)
Java SE 8—Date/Time API

» Rather than building your own date and time classes, you’ll
typically reuse the ones provided by the Java API.

» Java SE 8 introduces a new Date/Time APl—defined by the
classes in the package java.time—applications built with Java
SE 8 should use the Date/Time API’s capabilities, rather than
those In earlier Java versions.

= fixes various issues with the older classes and provides more robust,
easier-to-use capabilities for manipulating dates, times, time zones,
calendars and more.

» We use some Date/Time API features in Chapter 23.

» Learn more about the Date/Time API’s classes at:

= download.java.net/jdk8/docs/api/java/time/
package-summary.html

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.



8.3 Controlling Access to Members

» Access modifiers pub11c and private control access to
a class’s variables and methods.
= Chapter 9 introduces access modifier protected.

» pub11c methods present to the class’s clients a view of the
services the class provides (the class’s pub 11 c interface).

» Clients need not be concerned with how the class

accomplishes its tasks.
= For this reason, the class’s private variables and private
methods (i.e., its implementation details) are not accessible to its

clients.
» private class members are not accessible outside the

class.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.




// Fig. 8.3: MemberAccessTest.java
// Private members of class Timel are not accessible.
public class MemberAccessTest
{
public static void main(String[] args)

{

Timel time = new Timel(); // create and initialize Timel object

OoOoO~NONBNDE WN=—

time.hour = 7; // error: hour has private access in Timel

10 time.minute = 15; // error: minute has private access in Timel
11 time.second 30; // error: second has private access in Timel
12 }

I3 } // end class MemberAccessTest

Fig. 8.3 | Private members of class Timel are not accessible. (Part | of 2.)

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.




MemberAccessTest.java:9: hour has private access in Timel
time.hour = 7; // error: hour has private access in Timel
A
MemberAccessTest.java:10: minute has private access in Timel
time.minute = 15; // error: minute has private access in Timel
A
MemberAccessTest.java:1ll: second has private access in Timel

time.second = 30; // error: second has private access in Timel
A

3 errors

Fig. 8.3 | Private members of class Timel are not accessible. (Part 2 of 2.)

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.




Common Programming Error 8.1

An attempt by a method that’s not a member of a class to
access a private member of that class generates a com-
pilation error.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.




8.4 Referring to the Current Object’s
Members with the this Reference

» Every object can access a reference to itself with
keyword this.

» When a an instance method is called for a particular
object, the method’s body implicitly uses keyword
this to refer to the object’s instance variables and
other methods.
= Enables the class’s code to know which object should be

manipulated.
= Can also use keyword th1is explicitly in an instance method’s
body.

» Can use the th1s reference implicitly and explicitly.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.




<

8.4 Referring to the Current Object’s
Members with the this Reference (Cont.)

» When you compile a . Java file containing more than
one class, the compiler produces a separate class file
with the . class extension for every compiled class.

» When one source-code (. Java) file contains multiple
class declarations, the compiler places both class files
for those classes in the same directory.

» A source-code file can contain only one pub1ic
class—otherwise, a compilation error occurs.

» Non-pub 11 c classes can be used only by other classes
In the same package.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.




1 // Fig. 8.4: ThisTest.java

2 // this used implicitly and explicitly to refer to members of an object.
3

4 public class ThisTest

5 {

6 public static void main(String[] args)

7 {

8 SimpleTime time = new SimpleTime(1l5, 30, 19);
9 System.out.println(time.buildString());

10 }

Il } // end class ThisTest

12

I3 // class SimpleTime demonstrates the "this" reference
14 class SimpleTime

15 {

16 private 1int hour; // 0-23
17 private int minute; // 0-59
I8 private int second; // 0-59
19

Fig. 8.4 | this used implicitly and explicitly to refer to members of an object. (Part
| of 3.)

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.




20 // if the constructor uses parameter names identical to

21 // instance variable names the "this" reference is

22 // required to distinguish between the names

23 public SimpleTime(int hour, int minute, int second)

24 {

25 this.hour = hour; // set "this" object's hour

26 this.minute = minute; // set "this" object's minute

27 this.second = second; // set "this" object's second

28 }

29

30 // use explicit and implicit "this" to call toUniversalString
31 public String buildString()

32 {

33 return String.format("%24s: %s¥in%24s: %s",

34 "this.tolUniversalString()", this.toUniversalString(),
35 "toUniversalString()", toUniversalString());

36 }

37

Fig. 8.4 | this used implicitly and explicitly to refer to members of an object. (Part
2 of 3.)

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.




38 // convert to String in universal-time format (HH:MM:SS)

39 public String toUniversalString()

40 {

41 // "this" is not required here to access instance variables,
42 // because method does not have local variables with same
43 // names as instance variables

44 return String.format("%02d:%02d:%02d",

45 this.hour, this.minute, this.second);

46 }

47 } // end class SimpleTime

this.toUniversalString(): 15:30:19
toUniversalString(): 15:30:19

Fig. 8.4 | this used implicitly and explicitly to refer to members of an object. (Part
3of3.)

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.




<

8.4 Referring to the Current Object’s
Members with the this Reference (Cont.)

» SimpleTime declares three private instance
variables—hour, minute and second.

» If parameter names for the constructor that are identical to
the class’s instance-variable names.

» We use the this reference to refer to the instance
variables.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.




Error-Prevention Tip 8.1

Most IDEs will issue a warning if you say x = X ; instead
of this.x = x;. The statement X = X; is often called a
no-op (no operation,).

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.




s53y. Performance Tip 8.1

P2 Java conserves storage by maintaining only one copy of
each method per class—this method is invoked by every
object of the class. Each object, on the other hand, has its
own copy of the class’s instance variables. Each method of
the class implicitly uses this to determine the specific 0b-
ject of the class to manipulate.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.




8.5 Time Class Case Study: Overloaded
Constructors

» Overloaded constructors enable objects of a class to be
Initialized in different ways.

» To overload constructors, simply provide multiple
constructor declarations with different signatures.

» Recall that the compiler differentiates signatures by the
number of parameters, the types of the parameters and
the order of the parameter types in each signature.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.




8.5 Time Class Case Study: Overloaded
Constructors (Cont.)

» Class T1me2 (Fig. 8.5) contains five overloaded
constructors that provide convenient ways to initialize
objects.

» The compiler invokes the appropriate constructor by
matching the number, types and order of the types of
the arguments specified in the constructor call with the
number, types and order of the types of the parameters
specified in each constructor declaration.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.




1 // Fig. 8.5: Time2.java

2 // Time2 class declaration with overloaded constructors.

3

4 public class Time2

5 {

6 private int hour; // 0 - 23

7 private int minute; // 0 - 59

8 private int second; // 0 - 59

9

10 // Time2 no-argument constructor:

11 // initializes each instance variable to zero

12 public Time2()

13 {

14 this(0, 0, 0); // invoke constructor with three arguments
I5 }

16

17 // Time2 constructor: hour supplied, minute and second defaulted to O
I8 public Time2(int hour)

19 {
20 thisChour, 0, 0); // invoke constructor with three arguments
21 }
22

Fig. 8.5 | Time2 class with overloaded constructors. (Part | of 6.)

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.




23 // Time2 constructor: hour and minute supplied, second defaulted to O

24 public Time2(int hour, int minute)

25 {

26 this(Chour, minute, 0); // invoke constructor with three arguments
27 }

28

29 // Time2 constructor: hour, minute and second supplied

30 public Time2(int hour, int minute, int second)

31 {

32 if Chour < O || hour >= 24)

33 throw new IllegalArgumentException("hour must be 0-23");
34

35 if (minute < 0 || minute >= 60)

36 throw new IllegalArgumentException("minute must be 0-59");
37

38 if (second < 0 || second >= 60)

39 throw new ITlegalArgumentException("second must be 0-59");
40

41 this.hour = hour;

42 this.minute = minute;

43 this.second = second;

44 }

45

Fig. 8.5 | Time2 class with overloaded constructors. (Part 2 of 6.)

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.




46
47
48
49
50
31
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70

// Time2 constructor: another Time2 object supplied

public Time2(Time2 time)

{
// invoke constructor with three arguments
this(time.getHour(), time.getMinute(), time.getSecond());

}

// Set Methods

// set a new time value using universal time;

// validate the data

public void setTime(int hour, 1int minute, int second)

{
if Chour < O || hour >= 24)
throw new ITlegalArgumentException("hour must be 0-23");
if (minute < O || minute >= 60)
throw new ITlegalArgumentException("minute must be 0-59");
if (second < 0 || second >= 60)
throw new IllegalArgumentException("second must be 0-59");
this.hour = hour;
this.minute = minute;
this.second = second;
}

8.5 | Time2 class with overloaded constructors. (Part 3 of 6.)

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.



71

72 // validate and set hour

73 public void setHour(int hour)

74 {

75 if Chour < O || hour >= 24)

76 throw new IllegalArgumentException("hour must be 0-23");
77

78 this.hour = hour;

79 }

80

81 // validate and set minute

82 public void setMinute(int minute)

83 {

84 if (minute < 0 && minute >= 60)

85 throw new IllegalArgumentException("minute must be 0-59");
86

87 this.minute = minute;

88 }

89

Fig. 8.5 | Time2 class with overloaded constructors. (Part 4 of 6.)

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.




90 // validate and set second

91 public void setSecond(int second)
92 {

93 if (second >= 0 && second < 60)
94 throw new ITlegalArgumentException("second must be 0-59");
95

96 this.second = second;

97 }

98

99 // Get Methods

100 // get hour value

101 public int getHour()

102 {

103 return hour;

104 }

105

106 // get minute value

107 public int getMinute()

108 {

109 return minute;

110 }

Fig. 8.5 | Time2 class with overloaded constructors. (Part 5 of 6.)

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.




111
112
113
114
115
116
17
118
119
120
121
122
123
124
125
126
127
128
129
130
131

// get second value
public int getSecond()
{

return second;

}

// convert to String in universal-time format (HH:MM:SS)
public String toUniversalString()
{
return String.format(
"%02d:%02d:%02d", getHour(), getMinute(), getSecond());
3

// convert to String in standard-time format (H:MM:SS AM or PM)
public String toString()

{
return String.format("%d:%02d:%02d %s",
((getHour() == 0 || getHour() == 12) ? 12 : getHour() % 12),
getMinute(), getSecond(), (getHour() < 12 ? "AM" : "PM"));
}

132 } // end class Time2

Fig. 8.5 | Time2 class with overloaded constructors. (Part 6 of 6.)

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.




Common Programming Error 8.2

It’s a compilation error when this is used in a construc-
tor’s body to call another of the class’s constructors if that
call is not the first statement in the constructor. It’s also

a compilation error when a method attempts to invoke a
constructor directly via this.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.




P,w, Software Engineering Observation 8.5
BE8X When one object of a class has a reference to another

| object of the same class, the first object can access all the
second object’s data and methods (including those that

are private).

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.




I // Fig. 8.6: Time2Test.java

2 // Overloaded constructors used to initialize Time2 objects.

3

4 public class Time2Test

5

6 public static void main(String[] args)

7 {

8 Time2 tl = new Time2(); // 00:00:00

9 Time2 t2 = new Time2(2); // 02:00:00

10 Time2 t3 = new Time2(21, 34); // 21:34:00

11 Time2 t4 = new Time2(12, 25, 42); // 12:25:42

12 Time2 t5 = new Time2(t4); // 12:25:42

13

14 System.out.println("Constructed with:");

15 displayTime("tl: all default arguments”™, tl1);

16 displayTime("t2: hour specified; default minute and second"”, t2);
17 displayTime("t3: hour and minute specified; default second”, t3);
18 displayTime("'t4: hour, minute and second specified”, t4);

19 displayTime("t5: Time2 object t4 specified", t5);
20

Fig. 8.6 | Overloaded constructors used to initialize Time2 objects. (Part | of 3.)

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.




21 // attempt to initialize t6 with invalid values

22 try

23 {

24 Time2 t6 = new Time2(27, 74, 99); // invalid values
25 }

26 catch (IllegalArgumentException e)

27 {

28 System.out.printf("%nException while initializing t6: %s%n",
29 e.getMessage());

30 }

31 }

32

33 // displays a Time2 object in 24-hour and 12-hour formats
34 private static void displayTime(String header, Time2 t)
35 {

36 System.out.printf("%s%n %san  %s%n",

37 header, t.toUniversalString(), t.toString());

38 }

39 } // end class Time2Test

Fig. 8.6 | Overloaded constructors used to initialize Time2 objects. (Part 2 of 3.)

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.




Constructed with:

tl: all default arguments
00:00:00
12:00:00 AM

t2: hour specified; default minute and second
02:00:00
2:00:00 AM

t3: hour and minute specified; default second
21:34:00
9:34:00 PM

t4: hour, minute and second specified
12:25:42
12:25:42 PM

t5: Time2 object t4 specified
12:25:42
12:25:42 PM

Exception while initializing t6: hour must be 0-23

Fig. 8.6 | Overloaded constructors used to initialize Time2 objects. (Part 3 of 3.)

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.




8.5 Time Class Case Study: Overloaded
Constructors (Cont.)

» A program can declare a so-called no-argument constructor
that is invoked without arguments.

» Such a constructor simply initializes the object as specified
in the constructor’s body.

» Using this in method-call syntax as the first statement in
a constructor’s body invokes another constructor of the
same class.

= Popular way to reuse initialization code provided by another of the
class’s constructors rather than defining similar code in the no-
argument constructor’s body.
» Once you declare any constructors in a class, the compiler

will not provide a default constructor.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.




8.5 Time Class Case Study: Overloaded
Constructors (Cont.)

Notes Regarding Class 77meZ2’s set and get Methods and
Constructors

» Methods can access a class’s private data directly without calling
the get methods.

» However, consider changing the representation of the time from
three 1nt values (requiring 12 bytes of memory) to a single 1nt
value representing the total number of seconds that have elapsed
since midnight (requiring only four bytes of memory).

= If we made such a change, only the bodies of the methods that access the
private data directly would need to change—in particular, the three-
argument constructor, the setT1me method and the individual set and
get methods for the hour, minute and second.

= There would be no need to modify the bodies of methods
touniversalStringor toString because they do not access the

data directly.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.



8.5 Time Class Case Study: Overloaded
Constructors (Cont.)

» Designing the class in this manner reduces the likelihood of
programming errors when altering the class’s
Implementation.

» Similarly, each T1me2 constructor could be written to
Include a copy of the appropriate statements from the three-

argument constructor.

= Doing so may be slightly more efficient, because the extra
constructor calls are eliminated.

= But, duplicating statements makes changing the class’s internal data
representation more difficult.

= Having the T1me2 constructors call the constructor with three
arguments requires any changes to the implementation of the three-
argument constructor be made only once.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.




8.6 Default and No-Argument
Constructors

» Every class must have at least one constructor.

» If you do not provide any constructors in a class’s declaration,
the compiler creates a default constructor that takes no
arguments when it’s invoked.

» The default constructor initializes the instance variables to the
Initial values specified in their declarations or to their default
values (zero for{)rimitive numeric types, false for boolean
values and nu 11 for references).

» Recall that if your class declares constructors, the compiler will
not create a default constructor.
= In this case, you must declare a no-argument constructor if default
Initialization is required.
= Like a default constructor, a no-argument constructor is invoked with
empty parentheses.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.




Error-Prevention Tip 8.2

Ensure that you do not include a return type in a con-
structor definition. Java allows other methods of the class
besides its constructors to have the same name as the class
and to specify return types. Such methods are not con-
structors and will not be called when an object of the
class is instantiated.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.




Common Programming Error 8.3

A compilation error occurs if a program attempts to ini-
tialize an object of a class by passing the wrong number
or types of arguments to the class’s constructor.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.




8.7 Notes on Sef and Get Methods

» Set methods are also commonly called mutator
methods, because they typically change an object’s
state—1.e., modify the values of instance variables.

» Get methods are also commonly called accessor
methods or query methods.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.




8.7 Notes on Set and Get Methods
(Cont.)

» It would seem that providing set and get capabilities Is
essentially the same as making a class’s instance variables

public.
= A publ11c instance variable can be read or written by any method
that has a reference to an object that contains that variable.

= |f an instance variable is declared private, a pub11ic get method
certainly allows other methods to access it, but the get method can
control how the client can access it.

= A pub11c set method can—and should—carefully scrutinize at-
tempts to modify the variable’s value to ensure valid values.
» Although set and get methods provide access to private
data, it is restricted by the implementation of the methods.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.




7 Software Engineering Observation 8.6

‘_._.; Classes should never have pub11 ¢ nonconstant data, but

declaring data public static final enables you to
make constants available to clients of your class. For
example, class Math offers public static final
constants Math. E and Math. PI.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.




Error-Prevention Tip 8.3

Do not provide pub1ic static final constants if the
constants’ values are likely to change in future versions of
your software.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.




8.7 Notes on Set and Get Methods
(Cont.)

» Validity Checking in Set Methods

» The benefits of data integrity do not follow
automatically simply because instance variables are
declared private—you must provide validity
checking.

» Predicate Methods

» Another common use for accessor methods is to test
whether a condition is true or false—such methods are
often called predicate methods.

= Example: ArrayList’s 1SEmpty method, which returns
true if the ArrayList is empty and false otherwise.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.




P,m, Software Engineering Observation 8.7

BE8X When appropriate, provide pub11ic methods to change
and retrieve the values of private instance variables.

This architecture helps hide the implementation of a class
from its clients, which improves program modifiability.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.




Error-Prevention Tip 8.4

Using set and get methods helps you create classes that
are easier to debug and maintain. If only one method
performs a particular task, such as setting an instance
variable in an object, it’s easier to debug and maintain
the class. If the instance variable is not being set properly,
the code that actually modifies instance variable is local-
ized to one set method. Your debugging efforts can be fo-
cused on that one method.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.




8.8 Composition

» A class can have references to objects of other classes
as members.

» This is called composition and is sometimes referred to
as a has-a relationship.

» Example: An AlarmClock object needs to know the
current time and the time when 1t’s supposed to sound

its alarm, so 1t’s reasonable to include two references to
Time objects inan AlarmClock object.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.




1 // Fig. 8.7: Date.java

2 // Date class declaration.

3

4 public class Date

5 {

6 private int month; // 1-12

7 private 1int day; // 1-31 based on month

8 private 1int year; // any year

9

10 private static final int[] daysPerMonth =

11 { o0, 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31 };
12

13 // constructor: confirm proper value for month and day given the year
14 public Date(int month, int day, int year)

15 {

16 // check if month in range

17 if (month <= 0 || month > 12)

18 throw new I1legalArgumentException(

19 "month (" + month + ") must be 1-12");

Fig. 8.7 | Date class declaration. (Part | of 3.)

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.




20

21 // check if day in range for month

22 if (day <= 0 ||

23 (day > daysPerMonth[month] && !(month == 2 && day == 29)))
24 throw new I1legalArgumentException("day (" + day +

25 ") out-of-range for the specified month and year");
26

27 // check for leap year if month is 2 and day is 29

28 if (month == 2 && day == 29 && !(year % 400 == 0 ||

29 (year % 4 == 0 && year % 100 !'= 0)))

30 throw new I1legalArgumentException("day (" + day +

31 ") out-of-range for the specified month and year™);
32

33 this.month = month;

34 this.day = day;

35 this.year = year;

36

37 System.out.printf(

38 "Date object constructor for date %s%n", this);

39 }

40

Fig. 8.7 | Date class declaration. (Part 2 of 3.)

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.




41 // return a String of the form month/day/year

42 public String toString()

43 {

44 return String.format("%d/%d/%d", month, day, year);
45 }

46 } // end class Date

Fig. 8.7 | Date class declaration. (Part 3 of 3.)

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.




1 // Fig. 8.8: Employee.java

2 // Employee class with references to other objects.

3

4 public class Employee

5 {

6 private String firstName;

7 private String lastName;

8 private Date birthDate;

9 private Date hireDate;

10

11 // constructor to initialize name, birth date and hire date
12 public Employee(String firstName, String lastName, Date birthDate,
13 Date hireDate)

14 {

15 this.firstName = firstName;

16 this.lastName = lastName;

17 this.birthDate = birthDate;

I8 this.hireDate = hireDate;

19 }
20

Fig. 8.8 | Employee class with references to other objects. (Part | of 2.)

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.




21 // convert Employee to String format

22 public String toString()

23 {

24 return String.format("%s, %s Hired: %s Birthday: %s",
25 TastName, firstName, hireDate, birthDate);

26 }

27 1} // end class Employee

Fig. 8.8 | Employee class with references to other objects. (Part 2 of 2.)

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.




1 // Fig. 8.9: EmployeeTest.java

2 // Composition demonstration.

3

4 public class EmployeeTest

5 {

6 public static void main(String[] args)
7 {

8 Date birth = new Date(7, 24, 1949);
9 Date hire = new Date(3, 12, 1988);
10 Employee employee = new Employee("Bob", "Blue", birth, hire);
11

12 System.out.println(employee);

13 }

14 1} // end class EmployeeTest

Date object constructor for date 7/24/1949
Date object constructor for date 3/12/1988
Blue, Bob Hired: 3/12/1988 Birthday: 7/24/1949

Fig. 8.9 | Composition demonstration.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.




8.9 enum Types

» The basic enum type defines a set of constants
represented as unique identifiers.

» Like classes, all enum types are reference types.

» An enum type Is declared with an enum declaration,
which Is a comma-separated list of enum constants

» The declaration may optionally include other

components of traditional classes, such as constructors,
fields and methods.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.




8.9 Enum Types (Cont.)

» Each enum declaration declares an enum class with
the following restrictions:
= enum constants are implicitly final.
= enum constants are implicitly static.

= Any attempt to create an object of an enum type with
operator new results in a compilation error.

» enum constants can be used anywhere constants can
be used, such as in the case labels of sw1tch
statements and to control enhanced for statements.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.




8.9 Enum Types (Cont.)

» enum declarations contain two parts—the enum constants and
the other members of the enum type.

» An enum constructor can specify any number of parameters
and can be overloaded.

» For every enum, the compiler generates the static method
values that returns an array of the enum’s constants.

» When an enum constant is converted to a String, the
constant’s identifier 1s used as the String representation.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.




I // Fig. 8.10: Book.java

2 // Declaring an enum type with a constructor and explicit instance fields
3 // and accessors for these fields

4

5 public enum Book

6 {

7 // declare constants of enum type

8 JHTP("Java How to Program", "2015"),

9 CHTP("C How to Program", "2013"),
10 IW3HTP("Internet & World Wide Web How to Program"”, "2012"),
11 CPPHTP("C++ How to Program", "2014"),
12 VBHTP("Visual Basic How to Program", "2014"),
13 CSHARPHTP("Visual C# How to Program™, "2014");
14
15 // instance fields
16 private final String title; // book title
17 private final String copyrightYear; // copyright vear
18

Fig. 8.10 | Declaring an enum type with a constructor and explicit instance fields
and accessors for these fields. (Part | of 2.)

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.




19 // enum constructor

20 Book(String title, String copyrightYear)
21 {

22 this.title = title;

23 this.copyrightYear = copyrightYear;
24 }

25

26 // accessor for field title

27 public String getTitle()

28 {

29 return title;

30 }

31

32 // accessor for field copyrightYear
33 public String getCopyrightYear()

34 {

35 return copyrightYear;

36 }

37 } // end enum Book

Fig. 8.10 | Declaring an enum type with a constructor and explicit instance fields
and accessors for these fields. (Part 2 of 2.)

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.




I // Fig. 8.11: EnumTest.java

2 // Testing enum type Book.

3 dimport java.util.EnumSet;

4

5 public class EnumTest

6 {

7 public static void main(String[] args)

8 {

9 System.out.printin("All books:");
10
11 // print all books in enum Book

12 for (Book book : Book.values())

13 System.out.printf("%-10s%-45s%s%n", book,

14 book.getTitle(), book.getCopyrightYear());
15

16 System.out.printf("%nDisplay a range of enum constants:%n");
17

18 // print first four books

19 for (Book book : EnumSet.range(Book.JHTP, Book.CPPHTP))
20 System.out.printf("%-10s%-45s%s%n", book,
21 book.getTitle(), book.getCopyrightYear());
22 }

23 1} // end class EnumTest

Fig. 8.11 | Testing enum type Book. (Part | of 2.)

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.




Al1l books:

JHTP Java How to Program 2015
CHTP C How to Program 2013
IW3HTP Internet & World Wide Web How to Program 2012
CPPHTP C++ How to Program 2014
VBHTP Visual Basic How to Program 2014
CSHARPHTP Visual C# How to Program 2014
Display a range of enum constants:

JHTP Java How to Program 2015
CHTP C How to Program 2013
IW3HTP Internet & World Wide Web How to Program 2012
CPPHTP C++ How to Program 2014

Fig. 8.11 | Testing enum type Book. (Part 2 of 2.)

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.




8.9 Enum Types (Cont.)

» Use the static method range of class EnumSet (declared
in package java.uti 1) to access a range of an enum’s

constants.

= Method range takes two parameters—the first and the last enum
constants in the range

= Returns an EnumSet that contains all the constants between these
two constants, inclusive.

» The enhanced for statement can be used with an
EnumSet just as it can with an array.

» Class EnumSet provides several other static methods.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.




Common Programming Error 8.4

In an enum declaration, it’s a syntax error to declare
enum constants after the enum type’s constructors, fields
and methods.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.




8.10 Garbage Collection

» Every object uses system resources, such as memory.
= Need a disciplined way to give resources back to the system when
they’re no longer needed; otherwise, “resource leaks” might occur.
» The JVM performs automatic garbage collection to reclaim
the memory occupied by objects that are no longer used.

= When there are no more references to an object, the object is eligible
to be collected.

= Collection typically occurs when the JVM executes its garbage
collector, which may not happen for a while, or even at all before a
program terminates.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.




8.10 Garbage Collection (Cont.)

» S0, memory leaks that are common in other languages
like C and C++ (because memory Is not automatically
reclaimed In those languages) are less likely in Java,
but some can still happen in subtle ways.

» Resource leaks other than memory leaks can also occur.
= An app may open a file on disk to modify its contents.

= If the app does not close the file, it must terminate before any
other app can use the file.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.




8.10 Garbage Collection (Cont.)

A Note about Class object’s finalize Method

» Every class in Java has the methods of class Object
(package java. lang), one of which is method finalize.

» You should never use method final1ize, because it can
cause many problems and there’s uncertainty as to whether
It will ever get called before a program terminates.

» The original intent of finalize was to allow the
garbage collector to perform termination housekeeping on
an object just before reclaiming the object’s memory.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.




8.10 Garbage Collection (Cont.)

» Now, 1t’s considered better practice for any class that uses
system resources—such as files on disk—to provide a
method that programmers can call to release resources
when they’re no longer needed in a program.

» AutoClosab e objects reduce the likelihood of resource
leaks when you use them with the try-with-resources
statement.

» As its name implies, an AutoClosab1e object is closed
automatically, once a try-with-resources statement finishes
using the object.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.




pgg Software Engineering Observation 8.8

8 Many Java API classes (e.g., class Scanner and classes
that read files from or write files to disk) provide close
or dispose methods that programmers can call to
release resources when they’re no longer needed in a
program.

s

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.




8.11 static Class Members

» In certain cases, only one copy of a particular variable
should be shared by all objects of a class.
= A static field—called a class variable—Is used in such cases.
» A static variable represents classwide
Information—-all objects of the class share the same

plece of data.

= The declaration of a stat1i c variable begins with the
keyword static.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.




«» Software Engineering Observation 8.9
Use a static variable when all objects of a class must
use the same copy of the variable.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.




<

8.11 static Class Members (Cont.)

» Static variables have class scope—they can be used in all of the class’s
methods.

» Can access a class’s pub11c static members through a reference to
any object of the class, or by qualifying the member name with the
class name and a dot (.), as in Math. random().

» private static class members can be accessed by client code only
through methods of the class.

» static class members are available as soon as the class is loaded into
memory at execution time.

» To access a pub11c stati1c member when no objects of the class
exist (and even when they do), prefix the class name and a dot (. ) to
the static member, asin Math.PI.

» To access a private static member when no objects of the class
exist, provide a pub11c static method and call it by qualifying its
name with the class name and a dot.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.




x» Software Engineering Observation 8.10
Static class variables and methods exist, and can be used,
even if no objects of that class have been instantiated.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.




<

8.11 static Class Members (Cont.)

» A static method cannot access a class’s instance
variables and instance methods, because a static
method can be called even when no objects of the class
have been Instantiated.

= For the same reason, the this reference cannot be used in a
static method.

= The th1is reference must refer to a specific object of the class,
and when a static method is called, there might not be any
objects of its class in memory.

» If a static variable is not initialized, the compiler
assigns it a default value—in this case 0, the default
value for type 1nt.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.



Common Programming Error 8.5

A compilation error occurs if a static method calls an
instance method in the same class by using only the meth-
od name. Similarly, a compilation error occurs if a
static method attempts to access an instance variable
in the same class by using only the variable name.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.




Common Programming Error 8.6
Referring to this in a static method is a compilation

error.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.




I // Fig. 8.12: Employee.java

2 // static variable used to maintain a count of the number of
3 // Employee objects in memory.

4

5 public class Employee

6 {

7 private static int count = 0; // number of Employees created
8 private String firstName;

9 private String lastName;
10
11 // initialize Employee, add 1 to static count and

12 // output String indicating that constructor was called
13 public Employee(String firstName, String lastName)

14 {

15 this.firstName = firstName;

16 this.lastName = lastName;

17

18 ++count; // increment static count of employees

19 System.out.printf("Employee constructor: %s %s; count = %d%n",
20 firstName, lastName, count);
21 }
22

Fig. 8.12 | static variable used to maintain a count of the number of Employee
objects in memory. (Part | of 2.)

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.




23 // get first name

24 public String getFirstName()
25 {

26 return firstName;

27 }

28

29 // get last name

30 public String getLastName()
31 {

32 return TastName;

33 }

34

35 // static method to get static count value
36 public static int getCount()
37 {

38 return count;

39 }

40 1} // end class Employee

Fig. 8.12 | static variable used to maintain a count of the number of Employee
objects in memory. (Part 2 of 2.)

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.




magy Good Programming Practice 8.1

| [nvoke every static method by using the class name
and a dot (.) to emphasize that the method being called
is a static method.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.




<

8.11 static Class Members (Cont.)

» String objects in Java are immutable—they cannot
be modified after they are created.

= Therefore, it’s safe to have many references to one String
object.

= This is not normally the case for objects of most other classes
In Java.

» If String objects are immutable, you might wonder
why are we able to use operators + and +=to
concatenate String objects.

» String-concatenation actually results in a new String

object containing the concatenated values—the original
String objects are not modified.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.



I // Fig. 8.13: EmployeeTest.java

2 // static member demonstration.

3

4 public class EmployeeTest

5 {

6 public static void main(String[] args)

7 {

8 // show that count is O before creating Employees

9 System.out.printf("Employees before instantiation: %d%n",
10 Employee.getCount());
11

12 // create two Employees; count should be 2

13 Employee el = new Employee("Susan”, "Baker");

14 Employee e2 = new Employee("Bob", "Blue™);

15

16 // show that count is 2 after creating two Employees

17 System.out.printf("%nEmployees after instantiation:%n");
18 System.out.printf("via el.getCount(): %d%n", el.getCount());
19 System.out.printf("via e2.getCount(): %d%n", e2.getCount());
20 System.out.printf("via Employee.getCount(): %d%n",
21 Employee.getCount());
22

Fig. 8.13 | static member demonstration. (Part | of 2.)

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.




23 // get names of Employees

24 System.out.printf("%nEmployee 1: %s %s%nEmployee 2: %s %s%n",
25 el.getFirstName(), el.getLastName(),

26 e2.getFirstName(), e2.getlLastName());

27 }

28 } // end class EmployeeTest

Employees before instantiation: 0
Employee constructor: Susan Baker; count = 1
Employee constructor: Bob Blue; count = 2

Employees after instantiation:
via el.getCount(): 2

via e2.getCount(): 2

via Employee.getCount(): 2

Employee 1: Susan Baker
Employee 2: Bob Blue

Fig. 8.13 | static member demonstration. (Part 2 of 2.)

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.




<

8.11 static Class Members (Cont.)

» In a typical app, the garbage collector might eventually
reclaim the memory for any objects that are eligible for
collection.

» The JVM does not guarantee when, or even whether,
the garbage collector will execute.

» When the garbage collector does execute, 1t’s possible
that no objects or only a subset of the eligible objects
will be collected.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.




8.12 static Import

» A static Import declaration enables you to import the
static members of a class or interface so you can
access them via their unqualified names In your class—
that Is, the class name and a dot (.) are not required
when using an imported static member.

» Two forms

= One that imports a particular static member (which is
known as single static import)

= One that imports all static members of a class (which is
known as static import on demand)

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.




8.12 static Import (Cont.)

» The following syntax imports a particular static member:
import static packageName .ClassName .staticMemberName ;

» Where packageName is the package of the class, ClassName is
the name of the class and staticMemberName is the name of the
static field or method.

» The following syntax imports all static members of a class:
import static packageName.ClassName. *;
» where packageName Iis the package of the class and ClassName
IS the name of the class.

= * indicates that all static members of the specified class should be
available for use in the class(es) declared in the file.

» static import declarations import only static class
members.

» Regular import statements should be used to specify the
classes used in a program.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.



Common Programming Error 8.7

A compilation error occurs if a program attempts to im-
port two or more classes’ static methods that have the
same signature or Static fields that have the same

namnie.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.




1 // Fig. 8.14: StaticImportTest.java

2 // Static import of Math class methods.

3 dimport static java.lang.Math.¥;

4

5 public class StaticImportTest

6 {

7 public static void main(String[] args)

8 {

9 System.out.printf("sqrt(900.0) = %.1f%n", sqrt(200.0));
10 System.out.printf("ceil(-9.8) = %.1f%n", ceil(-9.8));
11 System.out.printf("E = %f%n", E);

12 System.out.printf("PI = %f%n", PI);

13 }

14 1} // end class StaticImportTest

sqrt(900.0) = 30.0
ceil(-9.8) = -9.0
E =2.718282
PI = 3.141593

Fig. 8.14 | staticimport of Math class methods.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.




8.13 final Instance Variables

» The principle of least privilege iIs fundamental to good
software engineering.
= Code should be granted only the amount of privilege and access that
It needs to accomplish its designated task, but no more.

= Makes your programs more robust by preventing code from

accidentally (or maliciously) modifying variable values and calling
methods that should not be accessible.

» Keyword final specifies that a variable is not modifiable
(1.e., 1t’s a constant) and any attempt to modify it is an error.
private final int INCREMENT;

= Declares a final (constant) instance variable INCREMENT of type
int.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.




8.13 final Instance Variables (cont.)

» T1nal variables can be initialized when they are
declared or by each of the class’s constructors so that
each object of the class has a different value.

» If a class provides multiple constructors, every one
would be required to initialize each final variable.

» A T1nal variable cannot be modified by assignment
after 1t’s initialized.

» Ifa final variable is not initialized, a compilation
error occurs.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.




o Dec[czrmg an instance variable as final /aelps enforce
the principle of least privilege. If an instance variable
should not be modified, declare it to be final to prevent
modification. For example, in Fig. 8.8, the instance
variables firstName, T1astName, birthDate and
hireDate are never modified after theyre initialized,
so they should be declared final. We'll enforce this
practice in all programs going forward. You'll see
additional benefits of final in Chapter 23,

Concurrency.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.




Common Programming Error 8.8
Attempting to modify a final instance variable after
it’s initialized is a compilation error.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.




Error-Prevention Tip 8.5

Attempts to modify a final instance variable are
caught at compilation time rather than causing execu-
tion-time errors. It’s always preferable to get bugs out at

compilation time, if possible, rather than allow them to
slip through to execution time (where experience has

found that repair is often many times more expensive).

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.




’,‘g Software Engineering Observation 8.12
B8R A final field should also be declared static if it’s
initialized in its declaration to a value thats the same for

all objects of the class. After this initialization, its value
can never change. Therefore, we don’t need a separate
copy of the field for every object of the class. Making the
freld static enables all objects of the class to share the
final field.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.




8.14 Package Access

» If no access modifier is specified for a method or
variable when 1t’s declared 1n a class, the method or
variable Is considered to have package access.

» In a program uses multiple classes from the same
package, these classes can access each other’s package-
access members directly through references to objects
of the appropriate classes, or in the case of static
members through the class name.

» Package access Is rarely used.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.




I // Fig. 8.15: PackageDataTest.java

2 // Package-access members of a class are accessible by other classes
3 // in the same package.

4

5 public class PackageDataTest

6 {

7 public static void main(String[] args)

8 {

9 PackageData packageData = new PackageData();
10
11 // output String representation of packageData

12 System.out.printf("After instantiation:%n%s%n", packageData);
13

14 // change package access data in packageData object

15 packageData.number = 77;

16 packageData.string = "Goodbye";

17

18 // output String representation of packageData

19 System.out.printf("%nAfter changing values:%n%s%n", packageData);
20 }
21 } // end class PackageDataTest
22

Fig. 8.15 | Package-access members of a class are accessible by other classes in the
same package. (Part | of 3.)

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.




23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41

// class with package access instance variables
class PackageData

{

int number; // package-access instance variable
String string; // package-access instance variable

// constructor
public PackageData()
{
number = 0;
string "Hello";

}

// return PackageData object String representation
public String toString()
{

}

return String.format("'number: %d; string: %s", number, string);

} // end class PackageData

Fig. 8.15 | Package-access members of a class are accessible by other classes in the
same package. (Part 2 of 3.)

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.




After 1instantiation:
number: 0; string: Hello

After changing values:
humber: 77; string: Goodbye

Fig. 8.15 | Package-access members of a class are accessible by other classes in the
same package. (Part 3 of 3.)

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.




8.15 Using BigDecimal for Precise
Monetary Calculations

» In earlier chapters, we demonstrated monetary calculations
using values of type double.
= some doub1e values are represented approximately.

» Any application that requires precise floating-point

calculations—such as those in financial applications—should
instead use class Bigbecimal (from package
java.math).

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.




1 // Interest.java

2 // Compound-interest calculations with BigDecimal.

3 dimport java.math.BigDecimal;

4 import java.text.NumberFormat;

5

6 public class Interest

7 {

8 public static void main(String args[])

9 {

10 // initial principal amount before interest

11 BigDecimal principal = BigDecimal.valueOf(1000.0);

12 BigDecimal rate = BigDecimal.valueOf(0.05); // interest rate
13
14 // display headers
15 System.out.printf("%s%20s%n", "Year", "Amount on deposit");
16

Fig. 8.16 | Compound-interest calculations with BigDecimal. (Part | of 3.)

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.




17 // calculate amount on deposit for each of ten years

I8 for (int year = 1; year <= 10; year++)

19 {

20 // calculate new amount for specified year

21 BigDecimal amount =

22 principal.multiply(rate.add(BigDecimal.ONE).pow(year));
23

24 // display the year and the amount

25 System.out.printf("%4d%»20s%n", year,

26 NumberFormat.getCurrencylnstance().format(amount));
27 }

28 }

29 1} // end class Interest

Fig. 8.16 | Compound-interest calculations with BigDecimal. (Part 2 of 3.)

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.




<
]
s3]
_S

$1,050

$1,477

SQOUWwNOYUL B WN P

'—\

$1,551.
$1,628.

Amount on deposit
.00
$1,102.
$1,157.
$1,215.
$1,276.
$1,340.
$1,407.
.46

50
62
51
28
10
10

33
89

Fig. 8.16 | Compound-interest calculations with BigDecimal. (Part 3 of 3.)

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.




8.15 Using BigDecimal for Precise
Monetary Calculations (Cont.)

Interest Calculations Using B7gDbecimal

» Figure 8.16 reimplements the interest calculation example of
Fig. 5.6 using objects of class BigDecimal to perform the
calculations.

» We also introduce class NumberFormat (package
java. text) for formatting numeric values as locale-specific
Strings—for example, in the U.S. locale, the value 1234.56,
would be formatted as "'1,234.56", whereas in many
European locales it would be formatted as "1.234,56".

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.




8.15 Using BigDecimal for Precise

Monetary Calculations (Cont.)

Rounding Bigbecima I Values

>

In addition to precise calculations, B1gDecimal also gives you
control over how values are rounded—by default all calculations are
exact and no rounding occurs.

If you do not specify how to round BigDecimal values and a
given value cannot be represented exactly—such as the result of 1
divided by 3, which 1s 0.3333333...—an
ArithmeticException occurs.

You can specify the rounding mode for B1gDecimal by supplying
aMathContext object (package java.math) to class
BigDecimal’s constructor when you create a BigDecimal. You
may also provide aMathContext to various BigDecimal
methods that perform calculations.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.



8.15 Using BigDecimal for Precise
Monetary Calculations (Cont.)

» Class MathContext contains several pre-configured
MathContext objects that you can learn about at
= http://docs.oracle.com/javase/7/docs/api/java/
math/MathContext.html
» By default, each pre-configured MathContext uses so

called “bankers rounding” as explained for the
RoundingMode constant HALF_EVEN at:

= http://docs.oracle.com/javase/7/docs/api/java/
math/RoundingMode.html#HALF_EVEN

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.




8.15 Using BigDecimal for Precise ~
Monetary Calculations (Cont.)

Scaling B7gDecima I Values

» ABi1gDecimal’s scale is the number of digits to the right of its
decimal point. If you need a BigDecimal rounded to a specific
digit, you can call BigDecimal method setScale.

» For example, the following expression returns a Bigbecimal with
two digits to the right of the decimal point and using bankers
rounding:
= amount.setScale(2, RoundingMode.HALF_EVEN)

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.




8.16 (Optional) GUI and Graphics Case

Study: Using Objects with Graphics

>

The next example stores information about the displayed

shapes so that we can reproduce them each time the system
calls paintComponent.

We’ll make “smart” shape classes that can draw themselves
by using a Graph1i cs object.

Figure 8.18 declares class MyL1ne, which has all these
capabilities.

Method paintComponent in class DrawPanel iterates
through an array of MyL1ne objects.

= Each iteration calls the draw method of the current MyL1 ne object
and passes it the Graphics object for drawing on the panel.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.



1 // Fig. 8.17: MylLine.java

2 // MyLine class represents a line.

3 dimport java.awt.Color;

4 dimport java.awt.Graphics;

5

6 public class MylLine

7 {

8 private int x1; // x-coordinate of first endpoint
9 private int yl; // y-coordinate of first endpoint
10 private int x2; // x-coordinate of second endpoint
11 private int y2; // y-coordinate of second endpoint
12 private Color color; // color of this Tine

13

14 // constructor with input values

15 public MyLine(int x1, 1int yl, int x2, int y2, Color color)
16 {

17 this.x1l = x1;

18 this.yl = yl;

19 this.x2 = x2;
20 this.y2 = y2;
21 this.color = color;
22 }
23

Fig. 8.17 | MyLine class represents a line. (Part | of 2.)

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.




24 // Draw the Tine in the specified color

25 public void draw(Graphics g)
26 {

27 g.setColor(color);

28 g.drawLine(x1l, yl1, x2, y2);
29 }

30 } // end class MyLine

Fig. 8.17 | MyLine class represents a line. (Part 2 of 2.)

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.




1 // Fig. 8.18: DrawPanel.java

2 // Program that uses class MyLine

3 // to draw random lines.

4 dimport java.awt.Color;

5 dimport java.awt.Graphics;

6 import java.security.SecureRandom;

7 import javax.swing.JPanel;

8

9 public class DrawPanel extends JPanel

10 {

11 private SecureRandom randomNumbers = new SecureRandom() ;
12 private MyLine[] Tines; // array of lines

13

14 // constructor, creates a panel with random shapes
15 public DrawPanel ()

16 {

17 setBackground(Color.WHITE);

18

19 Tines = new MyLine[5 + randomNumbers.nextInt(5)];
20

Fig. 8.18 | Program that uses class MyLine to draw random lines. (Part | of 3.)

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.




21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38

// create Tlines
for (int count = 0; count < lines.length; count++)

{

// generate random coordinates

int x1 =
int yl
int x2
int y2

randomNumbers
randomNumbers
randomNumbers

.hextInt(300);
.hextInt(300);
.hextInt(300);
randomNumbers.

nextInt(300);

// generate a random color
Color color = new Color(randomNumbers.nextInt(256),
randomNumbers.nextInt(256), randomNumbers.nextInt(256));

// add the 1line to the list of lines to be displayed
lines[count] = new MyLine(x1l, yl, x2, y2, color);

Fig. 8.18 | Program that uses class MyL1ine to draw random lines. (Part 2 of 3.)

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.




39 // for each shape array, draw the individual shapes

40 public void paintComponent(Graphics g)
41 {

42 super.paintComponent(g);

43

44 // draw the lines

45 for (MyLine line : lines)

46 Tine.draw(g);

47 }

48 1} // end class DrawPanel

Fig. 8.18 | Program that uses class MyLine to draw random lines. (Part 3 of 3.)

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.




1 // Fig. 8.19: TestDraw.java

2 // Creating a JFrame to display a DrawPanel.
3 import javax.swing.JFrame;

4

5 public class TestDraw

6 {

7 public static void main(String[] args)

8 {

9 DrawPanel panel = new DrawPanel();

10 JFrame app = new JFrame();

11

12 app.setDefaul tCloseOperation(JFrame. EXIT_ON_CLOSE);
13 app.add(panel);

14 app.setSize(300, 300);

15 app.setVisible(true);

16 }

1T } // end class TestDraw

Fig. 8.19 | Creating a JFrame to display a DrawPanel. (Part | of 2.)

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.




E =N EoR (>

\

Fig. 8.19 | Creating a JFrame to display a DrawPanel. (Part 2 of 2.)

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.




	Slide 1: Chapter 8 Classes and Objects: A Deeper Look
	Slide 2
	Slide 3
	Slide 4: 8.1  Introduction 
	Slide 5: 8.2  Time Class Case Study
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13: 8.2  Time Class Case Study (Cont.)
	Slide 14: 8.2  Time Class Case Study (Cont.)
	Slide 15: 8.2  Time Class Case Study (Cont.)
	Slide 16: 8.2  Time Class Case Study (Cont.)
	Slide 17
	Slide 18
	Slide 19: 8.2  Time Class Case Study (Cont.)
	Slide 20: 8.3  Controlling Access to Members 
	Slide 21
	Slide 22
	Slide 23
	Slide 24: 8.4  Referring to the Current Object’s Members with the this Reference
	Slide 25: 8.4  Referring to the Current Object’s Members with the this Reference (Cont.)
	Slide 26
	Slide 27
	Slide 28
	Slide 29: 8.4  Referring to the Current Object’s Members with the this Reference (Cont.)
	Slide 30
	Slide 31
	Slide 32: 8.5  Time Class Case Study: Overloaded Constructors 
	Slide 33: 8.5  Time Class Case Study: Overloaded Constructors (Cont.)
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45: 8.5  Time Class Case Study: Overloaded Constructors (Cont.)
	Slide 46: 8.5  Time Class Case Study: Overloaded Constructors (Cont.)
	Slide 47: 8.5  Time Class Case Study: Overloaded Constructors (Cont.)
	Slide 48: 8.6  Default and No-Argument Constructors
	Slide 49
	Slide 50
	Slide 51: 8.7  Notes on Set and Get Methods
	Slide 52: 8.7  Notes on Set and Get Methods (Cont.)
	Slide 53
	Slide 54
	Slide 55: 8.7  Notes on Set and Get Methods (Cont.)
	Slide 56
	Slide 57
	Slide 58: 8.8  Composition
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65: 8.9  enum Types
	Slide 66: 8.9  Enum Types (Cont.)
	Slide 67: 8.9  Enum Types (Cont.)
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72: 8.9   Enum Types (Cont.)
	Slide 73
	Slide 74: 8.10  Garbage Collection
	Slide 75: 8.10  Garbage Collection (Cont.)
	Slide 76: 8.10  Garbage Collection (Cont.)
	Slide 77: 8.10  Garbage Collection (Cont.)
	Slide 78
	Slide 79: 8.11  static Class Members
	Slide 80
	Slide 81: 8.11  static Class Members (Cont.)
	Slide 82
	Slide 83: 8.11  static Class Members (Cont.)
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89: 8.11  static Class Members (Cont.)
	Slide 90
	Slide 91
	Slide 92: 8.11  static Class Members (Cont.)
	Slide 93: 8.12  static Import
	Slide 94: 8.12  static Import (Cont.)
	Slide 95
	Slide 96
	Slide 97: 8.13  final Instance Variables
	Slide 98: 8.13  final Instance Variables (cont.)
	Slide 99
	Slide 100
	Slide 101
	Slide 102
	Slide 103: 8.14  Package Access
	Slide 104
	Slide 105
	Slide 106
	Slide 107: 8.15  Using BigDecimal for Precise Monetary Calculations
	Slide 108
	Slide 109
	Slide 110
	Slide 111: 8.15  Using BigDecimal for Precise Monetary Calculations (Cont.)
	Slide 112: 8.15  Using BigDecimal for Precise Monetary Calculations (Cont.)
	Slide 113: 8.15  Using BigDecimal for Precise Monetary Calculations (Cont.)
	Slide 114: 8.15  Using BigDecimal for Precise Monetary Calculations (Cont.)
	Slide 115: 8.16  (Optional) GUI and Graphics Case Study: Using Objects with Graphics
	Slide 116
	Slide 117
	Slide 118
	Slide 119
	Slide 120
	Slide 121
	Slide 122

