
Java™ How to Program, 10/e

© Copyright 1992-2015 by Pearson Education, Inc. All Rights
Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

 Data structures
▪ Collections of related data items.

▪ Discussed in depth in Chapters 16–21.

 Array objects
▪ Data structures consisting of related data items of the same type.

▪ Make it convenient to process related groups of values.

▪ Remain the same length once they are created.

 Enhanced for statement for iterating over an array or
collection of data items.

 Variable-length argument lists
▪ Can create methods are with varying numbers of arguments.

 Process command-line arguments in method main.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

 Common array manipulations with static methods

of class Arrays from the java.util package.

 ArrayList collection

▪ Similar to arrays

▪ Dynamic resizing

 resize as necessary to accommodate more or fewer elements

 Java SE 8

▪ After reading Chapter 17, Java SE 8 Lambdas and Streams,

you’ll be able to reimplement many of Chapter 7’s examples in

a more concise and elegant manner, and in a way that makes

them easier to parallelize to improve performance on today’s

multi-core systems.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

 Array
▪ Group of variables (called elements) containing values of the same

type.
▪ Arrays are objects so they are reference types.
▪ Elements can be either primitive or reference types.

 Refer to a particular element in an array
▪ Use the element’s index.
▪ Array-access expression—the name of the array followed by the

index of the particular element in square brackets, [].

 The first element in every array has index zero.
 The highest index in an array is one less than the number of

elements in the array.
 Array names follow the same conventions as other variable

names.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

 An index must be a nonnegative integer.

▪ Can use an expression as an index.

 An indexed array name is an array-access expression.

▪ Can be used on the left side of an assignment to place a new

value into an array element.

 Every array object knows its own length and stores it in

a length instance variable.

▪ length cannot be changed because it’s a final variable.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

 Array objects

▪ Created with keyword new.

▪ You specify the element type and the number of elements in an

array-creation expression, which returns a reference that can be

stored in an array variable.

 Declaration and array-creation expression for an array

of 12 int elements
int[] c = new int[12];

 Can be performed in two steps as follows:
int[] c; // declare the array variable
c = new int[12]; // creates the array

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

 In a declaration, square brackets following a type

indicate that a variable will refer to an array (i.e., store

an array reference).

 When an array is created, each element of the array

receives a default value

▪ Zero for the numeric primitive-type elements, false for

boolean elements and null for references.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

 When the element type and the square brackets are

combined at the beginning of the declaration, all the

identifiers in the declaration are array variables.

▪ For readability, declare only one variable per declaration.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

 Every element of a primitive-type array contains a

value of the array’s declared element type.

▪ Every element of an int array is an int value.

 Every element of a reference-type array is a reference

to an object of the array’s declared element type.

▪ Every element of a String array is a reference to a String
object.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

 This section presents several examples that demonstrate

declaring arrays, creating arrays, initializing arrays and

manipulating array elements.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

 Fig. 7.2 uses keyword new to create an array of 10

int elements, which are initially zero (the default

initial value for int variables).

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

 Array initializer

▪ A comma-separated list of expressions (called an initializer

list) enclosed in braces.

▪ Used to create an array and initialize its elements.

▪ Array length is determined by the number of elements in the

initializer list.

int[] n = {10, 20, 30, 40, 50};

 Creates a five-element array with index values 0–4.

 Compiler counts the number of initializers in the list to

determine the size of the array

▪ Sets up the appropriate new operation “behind the scenes.”

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

 The application in Fig. 7.4 creates a 10-element array

and assigns to each element one of the even integers

from 2 to 20 (2, 4, 6, …, 20).

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

 final variables must be initialized before they are

used and cannot be modified thereafter.

 An attempt to modify a final variable after it’s

initialized causes a compilation error
 cannot assign a value to final variable
variableName

 An attempt to access the value of a final variable

before it’s initialized causes a compilation error
 variable variableName might not have been
initialized

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

 Figure 7.5 sums the values contained in a 10-element

integer array.

 Often, the elements of an array represent a series of

values to be used in a calculation.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

 Many programs present data to users in a graphical manner.

 Numeric values are often displayed as bars in a bar chart.

▪ Longer bars represent proportionally larger numeric values.

 A simple way to display numeric data is with a bar chart

that shows each numeric value as a bar of asterisks (*).

 Format specifier %02d indicates that an int value should

be formatted as a field of two digits.

▪ The 0 flag displays a leading 0 for values with fewer digits than the

field width (2).

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

 Sometimes, programs use counter variables to summarize
data, such as the results of a survey.

 Fig. 6.7 used separate counters in a die-rolling program to
track the number of occurrences of each side of a six-sided
die as the program rolled the die 6,000,000 times.

 Fig. 7.7 shows an array version of this application.
▪ Line 14 of this program replaces lines 22–44 of Fig. 6.7.

 Array frequency must be large enough to store six
counters.
▪ We use a seven-element array in which we ignore frequency[0]
▪ More logical to have the face value 1 increment frequency[1]

than frequency[0].

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

 Figure 7.8 uses arrays to summarize the results of data
collected in a survey:
▪ Twenty students were asked to rate on a scale of 1 to 5 the

quality of the food in the student cafeteria, with 1 being
“awful” and 5 being “excellent.” Place the 20 responses in an
integer array and determine the frequency of each rating.

 Array responses is a 20-element int array of the
survey responses.

 6-element array frequency counts the number of
occurrences of each response (1 to 5).
▪ Each element is initialized to zero by default.

▪ We ignore frequency[0].

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

 If a piece of data in the responses array is an invalid

value, such as 14, the program attempts to add 1 to

frequency[14], which is outside the bounds of the

array.

▪ Java doesn’t allow this.

▪ JVM checks array indices to ensure that they are greater than

or equal to 0 and less than the length of the array—this is

called bounds checking.

▪ If a program uses an invalid index, Java generates a so-called

exception to indicate that an error occurred in the program at

execution time.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

 An exception indicates a problem that occurs while a

program executes.

 The name “exception” suggests that the problem occurs

infrequently—if the “rule” is that a statement normally

executes correctly, then the problem represents the

“exception to the rule.”

 Exception handling helps you create fault-tolerant

programs that can resolve (or handle) exceptions.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

 When the JVM or a method detects a problem, such as

an invalid array index or an invalid method argument, it

throws an exception—that is, an exception occurs.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

 To handle an exception, place any code that might

throw an exception in a try statement.

 The try block contains the code that might throw an

exception.

 The catch block contains the code that handles the

exception if one occurs. You can have many catch
blocks to handle different types of exceptions that

might be thrown in the corresponding try block.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

 When the program encounters the invalid value 14 in the

responses array, it attempts to add 1 to frequency[14], which

is outside the bounds of the array—the frequency array has

only six elements (with indexes 0–5).

 Because array bounds checking is performed at execution

time, the JVM generates an exception—specifically line 19

throws an ArrayIndexOutOfBoundsException to

notify the program of this problem.

 At this point the try block terminates and the catch block

begins executing—if you declared any local variables in the

try block, they’re now out of scope.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

 The catch block declares an exception parameter (e)

of type (IndexOutOfRangeException).

 Inside the catch block, you can use the parameter’s

identifier to interact with a caught exception object.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

 The exception object’s toString method returns the

error message that’s implicitly stored in the exception

object.

 The exception is considered handled when program

control reaches the closing right brace of the catch
block.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

 Examples thus far used arrays containing elements of

primitive types.

 Elements of an array can be either primitive types or

reference types.

 Next example uses an array of reference-type

elements—objects representing playing cards—to

develop a class that simulates card shuffling and

dealing.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

 Class Card (Fig. 7.9) contains two String instance

variables—face and suit—that are used to store

references to the face and suit names for a specific

Card.

 Method toString creates a String consisting of

the face of the card, " of " and the suit of the

card.

▪ Can invoke explicitly to obtain a string representation of a

Card.

▪ Called implicitly when the object is used where a String is

expected.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

 Class DeckOfCards (Fig. 7.10) declares as an
instance variable a Card array named deck.

 Deck’s elements are null by default
▪ Constructor fills the deck array with Card objects.

 Method shuffle shuffles the Cards in the deck.
▪ Loops through all 52 Cards (array indices 0 to 51).

▪ Each Card swapped with a randomly chosen other card in the
deck.

 Method dealCard deals one Card in the array.
▪ currentCard indicates the index of the next Card to be

dealt

▪ Returns null if there are no more cards to deal

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

 Figure 7.11 demonstrates class DeckOfCards.

 When a Card is output as a String, the Card’s

toString method is implicitly invoked.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

Preventing NullPointerExceptions

 In Fig. 7.10, we created a deck array of 52 Card
references—each element of every reference-type array

created with new is default initialized to null.

 Reference-type variables which are fields of a class are

also initialized to null by default.

 A NullPointerException occurs when you try to

call a method on a null reference.

 In industrial-strength code, ensuring that references are

not null before you use them to call methods prevents

NullPointerExceptions.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

 Enhanced for statement
▪ Iterates through the elements of an array without using a counter.
▪ Avoids the possibility of “stepping outside” the array.
▪ Also works with the Java API’s prebuilt collections (see

Section 7.14).

 Syntax:
for (parameter : arrayName)

statement

where parameter has a type and an identifier and
arrayName is the array through which to iterate.

 Parameter type must be consistent with the array’s element
type.

 The enhanced for statement simplifies the code for
iterating through an array.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

 The enhanced for statement can be used only to obtain

array elements

▪ It cannot be used to modify elements.

▪ To modify elements, use the traditional counter-controlled for
statement.

 Can be used in place of the counter-controlled for
statement if you don’t need to access the index of the

element.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

Java SE 8

 The for statement and the enhanced for statement

each iterate sequentially from a starting value to an

ending value.

 In Chapter 17, Java SE 8 Lambdas and Streams, you’ll

learn about class Stream and its forEach method.

 Working together, these provide an elegant, more

concise and less error prone means for iterating through

collections so that some of the iterations may occur in

parallel with others to achieve better multi-core system

performance.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

 To pass an array argument to a method, specify the name of
the array without any brackets.
▪ Since every array object “knows” its own length, we need not pass

the array length as an additional argument.

 To receive an array, the method’s parameter list must
specify an array parameter.

 When an argument to a method is an entire array or an
individual array element of a reference type, the called
method receives a copy of the reference.

 When an argument to a method is an individual array
element of a primitive type, the called method receives a
copy of the element’s value.
▪ Such primitive values are called scalars or scalar quantities.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

 Pass-by-value (sometimes called call-by-value)

▪ A copy of the argument’s value is passed to the called method.

▪ The called method works exclusively with the copy.

▪ Changes to the called method’s copy do not affect the original

variable’s value in the caller.

 Pass-by-reference (sometimes called call-by-reference)

▪ The called method can access the argument’s value in the

caller directly and modify that data, if necessary.

▪ Improves performance by eliminating the need to copy

possibly large amounts of data.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

 All arguments in Java are passed by value.
 A method call can pass two types of values to a method

▪ Copies of primitive values
▪ Copies of references to objects

 Objects cannot be passed to methods.
 If a method modifies a reference-type parameter so that it refers

to another object, only the parameter refers to the new object
▪ The reference stored in the caller’s variable still refers to the original

object.

 Although an object’s reference is passed by value, a method can
still interact with the referenced object by calling its public
methods using the copy of the object’s reference.
▪ The parameter in the called method and the argument in the calling

method refer to the same object in memory.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

 We now present the first part of our case study on developing

a GradeBook class that instructors can use to maintain

students’ grades on an exam and display a grade report that

includes the grades, class average, lowest grade, highest grade

and a grade distribution bar chart.

 The version of class GradeBook presented in this section

stores the grades for one exam in a one-dimensional array.

 In Section 7.12, we present a version of class GradeBook
that uses a two-dimensional array to store students’ grades for

several exams.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

 The application of Fig. 7.15 creates an object of class

GradeBook (Fig. 7.14) using the int array

grades-Array.

 Lines 12–13 pass a course name and gradesArray
to the GradeBook constructor.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

Java SE 8

 In Chapter 17, Java SE 8 Lambdas and Streams, the

example of Fig. 17.5 uses stream methods min, max,

count and average to process the elements of an

int array elegantly and concisely without having to

write repetition statements.

 In Chapter 23, Concurrency, the example of Fig. 23.29

uses stream method summaryStatistics to

perform all of these operations in one method call.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

 Two-dimensional arrays are often used to represent tables
of values with data arranged in rows and columns.

 Identify each table element with two indices.
▪ By convention, the first identifies the element’s row and the second

its column.

 Multidimensional arrays can have more than two
dimensions.

 Java does not support multidimensional arrays directly
▪ Allows you to specify one-dimensional arrays whose elements are

also one-dimensional arrays, thus achieving the same effect.

 In general, an array with m rows and n columns is called an
m-by-n array.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

 Multidimensional arrays can be initialized with array
initializers in declarations.

 A two-dimensional array b with two rows and two
columns could be declared and initialized with nested
array initializers as follows:

int[][] b = {{1, 2}, {3, 4}};

▪ The initial values are grouped by row in braces.

▪ The number of nested array initializers (represented by sets of
braces within the outer braces) determines the number of rows.

▪ The number of initializer values in the nested array initializer
for a row determines the number of columns in that row.

▪ Rows can have different lengths.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

 The lengths of the rows in a two-dimensional array are

not required to be the same:
int[][] b = {{1, 2}, {3, 4, 5}};

▪ Each element of b is a reference to a one-dimensional array of

int variables.

▪ The int array for row 0 is a one-dimensional array with two

elements (1 and 2).

▪ The int array for row 1 is a one-dimensional array with three

elements (3, 4 and 5).

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

 A multidimensional array with the same number of columns in
every row can be created with an array-creation expression.

int[][] b = new int[3][4];

▪ 3 rows and 4 columns.

 The elements of a multidimensional array are initialized when
the array object is created.

 A multidimensional array in which each row has a different
number of columns can be created as follows:

int[][] b = new int[2][]; // create 2 rows
b[0] = new int[5]; // create 5 columns for row 0
b[1] = new int[3]; // create 3 columns for row 1

▪ Creates a two-dimensional array with two rows.

▪ Row 0 has five columns, and row 1 has three columns.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

 Figure 7.17 demonstrates initializing two-dimensional

arrays with array initializers and using nested for
loops to traverse the arrays.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

 In most semesters, students take several exams.

 Figure 7.18 contains a version of class GradeBook
that uses a two-dimensional array grades to store the

grades of several students on multiple exams.

▪ Each row represents a student’s grades for the entire course.

▪ Each column represents the grades of all the students who took

a particular exam.

 In this example, we use a ten-by-three array containing

ten students’ grades on three exams.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

 Variable-length argument lists

▪ Can be used to create methods that receive an unspecified

number of arguments.

▪ Parameter type followed by an ellipsis (...) indicates that the

method receives a variable number of arguments of that

particular type.

▪ The ellipsis can occur only once at the end of a parameter list.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

 It’s possible to pass arguments from the command line

to an application via method main’s String[]
parameter, which receives an array of Strings.

 Command-line arguments that appear after the class

name in the java command are received by main in

the String array args.

 The number of command-line arguments is obtained by

accessing the array’s length attribute.

 Command-line arguments are separated by white space,

not commas.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

 Arrays class
▪ Provides static methods for common array manipulations.

 Methods include
▪ sort for sorting an array (ascending order by default)

▪ binarySearch for searching a sorted array

▪ equals for comparing arrays

▪ fill for placing values into an array.

 Methods are overloaded for primitive-type arrays and
for arrays of objects.

 System class static arraycopy method
▪ Copies contents of one array into another.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

Java SE 8—Class Arrays Method parallelSort

 The Arrays class now has several new “parallel”
methods that take advantage of multi-core hardware.

 Arrays method parallelSort can sort large
arrays more efficiently on multi-core systems.

 In Section 23.12, we create a very large array and use
features of the Java SE 8 Date/Time API to compare
how long it takes to sort the array with methods sort
and parallelSort.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

 Java API provides several predefined data structures, called
collections, used to store groups of related objects in memory.
▪ Each provides efficient methods that organize, store and retrieve your

data without requiring knowledge of how the data is being stored.

▪ Reduce application-development time.

 Arrays do not automatically change their size at execution time
to accommodate additional elements.

 ArrayList<T> (package java.util) can dynamically change its
size to accommodate more elements.
▪ T is a placeholder for the type of element stored in the collection.

 Classes with this kind of placeholder that can be used with any
type are called generic classes.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

 Figure 7.24 demonstrates some common ArrayList
capabilities.

 An ArrayList’s capacity indicates how many items

it can hold without growing.

 When the ArrayList grows, it must create a larger

internal array and copy each element to the new array.

▪ This is a time-consuming operation. It would be inefficient for

the ArrayList to grow each time an element is added.

▪ An ArrayList grows only when an element is added and the

number of elements is equal to the capacity—i.e., there is no

space for the new element.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

 Method add adds elements to the ArrayList.
▪ One-argument version appends its argument to the end of the
ArrayList.

▪ Two-argument version inserts a new element at the specified
position.

▪ Collection indices start at zero.

 Method size returns the number of elements in the
ArrayList.

 Method get obtains the element at a specified index.
 Method remove deletes an element with a specific value.

▪ An overloaded version of the method removes the element at the
specified index.

 Method contains determines if an item is in the
ArrayList.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

Java SE 7—Diamond (<>) Notation for Creating an Object
of a Generic Class

 Consider line 10 of Fig. 7.24:
 ArrayList<String> items = new ArrayList<String>();

 Notice that ArrayList<String> appears in the variable
declaration and in the class instance creation expression.
Java SE 7 introduced the diamond (<>) notation to simplify
statements like this. Using <> in a class instance creation
expression for an object of a generic class tells the compiler
to determine what belongs in the angle brackets.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

 In Java SE 7 and higher, the preceding statement can be
written as:

 ArrayList<String> items = new ArrayList<>();

 When the compiler encounters the diamond (<>) in the
class instance creation expression, it uses the declaration of
variable items to determine the ArrayList’s element type
(String)—this is known as inferring the element type.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

 Drawing arcs in Java is similar to drawing ovals—an arc is
simply a section of an oval.

 Graphics method fillArc draws a filled arc.
 Method fillArc requires six parameters.

▪ The first four represent the bounding rectangle in which the arc will be
drawn.

▪ The fifth parameter is the starting angle on the oval, and the sixth
specifies the sweep, or the amount of arc to cover.

▪ Starting angle and sweep are measured in degrees, with zero degrees
pointing right.

▪ A positive sweep draws the arc counterclockwise.

 Method drawArc requires the same parameters as fillArc, but
draws the edge of the arc rather than filling it.

 Method setBackground changes the background color of a GUI
component.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

	Slide 1: Chapter 7 Arrays and ArrayLists
	Slide 2
	Slide 3
	Slide 4
	Slide 5: 7.1 Introduction
	Slide 6: 7.1 Introduction (Cont.)
	Slide 7: 7.2 Arrays
	Slide 8
	Slide 9: 7.2 Arrays (Cont.)
	Slide 10
	Slide 11: 7.3 Declaring and Creating Arrays
	Slide 12: 7.3 Declaring and Creating Arrays (Cont.)
	Slide 13
	Slide 14: 7.3 Declaring and Creating Arrays (Cont.)
	Slide 15
	Slide 16
	Slide 17: 7.3 Declaring and Creating Arrays (Cont.)
	Slide 18: 7.4 Examples Using Arrays
	Slide 19: 7.4.1 Creating and Initializing an Array
	Slide 20
	Slide 21
	Slide 22: 7.4.2 Using an Array Initializer
	Slide 23
	Slide 24
	Slide 25: 7.4.3 Calculating the Values to Store in an Array
	Slide 26
	Slide 27
	Slide 28: 7.4 Examples Using Arrays (Cont.)
	Slide 29
	Slide 30
	Slide 31
	Slide 32: 7.4.4 Summing the Elements of an Array
	Slide 33
	Slide 34: 7.4.5 Using Bar Charts to Display Array Data Graphically
	Slide 35
	Slide 36
	Slide 37: 7.4.6 Using the Elements of an Array as Counters
	Slide 38
	Slide 39
	Slide 40: 7.4.7 Using Arrays to Analyze Survey Results
	Slide 41
	Slide 42
	Slide 43
	Slide 44: 7.4.7 Using Arrays to Analyze Survey Results (Cont.)
	Slide 45: 7.5 Exception Handling: Processing the Incorrect Response
	Slide 46: 7.5 Exception Handling: Processing the Incorrect Response (Cont.)
	Slide 47: 7.5.1 The try Statement
	Slide 48: 7.5.2 Executing the catch Block
	Slide 49: 7.5.2 Executing the catch Block (Cont.)
	Slide 50
	Slide 51
	Slide 52: 7.5.3 toString Method of the Exception Parameter
	Slide 53: 7.6 Case Study: Card Shuffling and Dealing Simulation
	Slide 54: 7.6 Case Study: Card Shuffling and Dealing Simulation (Cont.)
	Slide 55
	Slide 56: 7.6 Case Study: Card Shuffling and Dealing Simulation (Cont.)
	Slide 57
	Slide 58
	Slide 59
	Slide 60: 7.6 Case Study: Card Shuffling and Dealing Simulation (Cont.)
	Slide 61
	Slide 62
	Slide 63: 7.6 Case Study: Card Shuffling and Dealing Simulation (Cont.)
	Slide 64: 7.7 Enhanced for Statement
	Slide 65
	Slide 66: 7.7 Enhanced for Statement (Cont.)
	Slide 67
	Slide 68: 7.7 Enhanced for Statement (Cont.)
	Slide 69: 7.8 Passing Arrays to Methods
	Slide 70
	Slide 71
	Slide 72
	Slide 73: 7.9 Pass-By-Value vs. Pass-By-Reference
	Slide 74: 7.9 Pass-By-Value vs. Pass-By-Reference (Cont.)
	Slide 75
	Slide 76: 7.10 Case Study: Class GradeBook Using an Array to Store Grades
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84: 7.10 Case Study: Class GradeBook Using an Array to Store Grades (Cont.)
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89: 7.10 Case Study: Class GradeBook Using an Array to Store Grades (Cont.)
	Slide 90: 7.11 Multidimensional Arrays
	Slide 91
	Slide 92: 7.11 Multidimensional Arrays (Cont.)
	Slide 93: 7.11 Multidimensional Arrays (Cont.)
	Slide 94: 7.11 Multidimensional Arrays (Cont.)
	Slide 95: 7.11 Multidimensional Arrays (Cont.)
	Slide 96
	Slide 97
	Slide 98: 7.12 Case Study: Class GradeBook Using a Two-Dimensional Array
	Slide 99
	Slide 100
	Slide 101
	Slide 102
	Slide 103
	Slide 104
	Slide 105
	Slide 106
	Slide 107
	Slide 108
	Slide 109
	Slide 110
	Slide 111: 7.13 Variable-Length Argument Lists
	Slide 112
	Slide 113
	Slide 114
	Slide 115: 7.14 Using Command-Line Arguments
	Slide 116
	Slide 117
	Slide 118
	Slide 119: 7.15 Class Arrays
	Slide 120
	Slide 121
	Slide 122
	Slide 123
	Slide 124
	Slide 125
	Slide 126: 7.15 Class Arrays
	Slide 127: 7.16 Introduction to Collections and Class ArrayList
	Slide 128
	Slide 129: 7.16 Introduction to Collections and Class ArrayList (Cont.)
	Slide 130: 7.16 Introduction to Collections and Class ArrayList (Cont.)
	Slide 131
	Slide 132
	Slide 133
	Slide 134
	Slide 135
	Slide 136
	Slide 137
	Slide 138: 7.16 Introduction to Collections and Class ArrayList (Cont.)
	Slide 139: 7.16 Introduction to Collections and Class ArrayList (Cont.)
	Slide 140: 7.17 (Optional) GUI and Graphics Case Study: Drawing Arcs

