
Java™ How to Program, 10/e

© Copyright 1992-2015 by Pearson Education, Inc. All Rights 
Reserved.



© Copyright 1992-2015 by Pearson 
Education, Inc. All Rights Reserved.



© Copyright 1992-2015 by Pearson 
Education, Inc. All Rights Reserved.



 Best way to develop and maintain a large program is to 

construct it from small, simple pieces, or modules. 

▪ divide and conquer. 

 Topics in this chapter

▪ static methods

▪ Method-call stack

▪ Simulation techniques with random-number generation.

▪ How to declare values that cannot change (i.e., constants) in 

your programs. 

▪ Method overloading.

© Copyright 1992-2015 by Pearson 
Education, Inc. All Rights Reserved.



 Java programs combine new methods and classes that 

you write with predefined methods and classes 

available in the Java Application Programming 

Interface and in other class libraries. 

 Related classes are typically grouped into packages so 

that they can be imported into programs and reused. 

▪ You’ll learn how to group your own classes into packages in 

Section 21.4.10. 

© Copyright 1992-2015 by Pearson 
Education, Inc. All Rights Reserved.



© Copyright 1992-2015 by Pearson 
Education, Inc. All Rights Reserved.



Divide and Conquer with Classes and Methods

 Classes and methods help you modularize a program by 
separating its tasks into self-contained units. 

 Statements in method bodies
▪ Written only once

▪ Hidden from other methods

▪ Can be reused from several locations in a program

 Divide-and-conquer approach
▪ Constructing programs from small, simple pieces

 Software reusability
▪ Use existing classes and methods as building blocks to create new 

pro-grams. 

 Dividing a program into meaningful methods makes the 
program easier to debug and maintain.

© Copyright 1992-2015 by Pearson 
Education, Inc. All Rights Reserved.



© Copyright 1992-2015 by Pearson 
Education, Inc. All Rights Reserved.



© Copyright 1992-2015 by Pearson 
Education, Inc. All Rights Reserved.



© Copyright 1992-2015 by Pearson 
Education, Inc. All Rights Reserved.



Hierarchical Relationship Between Method Calls

 Hierarchical form of management (Fig. 6.1). 

▪ A boss (the caller) asks a worker (the called method) to 

perform a task and report back (return) the results after 

completing the task. 

▪ The boss method does not know how the worker method 

performs its designated tasks. 

▪ The worker may also call other worker methods, unbeknown to 

the boss. 

 “Hiding” of implementation details promotes good 

software engineering. 

© Copyright 1992-2015 by Pearson 
Education, Inc. All Rights Reserved.



© Copyright 1992-2015 by Pearson 
Education, Inc. All Rights Reserved.



© Copyright 1992-2015 by Pearson 
Education, Inc. All Rights Reserved.



 Sometimes a method performs a task that does not depend on an 
object. 
▪ Applies to the class in which it’s declared as a whole 

▪ Known as a static method or a class method

 It’s common for classes to contain convenient static methods 
to perform common tasks. 

 To declare a method as static, place the keyword static
before the return type in the method’s declaration. 

 Calling a static method 
 ClassName.methodName(arguments)

© Copyright 1992-2015 by Pearson 
Education, Inc. All Rights Reserved.



Math Class Methods

 Class Math provides a collection of static methods 
that enable you to perform common mathematical 
calculations. 

 Method arguments may be constants, variables or 
expressions. 

© Copyright 1992-2015 by Pearson 
Education, Inc. All Rights Reserved.



© Copyright 1992-2015 by Pearson 
Education, Inc. All Rights Reserved.



© Copyright 1992-2015 by Pearson 
Education, Inc. All Rights Reserved.



© Copyright 1992-2015 by Pearson 
Education, Inc. All Rights Reserved.



 Recall that each object of a class maintains its own copy of 

every instance variable of the class. 

 There are variables for which each object of a class does not

need its own separate copy (as you’ll see momentarily). 

 Such variables are declared static and are also known as class 

variables. 

 When objects of a class containing static variables are 

created, all the objects of that class share one copy of those 

variables. 

 Together a class’s static variables and instance variables are 

known as its fields. 

 You’ll learn more about static fields in Section 8.11.

© Copyright 1992-2015 by Pearson 
Education, Inc. All Rights Reserved.



Math Class static Constants PI and E

 Math fields for commonly used mathematical constants

▪ Math.PI (3.141592653589793)

▪ Math.E (2.718281828459045)

 Declared in class Math with the modifiers public, final
and static

▪ public allows you to use these fields in your own classes. 

▪ A field declared with keyword final is constant—its value 

cannot change after the field is initialized. 

© Copyright 1992-2015 by Pearson 
Education, Inc. All Rights Reserved.



Why is method main declared static?

 The JVM attempts to invoke the main method of the 

class you specify—at this point no objects of the class 

have been created. 

 Declaring main as static allows the JVM to invoke 

main without creating an instance of the class. 

© Copyright 1992-2015 by Pearson 
Education, Inc. All Rights Reserved.



 Multiple parameters are specified as a comma-

separated list. 

 There must be one argument in the method call for each 

parameter (sometimes called a formal parameter) in the 

method declaration. 

 Each argument must be consistent with the type of the 

corresponding parameter. 

© Copyright 1992-2015 by Pearson 
Education, Inc. All Rights Reserved.



© Copyright 1992-2015 by Pearson 
Education, Inc. All Rights Reserved.



© Copyright 1992-2015 by Pearson 
Education, Inc. All Rights Reserved.



© Copyright 1992-2015 by Pearson 
Education, Inc. All Rights Reserved.



© Copyright 1992-2015 by Pearson 
Education, Inc. All Rights Reserved.



© Copyright 1992-2015 by Pearson 
Education, Inc. All Rights Reserved.



© Copyright 1992-2015 by Pearson 
Education, Inc. All Rights Reserved.



Implementing method maximum by reusing method 

Math.max

 Two calls to Math.max, as follows:

▪ return Math.max(x, Math.max( y, z ));

 The first specifies arguments x and Math.max(y, z). 

 Before any method can be called, its arguments must be 

evaluated to determine their values. 

 If an argument is a method call, the method call must be 

performed to determine its return value. 

 The result of the first call is passed as the second argument to 

the other call, which returns the larger of its two arguments.

© Copyright 1992-2015 by Pearson 
Education, Inc. All Rights Reserved.



Assembling Strings with String Concatenation

 String concatenation 
▪ Assemble String objects into larger strings with operators + or +=. 

 When both operands of operator + are Strings, operator +
creates a new String object 
▪ characters of the right operand are placed at the end of those in the left 

operand

 Every primitive value and object in Java can be represented as a 
String. 

 When one of the + operator’s operands is a String, the other is 
converted to a String, then the two are concatenated. 

 If a boolean is concatenated with a String, the boolean is 
converted to the String "true" or "false". 

 All objects have a toString method that returns a String
representation of the object. 

© Copyright 1992-2015 by Pearson 
Education, Inc. All Rights Reserved.



© Copyright 1992-2015 by Pearson 
Education, Inc. All Rights Reserved.



© Copyright 1992-2015 by Pearson 
Education, Inc. All Rights Reserved.



 Three ways to call a method: 

▪ Using a method name by itself to call another method of the 

same class

▪ Using a variable that contains a reference to an object, 

followed by a dot (.) and the method name to call a method of 

the referenced object

▪ Using the class name and a dot (.) to call a static method 

of a class

© Copyright 1992-2015 by Pearson 
Education, Inc. All Rights Reserved.



 Non-static methods are typically called instance 

methods. 

 A static method can call other static methods of 

the same class directly and can manipulate static
variables in the same class directly. 

▪ To access the class’s instance variables and instance methods, a 

static method must use a reference to an object of the class. 

© Copyright 1992-2015 by Pearson 
Education, Inc. All Rights Reserved.



 Three ways to return control to the statement that calls 

a method: 

▪ When the program flow reaches the method-ending right brace 

▪ When the following statement executes

return;

▪ When the method returns a result with a statement like

return expression;

© Copyright 1992-2015 by Pearson 
Education, Inc. All Rights Reserved.



© Copyright 1992-2015 by Pearson 
Education, Inc. All Rights Reserved.



© Copyright 1992-2015 by Pearson 
Education, Inc. All Rights Reserved.



© Copyright 1992-2015 by Pearson 
Education, Inc. All Rights Reserved.



© Copyright 1992-2015 by Pearson 
Education, Inc. All Rights Reserved.



 Stack data structure 

▪ Analogous to a pile of dishes 

▪ A dish is placed on the pile at the top (referred to as pushing 

the dish onto the stack). 

▪ A dish is removed from the pile from the top (referred to as 

popping the dish off the stack). 

 Last-in, first-out (LIFO) data structures

▪ The last item pushed onto the stack is the first item popped 

from the stack. 

© Copyright 1992-2015 by Pearson 
Education, Inc. All Rights Reserved.



 When a program calls a method, the called method must know 
how to return to its caller

▪ The return address of the calling method is pushed onto the  
method-call stack. 

 If a series of method calls occurs, the successive return 
addresses are pushed onto the stack in last-in, first-out order.

 The method call stack also contains the memory for the local 
variables (including the method parameters) used in each 
invocation of a method during a program’s execution. 

▪ Stored as a portion of the method call stack known as the  
stack frame (or activation record) of the method call. 

© Copyright 1992-2015 by Pearson 
Education, Inc. All Rights Reserved.



 When a method call is made, the stack frame for that 

method call is pushed onto the method call stack. 

 When the method returns to its caller, the stack frame is 

popped off the stack and those local variables are no 

longer known to the program. 

 If more method calls occur than can have their stack 

frames stored on the program-execution stack, an error 

known as a stack overflow occurs. 

© Copyright 1992-2015 by Pearson 
Education, Inc. All Rights Reserved.



 Argument promotion
▪ Converting an argument’s value, if possible, to the type that the 

method expects to receive in its corresponding parameter. 

 Conversions may lead to compilation errors if Java’s 
promotion rules are not satisfied. 

 Promotion rules 
▪ specify which conversions are allowed.
▪ apply to expressions containing values of two or more primitive 

types and to primitive-type values passed as arguments to methods. 

 Each value is promoted to the “highest” type in the 
expression. 

 Figure 6.4 lists the primitive types and the types to which 
each can be promoted. 

© Copyright 1992-2015 by Pearson 
Education, Inc. All Rights Reserved.



© Copyright 1992-2015 by Pearson 
Education, Inc. All Rights Reserved.



 Converting values to types lower in the table of Fig. 6.4 

will result in different values if the lower type cannot 

represent the value of the higher type

 In cases where information may be lost due to 

conversion, the Java compiler requires you to use a cast 

operator to explicitly force the conversion to occur—

otherwise a compilation error occurs. 

© Copyright 1992-2015 by Pearson 
Education, Inc. All Rights Reserved.



 Java contains many predefined classes that are grouped 

into categories of related classes called packages. 

 A great strength of Java is the Java API’s thousands of 

classes. 

 Some key Java API packages that we use in this book 

are described in Fig. 6.5. 

 Overview of the packages in Java: 
 http://docs.oracle.com/javase/7/docs/api/
overview-summary.html

 http://download.java.net/jdk8/docs/api/
overview-summary.html

© Copyright 1992-2015 by Pearson 
Education, Inc. All Rights Reserved.



© Copyright 1992-2015 by Pearson 
Education, Inc. All Rights Reserved.



© Copyright 1992-2015 by Pearson 
Education, Inc. All Rights Reserved.



© Copyright 1992-2015 by Pearson 
Education, Inc. All Rights Reserved.



© Copyright 1992-2015 by Pearson 
Education, Inc. All Rights Reserved.



 Simulation and game playing
▪ element of chance

▪ Class SecureRandom (package java.security) 

 Such objects can produce random boolean, byte, 
float, double, int, long and Gaussian values

 SecureRandom objects produce nondeterministic 
random numbers that cannot be predicted. 

 Documentation for class SecureRandom
 docs.oracle.com/javase/7/docs/api/java/
security/SecureRandom.html

© Copyright 1992-2015 by Pearson 
Education, Inc. All Rights Reserved.



 The range of values produced by SecureRandom
method nextInt often differs from the range of 
values required in a particular Java application. 

 SecureRandom method nextInt that receives an 
int argument returns a value from 0 up to, but not 
including, the argument’s value. 

© Copyright 1992-2015 by Pearson 
Education, Inc. All Rights Reserved.



Rolling a Six-Sided Die
▪ face = 1 + randomNumbers.nextInt(6);

 The argument 6—called the scaling factor—represents the 

number of unique values that nextInt should produce (0–5)

 This is called scaling the range of values

 A six-sided die has the numbers 1–6 on its faces, not 0–5. 

 We shift the range of numbers produced by adding a shifting 

value—in this case 1—to our previous result, as in 

 The shifting value (1) specifies the first value in the desired 

range of random integers. 

© Copyright 1992-2015 by Pearson 
Education, Inc. All Rights Reserved.



© Copyright 1992-2015 by Pearson 
Education, Inc. All Rights Reserved.



© Copyright 1992-2015 by Pearson 
Education, Inc. All Rights Reserved.



 Fig 6.7: Rolling a Six-Sided Die 6,000,000 Times

© Copyright 1992-2015 by Pearson 
Education, Inc. All Rights Reserved.



© Copyright 1992-2015 by Pearson 
Education, Inc. All Rights Reserved.



© Copyright 1992-2015 by Pearson 
Education, Inc. All Rights Reserved.



© Copyright 1992-2015 by Pearson 
Education, Inc. All Rights Reserved.



 Basic rules for the dice game Craps:

▪ You roll two dice. Each die has six faces, which contain one, 
two, three, four, five and six spots, respectively. After the dice 
have come to rest, the sum of the spots on the two upward 
faces is calculated. If the sum is 7 or 11 on the first throw, you 
win. If the sum is 2, 3 or 12 on the first throw (called “craps”), 
you lose (i.e., the “house” wins). If the sum is 4, 5, 6, 8, 9 or 10 
on the first throw, that sum becomes your “point.” To win, you 
must continue rolling the dice until you “make your point” (i.e., 
roll that same point value). You lose by rolling a 7 before 
making your point. 

© Copyright 1992-2015 by Pearson 
Education, Inc. All Rights Reserved.



© Copyright 1992-2015 by Pearson 
Education, Inc. All Rights Reserved.



© Copyright 1992-2015 by Pearson 
Education, Inc. All Rights Reserved.



© Copyright 1992-2015 by Pearson 
Education, Inc. All Rights Reserved.



© Copyright 1992-2015 by Pearson 
Education, Inc. All Rights Reserved.



© Copyright 1992-2015 by Pearson 
Education, Inc. All Rights Reserved.



 Notes:

▪ myPoint is initialized to 0 to ensure that the application will 

compile. 

▪ If you do not initialize myPoint, the compiler issues an error, 

because myPoint is not assigned a value in every case of 

the switch statement, and thus the program could try to use 

myPoint before it is assigned a value. 

▪ gameStatus is assigned a value in every case of the 

switch statement (including the default case)—thus, it’s 

guaranteed to be initialized before it’s used, so we do not need 

to initialize it.

© Copyright 1992-2015 by Pearson 
Education, Inc. All Rights Reserved.



enum type Status
 An enum type in its simplest form declares a set of constants 

represented by identifiers. 

 Special kind of class that is introduced by the keyword enum
and a type name.

 Braces delimit an enum declaration’s body. 

 Inside the braces is a comma-separated list of enum constants, 

each representing a unique value. 

 The identifiers in an enum must be unique. 

 Variables of an enum type can be assigned only the constants 

declared in the enum. 

© Copyright 1992-2015 by Pearson 
Education, Inc. All Rights Reserved.



© Copyright 1992-2015 by Pearson 
Education, Inc. All Rights Reserved.



© Copyright 1992-2015 by Pearson 
Education, Inc. All Rights Reserved.



Why Some Constants Are Not Defined as enum
Constants

 Java does not allow an int to be compared to an enum
constant. 

 Java does not provide an easy way to convert an int value to 

a particular enum constant. 

 Translating an int into an enum constant could be done with 

a separate switch statement. 

 This would be cumbersome and would not improve the 

readability of the program (thus defeating the purpose of using 

an enum).

© Copyright 1992-2015 by Pearson 
Education, Inc. All Rights Reserved.



 Declarations introduce names that can be used to refer 

to such Java entities. 

 The scope of a declaration is the portion of the program 

that can refer to the declared entity by its name. 

▪ Such an entity is said to be “in scope” for that portion of the 

program. 

© Copyright 1992-2015 by Pearson 
Education, Inc. All Rights Reserved.



 Basic scope rules:
▪ The scope of a parameter declaration is the body of the method in 

which the declaration appears. 

▪ The scope of a local-variable declaration is from the point at which 
the declaration appears to the end of that block. 

▪ The scope of a local-variable declaration that appears in the 
initialization section of a for statement’s header is the body of the 
for statement and the other expressions in the header. 

▪ A method or field’s scope is the entire body of the class. 

 Any block may contain variable declarations. 

 If a local variable or parameter in a method has the same 
name as a field of the class, the field is hidden until the 
block terminates execution—this is called shadowing. 

© Copyright 1992-2015 by Pearson 
Education, Inc. All Rights Reserved.



© Copyright 1992-2015 by Pearson 
Education, Inc. All Rights Reserved.



© Copyright 1992-2015 by Pearson 
Education, Inc. All Rights Reserved.



© Copyright 1992-2015 by Pearson 
Education, Inc. All Rights Reserved.



© Copyright 1992-2015 by Pearson 
Education, Inc. All Rights Reserved.



 Method overloading 
▪ Methods of the same name declared in the same class
▪ Must have different sets of parameters

 Compiler selects the appropriate method to call by examining the 
number, types and order of the arguments in the call. 

 Used to create several methods with the same name that perform 
the same or similar tasks, but on different types or different 
numbers of arguments. 

 Literal integer values are treated as type int, so the method call 
in line 9 invokes the version of square that specifies an int
parameter. 

 Literal floating-point values are treated as type double, so the 
method call in line 10 invokes the version of square that 
specifies a double parameter. 

© Copyright 1992-2015 by Pearson 
Education, Inc. All Rights Reserved.



© Copyright 1992-2015 by Pearson 
Education, Inc. All Rights Reserved.



© Copyright 1992-2015 by Pearson 
Education, Inc. All Rights Reserved.



Distinguishing Between Overloaded Methods

 The compiler distinguishes overloaded methods by their 
signatures—the methods’ name and the number, types and 
order of its parameters. 

 Return types of overloaded methods
▪ Method calls cannot be distinguished by return type. 

 Figure 6.10 illustrates the errors generated when two 
methods have the same signature and different return types. 

 Overloaded methods can have different return types if the 
methods have different parameter lists. 

 Overloaded methods need not have the same number of 
parameters. 

© Copyright 1992-2015 by Pearson 
Education, Inc. All Rights Reserved.



© Copyright 1992-2015 by Pearson 
Education, Inc. All Rights Reserved.



 Colors displayed on computer screens are defined by 
their red, green, and blue components (called RGB 
values) that have integer values from 0 to 255. 

 The higher the value of a component color, the richer 
that color’s shade will be. 

 Java uses class Color (package java.awt) to 
represent colors using their RGB values. 

 Class Color contains various predefined static
Color objects—BLACK, BLUE, CYAN, DARK_GRAY, 
GRAY, GREEN, LIGHT_GRAY, MAGENTA, ORANGE, 
PINK, RED, WHITE and YELLOW. 

© Copyright 1992-2015 by Pearson 
Education, Inc. All Rights Reserved.



 You can create custom colors by passing the red-, 

green- and blue-component values to class Color’s 

constructor:
 public Color(int r, int g, int b)

 Graphics methods fillRect and fillOval draw filled 

rectangles and ovals, respectively. 

 Graphics method setColor sets the current drawing 

color. 

© Copyright 1992-2015 by Pearson 
Education, Inc. All Rights Reserved.



© Copyright 1992-2015 by Pearson 
Education, Inc. All Rights Reserved.



© Copyright 1992-2015 by Pearson 
Education, Inc. All Rights Reserved.



© Copyright 1992-2015 by Pearson 
Education, Inc. All Rights Reserved.



© Copyright 1992-2015 by Pearson 
Education, Inc. All Rights Reserved.



© Copyright 1992-2015 by Pearson 
Education, Inc. All Rights Reserved.



© Copyright 1992-2015 by Pearson 
Education, Inc. All Rights Reserved.


	Slide 1: Chapter 6 Methods: A Deeper Look 
	Slide 2
	Slide 3
	Slide 4: 6.1  Introduction 
	Slide 5: 6.2  Program Modules in Java 
	Slide 6
	Slide 7: 6.2  Program Modules in Java (Cont.)
	Slide 8
	Slide 9
	Slide 10
	Slide 11: 6.2  Program Modules in Java (Cont.)
	Slide 12
	Slide 13
	Slide 14: 6.3  static Methods, static Fields and Class Math 
	Slide 15: 6.3  static Methods, static Fields and Class Math (Cont.)
	Slide 16
	Slide 17
	Slide 18
	Slide 19: 6.3  static Methods, static Fields and Class Math (Cont.)
	Slide 20: 6.3  static Methods, static Fields and Class Math (Cont.)
	Slide 21: 6.3  static Methods, static Fields and Class Math (Cont.)
	Slide 22: 6.4  Declaring Methods with Multiple Parameters
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29: 6.4  Declaring Methods with Multiple Parameters (Cont.)
	Slide 30: 6.4  Declaring Methods with Multiple Parameters (Cont.)
	Slide 31
	Slide 32
	Slide 33: 6.5  Notes on Declaring and Using Methods
	Slide 34: 6.5  Notes on Declaring and Using Methods (Cont.)
	Slide 35: 6.5  Notes on Declaring and Using Methods (Cont.)
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40: 6.6  Method-Call Stack and Stack Frames
	Slide 41: 6.6  Method-Call Stack and Activation Records (Cont.)
	Slide 42: 6.6  Method-Call Stack and Activation Records (Cont.)
	Slide 43: 6.7  Argument Promotion and Casting
	Slide 44
	Slide 45: 6.7  Argument Promotion and Casting (Cont.)
	Slide 46: 6.8  Java API Packages
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51: 6.9  Case Study: Secure Random-Number Generation
	Slide 52: 6.9  Case Study: Random-Number Generation (Cont.)
	Slide 53: 6.9  Case Study: Random-Number Generation (Cont.)
	Slide 54
	Slide 55
	Slide 56: 6.9  Case Study: Random-Number Generation (Cont.)
	Slide 57
	Slide 58
	Slide 59
	Slide 60: 6.10  Case Study: A Game of Chance; Introducing enum Types
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66: 6.10  Case Study: A Game of Chance; Introducing enum Types (Cont.)
	Slide 67: 6.10  Case Study: A Game of Chance; Introducing Enumerations (Cont.)
	Slide 68
	Slide 69
	Slide 70: 6.10  Case Study: A Game of Chance; Introducing Enumerations (Cont.)
	Slide 71: 6.11  Scope of Declarations 
	Slide 72: 6.11  Scope of Declarations (Cont.)
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77: 6.12  Method Overloading
	Slide 78
	Slide 79
	Slide 80: 6.12  Method Overloading (cont.)
	Slide 81
	Slide 82: 6.13  (Optional) GUI and Graphics Case Study: Colors and Filled Shapes
	Slide 83: 6.13  (Optional) GUI and Graphics Case Study: Colors and Filled Shapes (Cont.)
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89

