Chapter 7
Arrays and ArrayLists

Java™ How to Program, 10/e

© Copyright 1992-2015 by Pearson Education, Inc. All Rights
Reserved.

OBJECTIVES
In this chapter you'll:

m Learn what arrays are.

m Use arrays to store data in and retrieve data from lists and tables of values.
m Declare arrays, initialize arrays and refer to individual elements of arrays.

m Iterate through arrays with the enhanced for statement.

m Pass arrays to methods.

m Declare and manipulate multidimensional arrays.

m Use variable-length argument lists.

m Read command-line arguments into a program.

m Build an object-oriented instructor gradebook class.

m Perform common array manipulations with the methods of class Arrays.

m Use class ArrayList to manipulate a dynamically resizable arraylike data structure.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

7.1 Introduction
7.2 Arrays
7.3 Declaring and Creating Arrays

7.4 Examples Using Arrays

74.1 Creating and Initializing an Array

742 Using an Array Initializer

743 Calculating the Values to Store in an Array

744 Summing the Elements of an Array

745 Using Bar Charts to Display Array Data Graphically
746 Using the Elements of an Array as Counters

74.7 Using Arrays to Analyze Survey Results

7.5 Exception Handling: Processing the Incorrect Response

75.1 The try Statement
7.5.2 Executing the catch Block
753 toString Method of the Exception Parameter

7.6 Case Study: Card Shuffling and Dealing Simulation
7.7 Enhanced for Statement

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

NN SN NN NN NN

7.8
7.9
.10
A1
A2
A3
14
A5
16
A7
.18

Passing Arrays to Methods

Pass-By-Value vs. Pass-By-Reference

Case Study: Class GradeBook Using an Array to Store Grades
Multidimensional Arrays

Case Study: Class GradeBook Using a Two-Dimensional Array
Variable-Length Argument Lists

Using Command-Line Arguments

Class Arrays

Introduction to Collections and Class ArrayList

(Optional) GUI and Graphics Case Study: Drawing Arcs
Wrap-Up

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

7.1 Introduction

» Data structures
= Collections of related data items.
= Discussed in depth in Chapters 16-21.

» Array objects
= Data structures consisting of related data items of the same type.

= Make it convenient to process related groups of values.
= Remain the same length once they are created.

» Enhanced for statement for iterating over an array or
collection of data items.

» Variable-length argument lists
= Can create methods are with varying numbers of arguments.

» Process command-line arguments in method main.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

7.1 Introduction (Cont.)

» Common array manipulations with static methods
of class Arrays from the Java.uti 1 package.

» ArrayList collection
= Similar to arrays
= Dynamic resizing
* resize as necessary to accommodate more or fewer elements

» Java SE 8

= After reading Chapter 17, Java SE 8 Lambdas and Streams,
you’ll be able to reimplement many of Chapter 7’s examples in
a more concise and elegant manner, and in a way that makes

them easier to parallelize to improve performance on today’s
multi-core systems.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

7.2 Arrays

» Array
= Group of variables (called elements) containing values of the same

type.
= Arrays are objects so they are reference types.

= Elements can be either primitive or reference types.
» Refer to a particular element In an array

= Use the element’s Index.

= Array-access expression—the name of the array followed by the
Index of the particular element in square brackets, [].

» The first element in every array has index zero.

» The highest index in an array is one less than the number of
elements In the array.

» Array names follow the same conventions as other variable
names.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

Name of array (¢)——— " CE
c

cl
cl
cl
cl
cl
cl

O 0 ~N 6O v AW N = O
- L L L L L L L L L] L L

Index (or subscript) of the cl 10
element in array c c[11

|]

-45

72
1543
-89

62

6453
78

Fig. 7.1 | A 12-element array.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

7.2 Arrays (Cont.)

» An index must be a nonnegative integer.
= Can use an expression as an index.

» An Indexed array name IS an array-access expression.

= Can be used on the left side of an assignment to place a new
value into an array element.

» Every array object knows its own length and stores it In
a length Instance variable.
= Tength cannot be changed because it’s a T1nal variable.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

Common Programming Error 7.1

An index must be an int value or a value of a type that
can be promoted to int—namely, byte, short or
char, but not Tong; otherwise, a compilation error oc-

CUrs.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

7.3 Declaring and Creating Arrays

» Array objects

= Created with keyword new.
= You specify the element type and the number of elements in an
array-creation expression, which returns a reference that can be

stored in an array variable.
» Declaration and array-creation expression for an array
of 12 1nt elements
int[] c new 1nt[12];

» Can be performed in two steps as follows:

int[] c; // declare the array variable
c = new 1nt[12]; // creates the array

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

7.3 Declaring and Creating Arrays
(Cont.)

» In a declaration, square brackets following a type
Indicate that a variable will refer to an array (i.e., store
an array reference).

» When an array Is created, each element of the array

receives a default value

= Zero for the numeric primitive-type elements, false for
boolean elements and nul 1 for references.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

Common Programming Error 7.2

In an array declaration, specifying the number of ele-
ments in the square brackets of the declaration (e.g.,
int[12] c;) is a syntax ervor.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

7.3 Declaring and Creating Arrays
(Cont.)

» When the element type and the square brackets are
combined at the beginning of the declaration, all the
Identifiers in the declaration are array variables.
= For readability, declare only one variable per declaration.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

m&gy Good Programming Practice 7.1

For readability, declare only one variable per declara-
tion. Keep each declaration on a separate line, and in-
clude a comment describing the variable being declared.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

Common Programming Error 7.3

Declaring multiple array variables in a single declara-
tion can lead to subtle errors. Consider the declaration
int[] a, b, c;. Ifa, band c should be declared as ar-
ray variables, then this declaration is correct—placing
square brackets directly following the type indicates that
all the identifiers in the declaration are array variables.
However, if only a is intended to be an array variable,
and b and ¢ are intended to be individual int vari-
ables, then this declaration is incorrect—the declaration
int al], b, c; would achieve the desired result.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

7.3 Declaring and Creating Arrays
(Cont.)

» Every element of a primitive-type array contains a
value of the array’s declared element type.
= Every element of an 1nt array is an 1nt value.

» Every element of a reference-type array Is a reference
to an object of the array’s declared element type.

= Every element of a String array is a reference to a String
object.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

7.4 Examples Using Arrays

» This section presents several examples that demonstrate
declaring arrays, creating arrays, initializing arrays and
manipulating array elements.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

7.4.1 Creating and Initializing an Array

» Fig. 7.2 uses keyword new to create an array of 10
1nt elements, which are initially zero (the default
initial value for 1nt variables).

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

OoOoO~NONBNDE WN=—

17

// Fig. 7.2: InitArray.java
// Initializing the elements of an array to default values of zero.

public class InitArray

{

public static void main(String[] args)

{
// declare variable array and initialize it with an array object
int[] array = new int[10]; // create the array object
System.out.printf("%s%8s%n", "Index", "Value"); // column headings
// output each array element's value
for (int counter = 0; counter < array.length; counter++)

System.out.printf("%5d%8d%n", counter, arrayl[counter]);
}

} // end class InitArray

Fig. 7.2 | Initializing the elements of an array to default values of zero. (Part | of 2.)

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

-
=
o
(]
X
<
W
—
c
M

wooNOYTUT A WNREO
OCOOOCOOOO0OO0O

Fig. 7.2 | Initializing the elements of an array to default values of zero. (Part 2 of 2.)

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

7.4.2 Using an Array Initializer

» Array initializer

= A comma-separated list of expressions (called an initializer
list) enclosed In braces.

= Used to create an array and initialize its elements.

= Array length is determined by the number of elements in the
Initializer list.

int[] n = {10, 20, 30, 40, 50}%};

- Creates a five-element array with index values 0—4.

» Compiler counts the number of initializers in the list to
determine the size of the array
= Sets up the appropriate hew operation “behind the scenes.”

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

OoOoO~NONBNDE WN=—

17

// Fig. 7.3: InitArray.java
// Initializing the elements of an array with an array initializer.

public class InitArray

{

public static void main(String[] args)

{

// initializer 1ist specifies the initial value for each element
int[] array = { 32, 27, 64, 18, 95, 14, 90, 70, 60, 37 };
System.out.printf("%s%8s%n", "Index", "Value"); // column headings
// output each array element's value

for (int counter = 0; counter < array.length; counter++)

System.out.printf("%5d%8d%n", counter, arrayl[counter]);

} // end class InitArray

Fig. 7.3 | Initializing the elements of an array with an array initializer. (Part | of 2.)

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

Value
32
27
64
18
95
14
90
70
60
37

[
=]
o
D
X

LooNOOTULTh, WNEO

Fig. 7.3 | Initializing the elements of an array with an array initializer. (Part 2 of 2.)

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

7.4.3 Calculating the Values to Store in
an Array

» The application In Fig. 7.4 creates a 10-element array
and assigns to each element one of the even integers
from2to020(2, 4,60, ..., 20).

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

OO~ bh WN =

21

// Fig. 7.4: InitArray.java
// Calculating the values to be placed into the elements of an array.

public class InitArray

{
public static void main(String[] args)
{
final int ARRAY_LENGTH = 10; // declare constant
int[] array = new int[ARRAY_LENGTH]; // create array
// calculate value for each array element
for (int counter = 0; counter < array.length; counter++)
array[counter] = 2 + 2 * counter;
System.out.printf("%s%8s%n", "Index", "Value"); // column headings
// output each array element's value
for (int counter = 0; counter < array.length; counter++)
System.out.printf("%5d%8d%n", counter, array[counter]);
}

} // end class InitArray

Fig. 7.4 | Calculating the values to be placed into the elements of an array. (Part | of
2.)

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

-
=
o
(]
X
<
W
—
c
M

10
12
14
16
18
20

LooNOOTULTh, WNEO

Fig. 7.4 | Calculating the values to be placed into the elements of an array. (Part 2 of
2.)

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

7.4 Examples Using Arrays (Cont.)

» f1nal variables must be initialized before they are
used and cannot be modified thereafter.

» An attempt to modify a T1nal variable after it’s

Initialized causes a compilation error

- cannot assign a value to final variable
variableName

» An attempt to access the value of a final variable

before 1t’s 1nitialized causes a compilation error

- variable variableName might not have been
initialized

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

gy Good Programming Practice 7.2

=3

el

Constant variables also are called named constants.
They often make programs more readable than programs
that use literal values (e.g., 10)—a named constant such
as ARRAY_LENGTH clearly indicates its purpose, whereas
a literal value could have different meanings based on its
context.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

gy Good Programming Practice 7.3

| Multiword named constants should have each word sep-
arated from the next with an underscore (_) as in
ARRAY_LENGTH.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

Common Programming Error 7.4

Assigning a value to a final variable after it has been
initialized is a compilation error. Similarly, attempting
to access the value of a final variable before it’s initial-
ized results in a compilation error like, “variable vari-
ableName might not have been initialized.”

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

<

7.4.4 Summing the Elements of an Array

» Figure 7.5 sums the values contained in a 10-element
Integer array.

» Often, the elements of an array represent a series of
values to be used in a calculation.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

1 // Fig. 7.5: SumArray.java

2 // Computing the sum of the elements of an array.

3

4 public class SumArray

5 {

6 public static void main(String[] args)

7 {

8 int[] array = { 87, 68, 94, 100, 83, 78, 85, 91, 76, 87 };
9 int total = 0;

10

11 // add each element's value to total

12 for (int counter = 0; counter < array.length; counter++)
13 total += array[counter];

14

15 System.out.printf("Total of array elements: %d%n", total);
16 }

1T } // end class SumArray

Total of array elements: 849

Fig. 7.5 | Computing the sum of the elements of an array.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

7.4.5 Using Bar Charts to Display Array
Data Graphically
» Many programs present data to users in a graphical manner.
» Numeric values are often displayed as bars in a bar chart.
= Longer bars represent proportionally larger numeric values.
» A simple way to display numeric data is with a bar chart
that shows each numeric value as a bar of asterisks (*).

» Format specifier %02d indicates that an 1nt value should

be formatted as a field of two digits.

= The 0 flag displays a leading O for values with fewer digits than the
field width (2).

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

I // Fig. 7.6: BarChart.java

2 // Bar chart printing program.

3

4 public class BarChart

5

6 public static void main(String[] args)

7 {

8 int[] array = { 0, 0, O, O, O, O, 1, 2, 4, 2, 1 };

9

10 System.out.println("Grade distribution:™);

11

12 // for each array element, output a bar of the chart

13 for (int counter = 0; counter < array.length; counter++)
14 {

15 // output bar label ("00-09: ", ..., "90-99: ", "100: ™)
16 if (counter == 10)

17 System.out.printf("%5d: ", 100);

18 else

19 System.out.printf("%02d-%02d: ",
20 counter * 10, counter * 10 + 9);
21
22 // print bar of asterisks
23 for (int stars = 0; stars < array[counter]; stars++)
24 System.out.print("*");

Fig. 7.6 | Bar chart printing program. (Part | of 2.)

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

25

26 System.out.println();
27 }
28 }
29 1} // end class BarChart
Grade distribution:
00-09:
10-19:
20-29:
30-39:
40-49:
50-59:
60-69: *
70-79: **
80-89: ¥
90-99: *=*
100: *

Fig. 7.6 | Bar chart printing program. (Part 2 of 2.)

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

7.4.6 Using the Elements of an Array as
Counters

» Sometimes, programs use counter variables to summarize
data, such as the results of a survey.

» FIg. 6.7 used separate counters in a die-rolling program to
track the number of occurrences of each side of a six-sided
die as the program rolled the die 6,000,000 times.

» FiIg. 7.7 shows an array version of this application.
= Line 14 of this program replaces lines 22—44 of Fig. 6.7.

» Array Trequency must be large enough to store six
counters.

= We use a seven-element array in which we ignore frequency[0]

= More logical to have the face value 1 increment frequency[1]
than frequency[O0].

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

I // Fig. 7.7: RollDie.java

2 // Die-rolling program using arrays instead of switch.

3 import java.security.SecureRandom;

4

5 public class RollDie

6 {

7 public static void main(String[] args)

8 {

9 SecureRandom randomNumbers = new SecureRandom() ;
10 int[] frequency = new int[7]; // array of frequency counters
11

12 // roll die 6,000,000 times; use die value as frequency index
13 for (int roll = 1; roll <= 6000000; roll++)

14 ++frequency[l + randomNumbers.nextInt(6)];

15

16 System.out.printf("%s%»10s%n", "Face", "Frequency");

17

18 // output each array element's value

19 for (int face = 1; face < frequency.length; face++)
20 System.out.printf("%4d%10d%n", face, frequency[face]);
21 }

22 } // end class RollDie

Fig. 7.7 | Die-rolling program using arrays instead of switch. (Part | of 2.)

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

Face Frequency
999690
999512

1000575
999815
099781

1000627

SO B WNPRE

Fig. 7.7 | Die-rolling program using arrays instead of switch. (Part 2 of 2.)

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

7.4.7 Using Arrays to Analyze Survey
Results

» Figure 7.8 uses arrays to summarize the results of data
collected In a survey:

= Twenty students were asked to rate on a scale of 1 to 5 the
quality of the food in the student cafeteria, with 1 being
“awful” and 5 being “excellent.”” Place the 20 responses in an
Integer array and determine the frequency of each rating.

» Array responses is a 20-element 1nt array of the
survey responses.

» 6-element array frequency counts the number of
occurrences of each response (1 to 5).

= Each element is initialized to zero by default.
= We ignore frequency[0].

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

1 // Fig. 7.8: StudentPoll.java

2 // Poll analysis program.

3

4 public class StudentPoll

5 {

6 public static void main(String[] args)

7 {

8 // student response array (more typically, input at runtime)
9 int[] responses = { 1, 2, 5, 4, 3, 5, 2, 1, 3, 3, 1, 4, 3, 3, 3,
10 2, 3, 3, 2, 14 };

11 int[] frequency = new int[6]; // array of frequency counters
12

Fig. 7.8 | Poll analysis program. (Part | of 3.)

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

13 // for each answer, select responses element and use that value

14 // as frequency index to determine element to increment
15 for (int answer = 0; answer < responses.length; answer++)
16 {

17 try

18 {

19 ++frequency[responses[answer]];

20 }

21 catch (ArrayIndexOutOfBoundsException e)

22 {

23 System.out.println(e); // invokes toString method
24 System.out.printf(” responses[%d] = %d%n%n",

25 answer, responses[answer]);

26 }

27 }

28

29 System.out.printf("%s%10s%n", "Rating", "Frequency");

30

31 // output each array element's value

32 for (int rating = 1; rating < frequency.length; rating++)
33 System.out.printf("%6d%10d%n", rating, frequency[rating]);
34 }

35 1} // end class StudentPoll

Fig. 7.8 | Poll analysis program. (Part 2 of 3.)

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

java.lang.ArrayIndexOutOfBoundsException: 14
responses[19] = 14

Rating Frequency

v b WhN =
NN R~ W

Fig. 7.8 | Poll analysis program. (Part 3 of 3.)

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

7.4.7 Using Arrays to Analyze Survey
Results (Cont.)

» If a piece of data in the responses array Is an invalid
value, such as 14, the program attempts to add 1 to
frequency[14], which is outside the bounds of the
array.
= Java doesn’t allow this.

= JVM checks array indices to ensure that they are greater than
or equal to 0 and less than the length of the array—this is
called bounds checking.

= If a program uses an invalid index, Java generates a so-called
exception to indicate that an error occurred in the program at
execution time.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

7.5 Exception Handling: Processing the
Incorrect Response

» An exception indicates a problem that occurs while a
program executes.

» The name “exception” suggests that the problem occurs
Infrequently—if the “rule” is that a statement normally
executes correctly, then the problem represents the
“exception to the rule.”

» Exception handling helps you create fault-tolerant
programs that can resolve (or handle) exceptions.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

7.5 Exception Handling: Processing the
Incorrect Response (Cont.)

» When the JVM or a method detects a problem, such as
an invalid array index or an invalid method argument, it
throws an exception—that Is, an exception occurs.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

7.5.1 The try Statement

» To handle an exception, place any code that might
throw an exception in a try statement.

» The try block contains the code that might throw an
exception.

» The catch block contains the code that handles the
exception if one occurs. You can have many catch
blocks to handle different types of exceptions that
might be thrown in the corresponding try block.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

7.5.2 Executing the catch Block

» When the program encounters the invalid value 14 in the
responses array, it attempts to add 1 to frequency[14], which
IS outside the bounds of the array—the frequency array has
only six elements (with indexes 0-5).

» Because array bounds checking is performed at execution
time, the JVM generates an exception—specifically line 19
throws an ArrayIndexOutOfBoundsException to
notify the program of this problem.

» At this point the try block terminates and the catch block
begins executing—if you declared any local variables in the
try block, they’re now out of scope.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

7.5.2 Executing the catch Block (Cont.)

» The catch block declares an exception parameter (e)
of type (IndexOutOfRangeException).

» Inside the catch block, you can use the parameter’s
Identifier to interact with a caught exception object.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

Error-Prevention Tip 7.1
When writing code to access an array element, ensure

that the array index remains greater than or equal to 0
and less than the length of the array. This would prevent
ArrayIndexOutOfBoundsExceptions if your pro-

gram is correct.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

’,‘\g Software Engineering Observation 7.1

P s
£ Y

Systems in industry that have undergone extensive testing

are still likely to contain bugs. Our preference for
industrial-strength systems is to catch and deal with

runtime exceptions, such as
ArrayIndexOutOfBoundsExceptions, to ensure
that a system either stays up and running or degrades
gracefully, and to inform the system’s developers of the
problem.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

<

7.5.3 tostring Method of the Exception
Parameter

» The exception object’s toString method returns the
error message that’s implicitly stored in the exception
object.

» The exception Is considered handled when program
control reaches the closing right brace of the catch
block.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

7.6 Case Study: Card Shuffling and
Dealing Simulation

» Examples thus far used arrays containing elements of
primitive types.

» Elements of an array can be either primitive types or
reference types.

» Next example uses an array of reference-type

elements—objects representing playing cards—to
develop a class that simulates card shuffling and

dealing.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

7.6 Case Study: Card Shuffling and
Dealing Simulation (Cont.)

» Class Card (Fig. 7.9) contains two String instance
variables—face and suit—that are used to store

references to the face and suit names for a specific
Card.

» Method toString creates a String consisting of

the face of the card, " of " and the sui t of the
card.

= Can invoke explicitly to obtain a string representation of a
card.

= Called implicitly when the object is used where a String is
expected.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

1 // Fig. 7.9: Card.java

2 // Card class represents a playing card.

3

4 public class Card

5 {

6 private final String face; // face of card ("Ace", "Deuce", ...)
7 private final String suit; // suit of card ("Hearts", "Diamonds",
8

9 // two-argument constructor initializes card's face and suit

10 public Card(String cardFace, String cardSuit)

11 {

12 this.face = cardFace; // initialize face of card

13 this.suit = cardSuit; // initialize suit of card

14 }

15

16 // return String representation of Card

17 public String toString()

18 {

19 return face + " of " + suit;
20 }

21 } // end class Card

Fig. 7.9 | Card class represents a playing card.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

7.6 Case Study: Card Shuffling and =
Dealing Simulation (Cont.)

» Class DeckOofcCards (Fig. 7.10) declares as an
instance variable a Card array named deck.

» Deck’s elements are nu 11 by default
= Constructor fills the deck array with Card objects.

» Method shuff1e shuffles the Cards in the deck.
= Loops through all 52 Cards (array indices 0 to 51).
= Each Card swapped with a randomly chosen other card in the
deck.
» Method dealCard deals one Card in the array.

= currentcCard indicates the index of the next Card to be
dealt

» Returns nul 1 if there are no more cards to deal

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

I // Fig. 7.10: DeckOfCards.java

2 // DeckOfCards class represents a deck of playing cards.

3 import java.security.SecureRandom;

4

5 public class DeckOfCards

6 {

7 private Card[] deck; // array of Card objects

8 private int currentCard; // index of next Card to be dealt (0-51)

9 private static final int NUMBER_OF_CARDS = 52; // constant # of Cards
10 // random number generator
11 private static final SecureRandom randomNumbers = new SecureRandom();
12

13 // constructor fills deck of Cards

14 public DeckOfCards()

15 {

16 String[] faces = { "Ace", "Deuce", "Three", "Four"”, "Five", "Six",
17 "Seven", "Eight", "Nine", "Ten", "Jack", "Queen", "King" };

18 String[] suits = { "Hearts", "Diamonds", "Clubs", "Spades" };

19
20 deck = new Card[NUMBER_OF_CARDS]; // create array of Card objects
21 currentCard = 0; // first Card dealt will be deck[0]
22

Fig. 7.10 | DeckOfCards class represents a deck of playing cards. (Part | of 3.)

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46

}

// populate deck with Card objects
for (int count = 0; count < deck.length; count++)
deck[count] =
new Card(faces[count % 13], suits[count / 13]);

// shuffle deck of Cards with one-pass algorithm
public void shuffle()

{

}

// next call to method dealCard should start at deck[0] again
currentCard = 0;

// for each Card, pick another random Card (0-51) and swap them
for (int first = 0; first < deck.length; first++)
{

// select a random number between 0 and 51

int second = randomNumbers.nextInt(NUMBER_OF_CARDS);

// swap current Card with randomly selected Card
Card temp = deck[first];
deck[first] = deck[second];

deck[second] = temp;

Fig. 7.10 | DeckOfCards class represents a deck of playing cards. (Part 2 of 3.)

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

47

48 // deal one Card

49 public Card dealCard()

50 {

51 // determine whether Cards remain to be dealt

52 if (currentCard < deck.length)

53 return deck[currentCard++]; // return current Card in array

54 else

55 return null; // return null to indicate that all Cards were dealt
56 }

57 } // end class DeckOfCards

Fig. 7.10 | DeckOfCards class represents a deck of playing cards. (Part 3 of 3.)

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

7.6 Case Study: Card Shuffling and
Dealing Simulation (Cont.)

» Figure 7.11 demonstrates class DeckOfCards.

» When a Card is outputas a String, the Card’s
toString method is implicitly invoked.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

1 // Fig. 7.11: DeckOfCardsTest.java

2 // Card shuffling and dealing.

3

4 public class DeckOfCardsTest

5 {

6 // execute application

7 public static void main(String[] args)

8 {

9 DeckOfCards myDeckOfCards = new DeckOfCards();

10 myDeckOfCards.shuffle(); // place Cards in random order
11

12 // print all 52 Cards 1in the order in which they are dealt
13 for (int i = 1; i <= 52; ++)

14 {

I5 // deal and display a Card

16 System.out.printf("%-19s", myDeckOfCards.dealCard());
17

I8 if (i % 4 == 0) // output a newline after every fourth card
19 System.out.printlnQ);
20 }
21 }

22 1} // end class DeckOfCardsTest

Fig. 7.11 | Card shuffling and dealing. (Part | of 2.)

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

Six of Spades
Queen of Hearts
Three of Diamonds
Four of Spades
Three of Clubs
King of Clubs
Queen of Clubs
Three of Spades
Ace of Spades
Deuce of Spades
Jack of Hearts
Ace of Diamonds
Five of Diamonds

Eight of Spades
Seven of Clubs
Deuce of Clubs
Ace of Clubs
Deuce of Hearts
Ten of Hearts
Eight of Diamonds
King of Diamonds
Four of Diamonds
Eight of Hearts
Seven of Spades
Queen of Diamonds
Ten of Clubs

Six of Clubs

Nine of Spades
Ace of Hearts
Seven of Diamonds
Five of Spades
Three of Hearts
Deuce of Diamonds
Nine of Clubs
Seven of Hearts
Five of Hearts
Four of Clubs
Five of Clubs
Jack of Spades

Nine of Hearts
King of Hearts
Ten of Spades
Four of Hearts
Jack of Diamonds
Six of Diamonds
Ten of Diamonds
Six of Hearts
Eight of Clubs
Queen of Spades
Nine of Diamonds
King of Spades
Jack of Clubs

Fig. 7.11 | Card shuffling and dealing. (Part 2 of 2.)

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

7.6 Case Study: Card Shuffling and

Dealing Simulation (Cont.)
Preventing ~MuT1PointerExceptions
» In Fig. 7.10, we created a deck array of 52 Card

references—each element of every reference-type array
created with new is default initialized tonu 1 1.

» Reference-type variables which are fields of a class are
also initialized to nu 11 by default.

» ANul1PointerException occurs when you try to
call a method on a null reference.

» In industrial-strength code, ensuring that references are
not null before you use them to call methods prevents

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

7.7 Enhanced for Statement

» Enhanced for statement
= Iterates through the elements of an array without using a counter.
= Avoids the possibility of “stepping outside” the array.
= Also works with the Java API’s prebuilt collections (see
Section 7.14).
» Syntax:

for (parameter : arrayName)
statement

where parameter has a type and an identifier and
arrayName is the array through which to iterate.

» Parameter type must be consistent with the array’s element

type.
» The enhanced for statement simplifies the code for
Iterating through an array.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

1 // Fig. 7.12: EnhancedForTest.java

2 // Using the enhanced for statement to total integers in an array.
3

4 public class EnhancedForTest

5 {

6 public static void main(String[] args)

7 {

8 int[] array = { 87, 68, 94, 100, 83, 78, 85, 91, 76, 87 };
9 int total = 0;

10

11 // add each element's value to total

12 for (int number : array)

13 total += number;

14

15 System.out.printf("Total of array elements: %d%n", total);
16 }

17 } // end class EnhancedForTest

Total of array elements: 849

Fig. 7.12 | Using the enhanced for statement to total integers in an array.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

<

7.7 Enhanced for Statement (Cont.)

» The enhanced for statement can be used only to obtain
array elements

= It cannot be used to modify elements.

= To modify elements, use the traditional counter-controlled for
statement.

» Can be used in place of the counter-controlled for
statement 1f you don’t need to access the index of the
element.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

Error-Prevention Tip 7.2

The enhanced for statement simplifies the code for iter-
ating through an array making the code more readable
and eliminating several error possibilities, such as im-
properly specifying the control variable’s initial value,
the loop-continuation test and the increment expression.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

<

7.7 Enhanced for Statement (Cont.)

Java SE 8

» The for statement and the enhanced for statement
each iterate sequentially from a starting value to an
ending value.

» In Chapter 17, Java SE 8 Lambdas and Streams, you’ll
learn about class Stream and its foreEach method.

» Working together, these provide an elegant, more
concise and less error prone means for iterating through
collections so that some of the iterations may occur in

parallel with others to achieve better multi-core system

performance.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

7.8 Passing Arrays to Methods

» To pass an array argument to a method, specify the name of
the array without any brackets.

= Since every array object “knows” its own length, we need not pass
the array length as an additional argument.

» To receive an array, the method’s parameter list must
specify an array parameter.

» When an argument to a method is an entire array or an
individual array element of a reference type, the called
method receives a copy of the reference.

» When an argument to a method Is an individual array
element of a primitive type, the called method receives a
copy of the element’s value.
= Such primitive values are called scalars or scalar quantities.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

I // Fig. 7.13: PassArray.java

2 // Passing arrays and individual array elements to methods.
3

4 public class PassArray

5 |

6 // main creates array and calls modifyArray and modifyElement
7 public static void main(String[] args)

8 {

9 int[] array = { 1, 2, 3, 4, 5 };

10

11 System.out.printf(

12 "Effects of passing reference to entire array:%n" +
13 "The values of the original array are:%n");

14

15 // output original array elements

16 for (int value : array)

17 System.out.printf (" %d", value);

18

19 modifyArray(array); // pass array reference
20 System.out.printf("%n%nThe values of the modified array are:%n");
21

Fig. 7.13 | Passing arrays and individual array elements to methods. (Part | of 3.)

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

22 // output modified array elements

23 for (int value : array)

24 System.out.printf (" %d™, value);

25

26 System.out.printf(

27 "%n%wnEffects of passing array element value:%n" +
28 "array[3] before modifyElement: %d%n", array[3]);
29

30 modifyElement(array[3]); // attempt to modify array[3]
31 System.out.printf(

32 "array[3] after modifyElement: %d%n", array[3]);

33 }

34

35 // multiply each element of an array by 2

36 public static void modifyArray(int[] array2)

37 {

38 for (int counter = 0; counter < array2.length; counter++)
39 array2[counter] *= 2;

40 }

Fig. 7.13 | Passing arrays and individual array elements to methods. (Part 2 of 3.)

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

41

42 // multiply argument by 2

43 public static void modifyElement(int element)

44 {

45 element *= 2;

46 System.out.printf(

47 "Value of element in modifyElement: %d%n", element);
48 }

49 1} // end class PassArray

Effects of passing reference to entire array:
The values of the original array are:
1 2 3 4 5

The values of the modified array are:
2 4 6 8 10

Effects of passing array element value:
array[3] before modifyElement: 8

Value of element in modifyElement: 16
array[3] after modifyElement: 8

Fig. 7.13 | Passing arrays and individual array elements to methods. (Part 3 of 3.)

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

7.9 Pass-By-Value vs. Pass-By-
Reference

» Pass-by-value (sometimes called call-by-value)
= A copy of the argument’s value is passed to the called method.
= The called method works exclusively with the copy.
= Changes to the called method’s copy do not affect the original
variable’s value in the caller.
» Pass-by-reference (sometimes called call-by-reference)

* The called method can access the argument’s value 1n the
caller directly and modify that data, If necessary.

= Improves performance by eliminating the need to copy
possibly large amounts of data.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

7.9 Pass-By-Value vs. Pass-By-

Reference (Cont.)

4
4

All arguments in Java are passed by value.

A method call can pass two types of values to a method
= Copies of primitive values
= Copies of references to objects

Objects cannot be passed to methods.

If a method modifies a reference-type parameter so that it refers

to another object, only the parameter refers to the new object

- T%’)l_e reference stored in the caller’s variable still refers to the original
object.

Although an object’s reference 1s passed by value, a method can

still interact with the referenced object by calling its pub11c

methods using the copy of the object’s reference.

= The parameter in the called method and the argument in the calling
method refer to the same object in memory.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

=5y Performance Tip 7.1

P2 Passing references to arrays, instead of the array objects
themselves, makes sense for performance reasons. Because
everything in_Java is passed by value, if array objects were
passed, a copy of each element would be passed. For large
arrays, this would waste time and consume considerable
storage for the copies of the elements.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

7.10 Case Study: Class GradeBook
Using an Array to Store Grades

» We now present the first part of our case study on developing
a GradeBook class that instructors can use to maintain
students’ grades on an exam and display a grade report that
Includes the grades, class average, lowest grade, highest grade
and a grade distribution bar chart.

» The version of class GradeBook presented in this section
stores the grades for one exam In a one-dimensional array.
» In Section 7.12, we present a version of class GradeBook

that uses a two-dimensional array to store students’ grades for
several exams.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

I // Fig. 7.14: GradeBook.java

2 // GradeBook class using an array to store test grades.
3

4 public class GradeBook

5 {

6 private String courseName; // name of course this GradeBook represents
7 private int[] grades; // array of student grades
8

9 // constructor
10 public GradeBook(String courseName, int[] grades)
11 {

12 this.courseName = courseName;

13 this.grades = grades;

14 }

15

16 // method to set the course name

17 public void setCourseName(String courseName)

18 {

19 this.courseName = courseName;
20 }
21

Fig. 7.14 | GradeBook class using an array to store test grades. (Part | of 7.)

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

22 // method to retrieve the course name

23 public String getCourseName()

24 {

25 return courseName;

26 }

27

28 // perform various operations on the data

29 public void processGrades()

30 {

31 // output grades array

32 outputGrades();

33

34 // call method getAverage to calculate the average grade
35 System.out.printf("%nClass average is %.2f%n", getAverage());
36

37 // call methods getMinimum and getMaximum

38 System.out.printf("Lowest grade is %d%nHighest grade is %d%n%n",
39 getMinimum(), getMaximum());

40

41 // call outputBarChart to print grade distribution chart
42 outputBarChart();

43 }

44

Fig. 7.14 | GradeBook class using an array to store test grades. (Part 2 of 7.)

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

// find minimum grade
public int getMinimum()

{
int lTowGrade = grades[0]; // assume grades[0] is smallest
// loop through grades array
for (int grade : grades)
{
// if grade Tower than lTowGrade, assign it to lTowGrade
if (grade < TowGrade)
lTowGrade = grade; // new lowest grade
3
return TowGrade;
}

Fig. 7.14 | GradeBook class using an array to store test grades. (Part 3 of 7.)

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

61 // find maximum grade

62 public int getMaximum()

63 {

64 int highGrade = grades[0]; // assume grades[0] s largest
65

66 // loop through grades array

67 for (int grade : grades)

68 {

69 // if grade greater than highGrade, assign it to highGrade
70 if (grade > highGrade)

71 highGrade = grade; // new highest grade

72 }

73

74 return highGrade;

75 }

76

Fig. 7.14 | GradeBook class using an array to store test grades. (Part 4 of 7.)

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

17 // determine average grade for test

78 public double getAverage()

79 {

80 int total = O;

81

82 // sum grades for one student
83 for (int grade : grades)

84 total += grade;

85

86 // return average of grades
87 return (double) total / grades.length;
88 }

89

Fig. 7.14 | GradeBook class using an array to store test grades. (Part 5 of 7.)

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

90 // output bar chart displaying grade distribution

91 pubTlic void outputBarChart()

92 {

93 System.out.println("Grade distribution:");

94

95 // stores frequency of grades in each range of 10 grades
96 int[] frequency = new int[11];

97

98 // for each grade, increment the appropriate frequency
99 for (int grade : grades)

100 ++frequency[grade / 10];

101

102 // for each grade frequency, print bar in chart

103 for (int count = 0; count < frequency.length; count++)
104 {

105 // output bar label ("00-09: ", ..., "90-99: ", "100: ")
106 if (count == 10)

107 System.out.printf("%5d: ", 100);

108 else

109 System.out.printf("%02d-%02d: ",

110 count * 10, count * 10 + 9);

111

Fig. 7.14 | GradeBook class using an array to store test grades. (Part 6 of 7.)

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

112 // print bar of asterisks

113 for (int stars = 0; stars < frequency[count]; stars++)
114 System.out.print("*");

115

116 System.out.printin();

17 }

118 }

119

120 // output the contents of the grades array

121 public void outputGrades()

122 {

123 System.out.printf("The grades are:%n%n");

124

125 // output each student's grade

126 for (int student = 0; student < grades.length; student++)
127 System.out.printf("Student %2d: %3d%n",

128 student + 1, grades[student]);

129 }

130 } // end class GradeBook

Fig. 7.14 | GradeBook class using an array to store test grades. (Part 7 of 7.)

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

7.10 Case Study: Class GradeBook
Using an Array to Store Grades (Cont.)

» The application of Fig. 7.15 creates an object of class
GradeBook (Fig. 7.14) using the 1nt array
grades-Array.

» Lines 12-13 pass a course hame and gradesArray
to the GradeBook constructor.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

\nv’ Software Engineering Observation 7.2

6N A test harness (or test application) is responsible for
creating an object of the class being tested and providing
it with data. This data could come from any of several
sources. Test data can be placed directly into an array
with an array initializer, it can come from the user at the
keyboard, from a file (as you'll see in Chapter 15), from
a database (as you'll see in Chapter 24) or from a
network (as youll see in online Chapter 28). After
passing this data to the class’s constructor to instantiate
the object, the test harness should call upon the object to
test its methods and manipulate its data. Gathering data
in the test harness like this allows the class to be more
reusable, able to manipulate data from several sources.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

I // Fig. 7.15: GradeBookTest.java

2 // GradeBookTest creates a GradeBook object using an array of grades,
3 // then invokes method processGrades to analyze them.

4 public class GradeBookTest

5 |

6 // main method begins program execution

7 public static void main(String[] args)

8 {

9 // array of student grades
10 int[] gradesArray = { 87, 68, 94, 100, 83, 78, 85, 91, 76, 87 };
11
12 GradeBook myGradeBook = new GradeBook(
13 "CS101 Introduction to Java Programming", gradesArray);
14 System.out.printf("Welcome to the grade book for%n%s¥%ni%n",
15 myGradeBook. getCourseName()) ;
16 myGradeBook.processGrades() ;
17 }

18 } // end class GradeBookTest

Fig. 7.15 | GradeBookTest creates a GradeBook object using an array of grades,
then invokes method processGrades to analyze them. (Part | of 3.)

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

Welcome to the grade book for
(5101 Introduction to Java Programming

The grades are:

Student 1 87
Student 2 68
Student 3: 94
Student 4: 100
Student 5: 83
Student 6: 78
Student 7: 85
Student 8 91
Student 9: 76
Student 10: 87

Class average is 84.90
Lowest grade is 68
Highest grade 1is 100

Fig. 7.15 | GradeBookTest creates a GradeBook object using an array of grades,
then invokes method processGrades to analyze them. (Part 2 of 3.)

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

Grade distribution:

00-09:

10-19:

20-29:

30-39:

40-49:

50-59:

60-69: *

70-79: **

80-89: #w%¥*

90-99:
100: =

ale
-

3:_

Fig. 7.15 | GradeBookTest creates a GradeBook object using an array of grades,
then invokes method processGrades to analyze them. (Part 3 of 3.)

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

7.10 Case Study: Class GradeBook
Using an Array to Store Grades (Cont.)

Java SE 8

» In Chapter 17, Java SE 8 Lambdas and Streams, the
example of Fig. 17.5 uses stream methods m1n, max,
count and average to process the elements of an
1nt array elegantly and concisely without having to
write repetition statements.

» In Chapter 23, Concurrency, the example of Fig. 23.29
uses stream method summaryStatistics to
perform all of these operations in one method call.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

7.11 Multidimensional Arrays

» Two-dimensional arrays are often used to represent tables
of values with data arranged in rows and columns.

» Identify each table element with two indices.

= By convention, the first identifies the element’s row and the second
its column.

» Multidimensional arrays can have more than two
dimensions.

» Java does not support multidimensional arrays directly

= Allows you to specify one-dimensional arrays whose elements are
also one-dimensional arrays, thus achieving the same effect.

» In general, an array with m rows and n columns is called an
m-by-n array.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

Column 0 Column | Column 2 Column 3
Rowo a[0 J[0] af0][1] afo0]J[2] a[0][3]
Rowl a[1]1[0]1 a[1]1[1]1 af[1]1[2]1 af1][3]

Row2 af2][01 af21[01] af2]1[21]1 alf2][3]

L Column index

Row index
Array name

Fig. 7.16 | Two-dimensional array with three rows and four columns.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

<

7.11 Multidimensional Arrays (Cont.)

» Multidimensional arrays can be initialized with array
Initializers in declarations.

» A two-dimensional array b with two rows and two
columns could be declared and initialized with nested
array Initializers as follows:

int[J[] b = {{1, 2}, {3, 4}};
= The initial values are grouped by row In braces.

= The number of nested array initializers (represented by sets of
braces within the outer braces) determines the number of rows.

= The number of initializer values in the nested array initializer
for a row determines the number of columns in that row.

= Rows can have different lengths.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

<

7.11 Multidimensional Arrays (Cont.)

» The lengths of the rows in a two-dimensional array are
not required to be the same:

int[J[] b = {{1, 2}, {3, 4, 5}};
= Each element of b is a reference to a one-dimensional array of
1nt variables.

= The 1nt array for row O is a one-dimensional array with two
elements (1 and 2).

= The 1nt array for row 1 is a one-dimensional array with three
elements (3, 4 and 5).

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

<

7.11 Multidimensional Arrays (Cont.)

» A multidimensional array with the same number of columns in
every row can be created with an array-creation expression.
int[J[] b = new int[3][4];
= 3 rows and 4 columns.
» The elements of a multidimensional array are initialized when
the array object is created.

» A multidimensional array in which each row has a different
number of columns can be created as follows:

int[][] b = new int[2][]; // create 2 rows
b[0] = new int[5]; // create 5 columns for row O
b[1] = new int[3]; // create 3 columns for row 1

= Creates a two-dimensional array with two rows.
= Row 0 has five columns, and row 1 has three columns.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

<

7.11 Multidimensional Arrays (Cont.)

» Figure 7.17 demonstrates initializing two-dimensional
arrays with array initializers and using nested for
loops to traverse the arrays.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

1 // Fig. 7.17: InitArray.java

2 // Initializing two-dimensional arrays.

3

4 public class InitArray

5 {

6 // create and output two-dimensional arrays

7 public static void main(String[] args)

8 {

9 int[][] arrayl = {{1, 2, 3}, {4, 5, 6}};

10 int[1[] array2 = {{1, 2}, {3}, {4, 5, 63}};

11

12 System.out.println("Values in arrayl by row are");
13 outputArray(arrayl); // displays arrayl by row

14

I5 System.out.printf("%nValues in array2 by row are¥n");
16 outputArray(array2); // displays array2 by row

17 }

18

Fig. 7.17 | Initializing two-dimensional arrays. (Part | of 2.)

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

19 // output rows and columns of a two-dimensional array

20 public static void outputArray(int[][] array)

21 {

22 // loop through array's rows

23 for (int row = 0; row < array.length; row++)

24 {

25 // loop through columns of current row

26 for (int column = 0; column < array[row].length; column++)
27 System.out.printf("%d ", array[row] [column]);
28

29 System.out.printin();

30 }

31 }

32 } // end class InitArray

Values in arrayl by row are

1 2 3

4 5 6

Values in array2 by row are
1 2

3

4 5 6

Fig. 7.17 | Initializing two-dimensional arrays. (Part 2 of 2.)

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

7.12 Case Study: Class GradeBook
Using a Two-Dimensional Array

» In most semesters, students take several exams.
» Figure 7.18 contains a version of class GradeBook
that uses a two-dimensional array grades to store the

grades of several students on multiple exams.
= Each row represents a student’s grades for the entire course.
= Each column represents the grades of all the students who took

a particular exam.
» In this example, we use a ten-by-three array containing

ten students’ grades on three exams.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

1 // Fig. 7.18: GradeBook.java

2 // GradeBook class using a two-dimensional array to store grades.

3

4 public class GradeBook

5 {

6 private String courseName; // name of course this grade book represents
7 private int[][] grades; // two-dimensional array of student grades
8

9 // two-argument constructor initializes courseName and grades array
10 public GradeBook(String courseName, int[][] grades)

11 {

12 this.courseName = courseName;

13 this.grades = grades;

14 }

15

16 // method to set the course name

17 public void setCourseName(String courseName)

18 {

19 this.courseName = courseName;
20 }
21

Fig. 7.18 | GradeBook class using a two-dimensional array to store grades. (Part |
of 8.)

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

22 // method to retrieve the course name

23 public String getCourseName()

24 {

25 return courseName;

26 }

27

28 // perform various operations on the data

29 public void processGrades()

30 {

31 // output grades array

32 outputGrades();

33

34 // call methods getMinimum and getMaximum

35 System.out.printf("%n%s %d¥%ni%s %d%n%n",

36 "Lowest grade in the grade book is", getMinimum(),
37 "Highest grade in the grade book is", getMaximum());
38

39 // output grade distribution chart of all grades on all tests
40 outputBarChart();

41 }

42

Fig. 7.18 | GradeBook class using a two-dimensional array to store grades. (Part 2
of 8.)

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

43 // find minimum grade

44 public int getMinimum()
45 {
46 // assume first element of grades array is smallest
47 int TowGrade = grades[0][0];
48
49 // loop through rows of grades array
50 for (int[] studentGrades : grades)
51 {
52 // loop through columns of current row
53 for (int grade : studentGrades)
54 {
55 // if grade less than lowGrade, assign it to lTowGrade
56 if (grade < lowGrade)
57 lowGrade = grade;
58 }
59 }
60
61 return lTowGrade;
62 }
63
Fig. 7.18 | GradeBook class using a two-dimensional array to store grades. (Part 3
of 8.)

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

64 // find maximum grade

65 public int getMaximum()

66 {

67 // assume first element of grades array is largest

68 int highCGrade = grades[0][0];

69

70 // loop through rows of grades array

71 for (int[] studentGrades : grades)

72 {

73 // loop through columns of current row

74 for (int grade : studentGrades)

75 {

76 // if grade greater than highGrade, assign it to highGrade

77 if (grade > highGrade)

78 highGrade = grade;

79 }

80 }

81

82 return highGrade;

83 }

84
Fig. 7.18 | GradeBook class using a two-dimensional array to store grades. (Part 4
of 8.)

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

85 // determine average grade for particular set of grades

86 public double getAverage(int[] setOfGrades)

87 {

88 int total = 0;

89

90 // sum grades for one student

91 for (int grade : setOfGrades)

92 total += grade;

93

94 // return average of grades

95 return (double) total / setOfGrades.length;

96 }

97

98 // output bar chart displaying overall grade distribution
99 public void outputBarChart()

100 {

101 System.out.println("Overall grade distribution:");

102

103 // stores frequency of grades in each range of 10 grades
104 int[] frequency = new int[11];

105

Fig. 7.18 | GradeBook class using a two-dimensional array to store grades. (Part 5
of 8.)

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

106 // for each grade in GradeBook, increment the appropriate frequency

107 for (int[] studentGrades : grades)

108 {

109 for (int grade : studentGrades)

110 ++frequency[grade / 10];

i }

112

113 // for each grade frequency, print bar in chart

114 for (int count = 0; count < frequency.length; count++)
115 {

116 // output bar label ("00-09: ", ..., "90-99: ", "100: ")
117 if (count == 10)

118 System.out.printf("%5d: ", 100);

119 else

120 System.out.printf("%02d-%02d: ",

121 count * 10, count * 10 + 9);

122

123 // print bar of asterisks

124 for (int stars = 0; stars < frequency[count]; stars++)
125 System.out.print("*");

126

127 System.out.printin();

128 }

129 }

Fig. 7.18 | GradeBook class using a two-dimensional array to store grades. (Part 6

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

130

131 // output the contents of the grades array
132 pubTlic void outputGrades()
133 {
134 System.out.printf("The grades are:%n%n");
135 System.out.print(” "Y:; // aligh column heads
136
137 // create a column heading for each of the tests
138 for (int test = 0; test < grades[0].length; test++)
139 System.out.printf("Test %d ", test + 1);
140
141 System.out.println("Average"); // student average column heading
142
143 // create rows/columns of text representing array grades
144 for (int student = 0; student < grades.length; student++)
145 {
146 System.out.printf("Student %2d", student + 1);
147
148 for (int test : grades[student]) // output student's grades
149 System.out.printf("%8d", test);
150
Fig. 7.18 | GradeBook class using a two-dimensional array to store grades. (Part 7
of 8.)

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

151 // call method getAverage to calculate student's average grade;

152 // pass row of grades as the argument to getAverage
153 double average = getAverage(grades[student]);

154 System.out.printf("%9.2f%n", average);

155 }

156 }

I57 } // end class GradeBook

Fig. 7.18 | GradeBook class using a two-dimensional array to store grades. (Part 8
of 8.)

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

I // Fig. 7.19: GradeBookTest.java

2 // GradeBookTest creates GradeBook object using a two-dimensional array
3 // of grades, then invokes method processGrades to analyze them.
4 public class GradeBookTest

5 |

6 // main method begins program execution

7 public static void main(String[] args)

8 {

9 // two-dimensional array of student grades

10 int[][] gradesArray = {{87, 96, 70},

11 {68, 87, 90},

12 {94, 100, 903},

13 {100, 81, 82%,

14 {83, 65, 85},

15 {78, 87, 65},

16 {85, 75, 83},

17 {91, 94, 100},

18 {76, 72, 84},

19 {87, 93, 73}};
20

Fig. 7.19 | GradeBookTest creates GradeBook object using a two-dimensional
array of grades, then invokes method processGrades to analyze them. (Part | of 4.)

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

21 GradeBook myGradeBook = new GradeBook(

22 "CS101 Introduction to Java Programming", gradesArray);
23 System.out.printf("Welcome to the grade book for%n%sunin',
24 myGradeBook. getCourseName()) ;

25 myGradeBook.processGrades();

26 }

27 1} // end class GradeBookTest

Fig. 7.19 | GradeBookTest creates GradeBook object using a two-dimensional
array of grades, then invokes method processGrades to analyze them. (Part 2 of 4.)

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

Welcome to the grade book for
CS101 Introduction to Java Programming

The grades are:

Student 1 87 96 70
Student 2 68 87 90
Student 3 94 100 90
Student 4 100 81 82
Student 5 83 65 85
Student 6 78 87 65
Student 7 85 75 83
Student 8 91 94 100
Student 9 76 72 84
Student 10 87 93 73

Lowest grade in the grade book 1is 65
Highest grade in the grade book 1is 100

77

81
95

Test 1 Test 2 Test 3 Average
84.
81.
94.
87.
.67
76.
.00
.00
77.
84.

33
67
67
67

67

33
33

Fig. 7.19 | GradeBookTest creates GradeBook object using a two-dimensional
array of grades, then invokes method processGrades to analyze them. (Part 3 of 4.)

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

Overall grade distribution:
00-09:

10-19:

20-29:

30-39:

40-49:

50-59:

60-69: *¥**

70_79: WHRRNER

Fig. 7.19 | GradeBookTest creates GradeBook object using a two-dimensional
array of grades, then invokes method processGrades to analyze them. (Part 4 of 4.)

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

<

7.13 Variable-Length Argument Lists

» Variable-length argument lists
= Can be used to create methods that receive an unspecified
number of arguments.

= Parameter type followed by an ellipsis (...) indicates that the
method receives a variable number of arguments of that
particular type.

= The ellipsis can occur only once at the end of a parameter list.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

Common Programming Error 7.5

Placing an ellipsis indicating a variable-length argu-
ment list in the middle of a parameter list is a syntax er-
ror. An ellipsis may be placed only at the end of the
parameter list.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

1 // Fig. 7.20: VarargsTest.java

2 // Using variable-length argument lists.
3

4 public class VarargsTest

5 {

6 // calculate average

7 public static double average(double... numbers)
8 {

9 double total = 0.0;

10

11 // calculate total using the enhanced for statement
12 for (double d : numbers)

13 total += d;

14

15 return total / numbers.length;

16 }

17

I8 public static void main(String[] args)
19 {
20 double d1 = 10.0;
21 double d2 = 20.0;
22 double d3 = 30.0;
23 double d4 = 40.0;
24

Fig. 7.20 | Using variable-length argument lists. (Part | of 2.)

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

25 System.out.printf("dl = %.1f%nd2 = %.1f%nd3 = %.1f%nd4 = %.1f%n%n",

26 di, d2, d3, d4);

27

28 System.out.printf("Average of dl and d2 is %.1f%n",

29 average(dl, d2));

30 System.out.printf("Average of dl, d2 and d3 is %.1f%n",

31 average(dl, d2, d3));

32 System.out.printf("Average of dl, d2, d3 and d4 is %.1f%n",
33 average(dl, d2, d3, d4));

34 }

35 } // end class VarargsTest

dli = 10.0
d2 = 20.0
d3 = 30.0
dd = 40.0

Average of dl and d2 is 15.0
Average of dl, d2 and d3 is 20.0
Average of dl, d2, d3 and d4 1is 25.0

Fig. 7.20 | Using variable-length argument lists. (Part 2 of 2.)

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

7.14 Using Command-Line Arguments

» It’s possible to pass arguments from the command line
to an application via method main’s String[]
parameter, which receives an array of Strings.

» Command-line arguments that appear after the class
name in the Java command are received by main in
the String array args.

» The number of command-line arguments Is obtained by
accessing the array’s 1ength attribute.

» Command-line arguments are separated by white space,
not commas.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

I // Fig. 7.21: InitArray.java
2 // Initializing an array using command-1line arguments.
3
4 public class InitArray
5 {
6 public static void main(String[] args)
7 {
8 // check number of command-1ine arguments
9 if (args.length !'= 3)
10 System.out.printf(
11 "Error: Please re-enter the entire command, including#n" +
12 "an array size, initial value and increment.%n");
13 else
14 {
15 // get array size from first command-Tine argument
16 int arraylLength = Integer.parselnt(args[0]);
17 int[] array = new int[arraylLength];
18
19 // get initial value and increment from command-1ine arguments
20 int initialValue = Integer.parseInt(args[1]);
21 int increment = Integer.parselnt(args[2]);
22
Fig. 7.21 | Initializing an array using command-line arguments. (Part | of 3.)

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

23 // calculate value for each array element

24 for (int counter = 0; counter < array.length; counter++)
25 array[counter] = initialValue + increment * counter;

26

27 System.out.printf("%s%8s%n", "Index", "Value");

28

29 // display array index and value

30 for (int counter = 0; counter < array.length; counter++)
31 System.out.printf("%5d%8d%n", counter, array[counter]);
32 }

33 }

34 } // end class InitArray

java InitArray
Error: Please re-enter the entire command, including
an array size, initial value and increment.

Fig. 7.21 | Initializing an array using command-line arguments. (Part 2 of 3.)

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

java InitArray 5 0 4
Index Value

0 0
1 4
2 8
3 12
4 16

java InitArray 8 1 2
Index Value

1

3

5

7

9
11
13
15

NOoOun bk whNhREP O

Fig. 7.21 | Initializing an array using command-line arguments. (Part 3 of 3.)

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

7.15 Class Arrays

» Arrays class
= Provides stat1c methods for common array manipulations.

» Methods include
= sort for sorting an array (ascending order by default)
= binarySearch for searching a sorted array
= equals for comparing arrays
= fill for placing values into an array.
» Methods are overloaded for primitive-type arrays and
for arrays of objects.

» System class static arraycopy method
= Copies contents of one array into another.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

1 // Fig. 7.22: ArrayManipulations.java

2 // Arrays class methods and System.arraycopy.
3 dimport java.util.Arrays;

4

5 public class ArrayManipulations

6 {

7 public static void main(String[] args)

8 {

9 // sort doubleArray into ascending order
10 double[] doubleArray = { 8.4, 9.3, 0.2, 7.9, 3.4 };
11 Arrays.sort(doubleArray);

12 System.out.printf("%ndoubleArray: ");

13

14 for (double value : doubleArray)

15 System.out.printf("%.1f ", value);

16

17 // fill 10-element array with 7s

I8 int[] filledIntArray = new int[10];

19 Arrays.fill(filledIntArray, 7);
20 displayArray(filledIntArray, "filledIntArray™);
21

Fig. 7.22 | Arrays class methods and System.arraycopy. (Part | of 4.)

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46

// copy array intArray into array intArrayCopy

int[] intArray = { 1, 2, 3, 4, 5, 6 };

int[] intArrayCopy = new int[intArray.length];
System.arraycopy(intArray, O, intArrayCopy, 0, intArray.length);
displayArray(intArray, "intArray’);

displayArray(intArrayCopy, "intArrayCopy");

// compare intArray and intArrayCopy for equality

boolean b = Arrays.equals(intArray, intArrayCopy);

System.out.printf("%n%nintArray %s intArrayCopy%n",
(b 7 "==": "1="));

// compare intArray and filledIntArray for equality

b = Arrays.equals(intArray, filledIntArray);

System.out.printf("intArray %s filledIntArray%n",
(b ? !|==H : ||!=||));

// search intArray for the value 5
int lTocation = Arrays.binarySearch(intArray, 5);

if (location >= 0)
System.out.printf(
"Found 5 at element %d in intArray%n”, location);
else
System.out.printin("'5 not found in intArray");

.22 | Arrays class methods and System.arraycopy. (Part 2 of 4.)

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

47

48 // search intArray for the value 8763

49 Tocation = Arrays.binarySearch(intArray, 8763);

50

51 if (location >= 0)

52 System.out.printf(

53 "Found 8763 at element %d 1in intArray%n", location);
54 else

55 System.out.println("8763 not found in intArray");

56 }

57

58 // output values in each array

59 public static void displayArray(int[] array, String description)
60 {

61 System.out.printf("%n%s: ", description);

62

63 for (int value : array)

64 System.out.printf("%d ", value);

65 }

66 1} // end class ArrayManipulations

Fig. 7.22 | Arrays class methods and System. arraycopy. (Part 3 of 4.)

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

doubleArray: 0.2 3.4 7.9 8.4 9.3
filledIntArray: 7 7 7 7 7 7 7 7 7 7
intArray: 1 2 3 456
intArrayCopy: 1 2 3 45 6
intArray == intArrayCopy
intArray !'= filledIntArray

Found 5 at element 4 in intArray

8763 not found in intArray

Fig. 7.22 | Arrays class methods and System. arraycopy. (Part 4 of 4.)

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

Error-Prevention Tip 7.3

When comparing array contents, always use Ar-
rays.equals(arrayl, array2), which compares
the two arrays’ contents, rather than
arrayl.equals(array2), which compares whether
arrayl and array?2 refer to the same array object.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

Common Programming Error 7.6
Passing an unsorted array to binarySearch is a logic
error—the value returned is undefined.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

7.15 Class Arrays

Java SE 8—Class Arrays Method paralilelsort

» The Arrays class now has several new “parallel”
methods that take advantage of multi-core hardware.

» Arrays method paral lelSort can sort large
arrays more efficiently on multi-core systems.

» In Section 23.12, we create a very large array and use
features of the Java SE 8 Date/Time API to compare

how long It takes to sort the array with methods sort
and parallelSort.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

7.16 Introduction to Collections and

Class ArrayList

>

Java API provides several predefined data structures, called
collections, used to store groups of related objects in memory.

= Each provides efficient methods that organize, store and retrieve your
data without requiring knowledge of how the data Is being stored.

= Reduce application-development time.

Arrays do not automatically change their size at execution time
to accommodate additional elements.

ArrayList<T> (package java.ut1i1) can dynamically change its
Size to accommodate more elements.

= T is a placeholder for the type of element stored in the collection.

Classes with this kind of placeholder that can be used with any
type are called generic classes.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

add
clear

contains

get
indexOf

remove

size

trimToSize

Adds an element to the end of the ArrayList.
Removes all the elements from the ArrayList.

Returns true if the ArrayList contains the specified element; otherwise,
returns false.

Returns the element at the specified index.

Returns the index of the first occurrence of the specified element in the
ArrayList.

Overloaded. Removes the first occurrence of the specified value or the ele-
ment at the specified index.

Returns the number of elements stored in the ArrayList.

Trims the capacity of the ArrayList to the current number of elements.

Fig. 7.23 | Some methods and properties of class ArrayList<T>.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

7.16 Introduction to Collections and
Class ArrayList (Cont.)

» Figure 7.24 demonstrates some common ArrayList
capabilities.

» An ArrayL1st’s capacity indicates how many items
It can hold without growing.

» When the ArrayL1st grows, it must create a larger
Internal array and copy each element to the new array.

= This Is a time-consuming operation. It would be inefficient for
the ArrayL1ist to grow each time an element is added.

= An ArrayL1ist grows only when an element is added and the
number of elements is equal to the capacity—iI.e., there Is no
space for the new element.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

7.16 Introduction to Collections and
Class ArrayList (Cont.)

» Method add adds elements to the ArrayList.

= One-argument version appends its argument to the end of the
ArrayList.

= Two-argument version inserts a new element at the specified
position.

= Collection indices start at zero.

» Method size returns the number of elements in the
ArrayList.

» Method get obtains the element at a specified index.

» Method remove deletes an element with a specific value.

= An overloaded version of the method removes the element at the
specified index.

» Method contains determines if an item Iis in the
ArrayList.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

1 // Fig. 7.24: ArraylListCollection.java

2 // Generic ArrayList<T> collection demonstration.

3 dimport java.util.ArraylList;

4

5 public class ArrayListCollection

6 {

7 public static void main(String[] args)

8 {

9 // create a new ArraylList of Strings with an initial capacity of 10
10 ArrayList<String> items = new ArrayList<String>(Q);

11

12 items.add("red"); // append an item to the Tist

13 items.add(0, "yellow™); // insert "yellow" at index 0O
14

I5 // header

16 System.out.print(

17 "Display 1list contents with counter-controlled loop:");
18

19 // display the colors in the Tist
20 for (int i = 0; i < items.size(); i++)
21 System.out.printf (" %s", ditems.get(i));
22

Fig. 7.24 | Generic ArrayList<T> collection demonstration. (Part | of 3.)

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

23 // display colors using enhanced for in the display method

24 display(items,

25 "%nDisplay Tist contents with enhanced for statement:™);
26

27 items.add("green"); // add "green" to the end of the list
28 items.add("yellow"); // add "yellow" to the end of the 1list
29 display(items, "List with two new elements:");

30

31 items.remove("vyellow"); // remove the first "yellow"

32 display(items, "Remove first instance of vellow:");

33

34 items.remove(l); // remove item at index 1

35 display(items, "Remove second 1list element (green):");

36

37 // check if a value is in the List

38 System.out.printf("\"red\" is %sin the list¥n",

39 items.contains("red”) ? "": "not ");

40

41 // display number of elements in the List

42 System.out.printf("Size: %s%n", items.size());

43 }

44

Fig. 7.24 | Generic ArrayList<T> collection demonstration. (Part 2 of 3.)

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

45 // display the ArraylList's elements on the console

46 public static void display(ArrayList<String> items, String header)
47 {

48 System.out.printf(header); // display header

49

50 // display each element in items

51 for (String item : 1items)

52 System.out.printf (" %s", ditem);

53

54 System.out.println();

55 3

56 } // end class ArraylListCollection

Display list contents with counter-controlled loop: yellow red
Display Tist contents with enhanced for statement: yellow red
List with two new elements: yellow red green yellow

Remove first instance of yellow: red green yellow

Remove second list element (green): red yellow

"red" is in the list

Size: 2

Fig. 7.24 | Generic ArrayList<T> collection demonstration. (Part 3 of 3.)

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

I // Fig. 7.25: DrawRainbow.java

2 // Drawing a rainbow using arcs and an array of colors.

3 import java.awt.Color;

4 import java.awt.Graphics;

5 dimport javax.swing.JPanel;

6

7 public class DrawRainbow extends JPanel

8 {

9 // define indigo and violet

10 private final static Color VIOLET = new Color(128, 0, 128);
11 private final static Color INDIGO = new Color(75, 0, 130);
12

13 // colors to use in the rainbow, starting from the innermost
14 // The two white entries result in an empty arc in the center
15 private Color[] colors =

16 { Color.WHITE, Color.WHITE, VIOLET, INDIGO, Color.BLUE,
17 Color.GREEN, Color.YELLOW, Color.ORANGE, Color.RED };
18

19 // constructor
20 public DrawRainbow()
21 {
22 setBackground(Color.WHITE); // set the background to white
23 }
24

Fig. 7.25 | Drawing a rainbow using arcs and an array of colors. (Part | of 2.)

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

25 // draws a rainbow using concentric arcs

26 public void paintComponent(Graphics g)

27 {

28 super.paintComponent(g);

29

30 int radius = 20; // radius of an arc

31

32 // draw the rainbow near the bottom-center

33 int centerX = getWidth() / 2;

34 int centerY = getHeight() - 10;

35

36 // draws filled arcs starting with the outermost
37 for (int counter = colors.length; counter > 0; counter--)
38 {

39 // set the color for the current arc

40 g.setColor(colors[counter - 1]);

41

42 // fill the arc from 0 to 180 degrees

43 g.fillArc(centerX - counter * radius,

44 centerY - counter * radius,

45 counter * radius * 2, counter * radius * 2, 0, 180);
46 }

47 }

48 } // end class DrawRainbow

Fig. 7.25 | Drawing a rainbow using arcs and an array of colors. (Part 2 of 2.)

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

OoOoO~NONBNDE WN=—

17

// Fig. 7.26: DrawRainbowTest.java
// Test application to display a rainbow.
import javax.swing.JFrame;

public class DrawRainbowTest

{

public static void main(String[] args)

{

DrawRainbow panel = new DrawRainbow();
JFrame application = new JFrame();

application.
application.
application.
application.

}

setDefaultCloseOperation(JFrame. EXIT_ON_CLOSE);
add(panel);

setSize (400, 250);

setVisible(true);

} // end class DrawRainbowTest

Fig. 7.26 | Test application to display a rainbow. (Part | of 2.)

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

E (===

Fig. 7.26 | Testapplication to display a rainbow. (Part 2 of 2.)

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

7.16 Introduction to Collections and
Class ArrayList (Cont.)

Java SE 7—Diamond (<>) Notation for Creating an Object

of a Generic Class

» Consider line 10 of Fig. 7.24:

- ArrayList<String> items = new ArrayList<String>();

» Notice that ArrayLi1st<String> appears in the variable
declaration and in the class instance creation expression.
Java SE 7 introduced the diamond (<>) notation to simplify
statements like this. Using <> in a class instance creation
expression for an object of a generic class tells the compiler
to determine what belongs in the angle brackets.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

7.16 Introduction to Collections and
Class ArrayList (Cont.)

» In Java SE 7 and higher, the preceding statement can be
written as:
- ArrayList<String> items = new ArrayList<>();

» When the compiler encounters the diamond (<>) in the
class instance creation expression, it uses the declaration of
variable items to determine the ArrayL1st’s element type
(String)—this is known as inferring the element type.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

7.17 (Optional) GUI and Graphics Case
Study: Drawing Arcs

» Drawing arcs in Java Is similar to drawing ovals—an arc is
simply a section of an oval.

» Graphics method fillArc draws a filled arc.

» Method f11TArc requires six parameters.

= The first four represent the bounding rectangle in which the arc will be
drawn.

= The fifth parameter is the starting angle on the oval, and the sixth
specifies the sweep, or the amount of arc to cover.

= Starting angle and sweep are measured in degrees, with zero degrees
pointing right.
= A positive sweep draws the arc counterclockwise.
» Method drawArc requires the same parameters as £111Arc, but
draws the edge of the arc rather than filling it.

» Method setBackground changes the background color of a GUI
component.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

	Slide 1: Chapter 7 Arrays and ArrayLists
	Slide 2
	Slide 3
	Slide 4
	Slide 5: 7.1 Introduction
	Slide 6: 7.1 Introduction (Cont.)
	Slide 7: 7.2 Arrays
	Slide 8
	Slide 9: 7.2 Arrays (Cont.)
	Slide 10
	Slide 11: 7.3 Declaring and Creating Arrays
	Slide 12: 7.3 Declaring and Creating Arrays (Cont.)
	Slide 13
	Slide 14: 7.3 Declaring and Creating Arrays (Cont.)
	Slide 15
	Slide 16
	Slide 17: 7.3 Declaring and Creating Arrays (Cont.)
	Slide 18: 7.4 Examples Using Arrays
	Slide 19: 7.4.1 Creating and Initializing an Array
	Slide 20
	Slide 21
	Slide 22: 7.4.2 Using an Array Initializer
	Slide 23
	Slide 24
	Slide 25: 7.4.3 Calculating the Values to Store in an Array
	Slide 26
	Slide 27
	Slide 28: 7.4 Examples Using Arrays (Cont.)
	Slide 29
	Slide 30
	Slide 31
	Slide 32: 7.4.4 Summing the Elements of an Array
	Slide 33
	Slide 34: 7.4.5 Using Bar Charts to Display Array Data Graphically
	Slide 35
	Slide 36
	Slide 37: 7.4.6 Using the Elements of an Array as Counters
	Slide 38
	Slide 39
	Slide 40: 7.4.7 Using Arrays to Analyze Survey Results
	Slide 41
	Slide 42
	Slide 43
	Slide 44: 7.4.7 Using Arrays to Analyze Survey Results (Cont.)
	Slide 45: 7.5 Exception Handling: Processing the Incorrect Response
	Slide 46: 7.5 Exception Handling: Processing the Incorrect Response (Cont.)
	Slide 47: 7.5.1 The try Statement
	Slide 48: 7.5.2 Executing the catch Block
	Slide 49: 7.5.2 Executing the catch Block (Cont.)
	Slide 50
	Slide 51
	Slide 52: 7.5.3 toString Method of the Exception Parameter
	Slide 53: 7.6 Case Study: Card Shuffling and Dealing Simulation
	Slide 54: 7.6 Case Study: Card Shuffling and Dealing Simulation (Cont.)
	Slide 55
	Slide 56: 7.6 Case Study: Card Shuffling and Dealing Simulation (Cont.)
	Slide 57
	Slide 58
	Slide 59
	Slide 60: 7.6 Case Study: Card Shuffling and Dealing Simulation (Cont.)
	Slide 61
	Slide 62
	Slide 63: 7.6 Case Study: Card Shuffling and Dealing Simulation (Cont.)
	Slide 64: 7.7 Enhanced for Statement
	Slide 65
	Slide 66: 7.7 Enhanced for Statement (Cont.)
	Slide 67
	Slide 68: 7.7 Enhanced for Statement (Cont.)
	Slide 69: 7.8 Passing Arrays to Methods
	Slide 70
	Slide 71
	Slide 72
	Slide 73: 7.9 Pass-By-Value vs. Pass-By-Reference
	Slide 74: 7.9 Pass-By-Value vs. Pass-By-Reference (Cont.)
	Slide 75
	Slide 76: 7.10 Case Study: Class GradeBook Using an Array to Store Grades
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84: 7.10 Case Study: Class GradeBook Using an Array to Store Grades (Cont.)
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89: 7.10 Case Study: Class GradeBook Using an Array to Store Grades (Cont.)
	Slide 90: 7.11 Multidimensional Arrays
	Slide 91
	Slide 92: 7.11 Multidimensional Arrays (Cont.)
	Slide 93: 7.11 Multidimensional Arrays (Cont.)
	Slide 94: 7.11 Multidimensional Arrays (Cont.)
	Slide 95: 7.11 Multidimensional Arrays (Cont.)
	Slide 96
	Slide 97
	Slide 98: 7.12 Case Study: Class GradeBook Using a Two-Dimensional Array
	Slide 99
	Slide 100
	Slide 101
	Slide 102
	Slide 103
	Slide 104
	Slide 105
	Slide 106
	Slide 107
	Slide 108
	Slide 109
	Slide 110
	Slide 111: 7.13 Variable-Length Argument Lists
	Slide 112
	Slide 113
	Slide 114
	Slide 115: 7.14 Using Command-Line Arguments
	Slide 116
	Slide 117
	Slide 118
	Slide 119: 7.15 Class Arrays
	Slide 120
	Slide 121
	Slide 122
	Slide 123
	Slide 124
	Slide 125
	Slide 126: 7.15 Class Arrays
	Slide 127: 7.16 Introduction to Collections and Class ArrayList
	Slide 128
	Slide 129: 7.16 Introduction to Collections and Class ArrayList (Cont.)
	Slide 130: 7.16 Introduction to Collections and Class ArrayList (Cont.)
	Slide 131
	Slide 132
	Slide 133
	Slide 134
	Slide 135
	Slide 136
	Slide 137
	Slide 138: 7.16 Introduction to Collections and Class ArrayList (Cont.)
	Slide 139: 7.16 Introduction to Collections and Class ArrayList (Cont.)
	Slide 140: 7.17 (Optional) GUI and Graphics Case Study: Drawing Arcs

