
Java™ How to Program, 10/e

© Copyright 1992-2015 by Pearson Education, Inc. All Rights
Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

 for repetition statement

 do…while repetition statement

 switch multiple-selection statement

 break statement

 continue statement

 Logical operators

 Control statements summary.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

 Counter-controlled repetition requires

▪ a control variable (or loop counter)

▪ the initial value of the control variable

▪ the increment by which the control variable is modified each

time through the loop (also known as each iteration of the

loop)

▪ the loop-continuation condition that determines if looping

should continue.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

 In Fig. 5.1, the elements of counter-controlled
repetition are defined in lines 8, 10 and 13.

 Line 8 declares the control variable (counter) as an
int, reserves space for it in memory and sets its initial
value to 1.

 The loop-continuation condition in the while (line 10)
tests whether the value of the control variable is less
than or equal to 10 (the final value for which the
condition is true).

 Line 13 increments the control variable by 1 for each
iteration of the loop.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

 for repetition statement

▪ Specifies the counter-controlled-repetition details in a single

line of code.

▪ Figure 5.2 reimplements the application of Fig. 5.1 using for.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

 When the for statement begins executing, the control variable is
declared and initialized.

 Next, the program checks the loop-continuation condition, which
is between the two required semicolons.

 If the condition initially is true, the body statement executes.

 After executing the loop’s body, the program increments the
control variable in the increment expression, which appears to
the right of the second semicolon.

 Then the loop-continuation test is performed again to determine
whether the program should continue with the next iteration of
the loop.

 A common logic error with counter-controlled repetition is an
off-by-one error.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

 The general format of the for statement is
for (initialization; loopContinuationCondition; increment)

statement

▪ the initialization expression names the loop’s control variable

and optionally provides its initial value

▪ loopContinuationCondition determines whether the loop

should continue executing

▪ increment modifies the control variable’s value, so that the

loop-continuation condition eventually becomes false.

 The two semicolons in the for header are required.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

 The for statement often can be represented with an equivalent
while statement as follows:

initialization;
while (loopContinuationCondition)
{

statement
increment;

}

 Typically, for statements are used for counter-controlled
repetition and while statements for sentinel-controlled
repetition.

 If the initialization expression in the for header declares the
control variable, the control variable can be used only in that
for statement.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

 A variable’s scope defines where it can be used in a program.
▪ A local variable can be used only in the method that declares it and only

from the point of declaration through the end of the method.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

 All three expressions in a for header are optional.
▪ If the loopContinuationCondition is omitted, the condition is always

true, thus creating an infinite loop.

▪ You might omit the initialization expression if the program initializes
the control variable before the loop.

▪ You might omit the increment if the program calculates it with
statements in the loop’s body or if no increment is needed.

 The increment expression in a for acts as if it were a
standalone statement at the end of the for’s body, so

counter = counter + 1
counter += 1
++counter
counter++

are equivalent increment expressions in a for statement.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

 The initialization, loop-continuation condition and

increment can contain arithmetic expressions.

 For example, assume that x = 2 and y = 10. If x and y
are not modified in the body of the loop, the statement

for (int j = x; j <= 4 * x * y; j += y / x)

 is equivalent to the statement
for (int j = 2; j <= 80; j += 5)

 The increment of a for statement may be negative, in

which case it’s a decrement, and the loop counts

downward.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

 a)Vary the control variable from 1 to 100 in
increments of 1.

for (int i = 1; i <= 100; i++)

 b)Vary the control variable from 100 to 1 in
decrements of 1.

for (int i = 100; i >= 1; i--)

 c)Vary the control variable from 7 to 77 in increments
of 7.

for (int i = 7; i <= 77; i += 7)

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

 d)Vary the control variable from 20 to 2 in decrements
of 2.

for (int i = 20; i >= 2; i -= 2)

 e)Vary the control variable over the values 2, 5, 8, 11,
14, 17, 20.

for (int i = 2; i <= 20; i += 3)

 f)Vary the control variable over the values 99, 88, 77,
66, 55, 44, 33, 22, 11, 0.

for (int i = 99; i >= 0; i -= 11)

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

 The initialization and increment expressions can be
comma-separated lists that enable you to use multiple
initialization expressions or multiple increment
expressions.

 Although this is discouraged, the body of the for
statement in lines 11–12 of Fig. 5.5 could be merged
into the increment portion of the for header by using a
comma as follows:

for (int number = 2;
number <= 20;
total += number, number += 2)
; // empty statement

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

 Compound interest application

 A person invests $1,000 in a savings account yielding
5% interest. Assuming that all the interest is left on
deposit, calculate and print the amount of money in
the account at the end of each year for 10 years. Use
the following formula to determine the amounts:

a = p (1 + r)n

where
p is the original amount invested (i.e., the principal)
r is the annual interest rate (e.g., use 0.05 for 5%)
n is the number of years
a is the amount on deposit at the end of the nth year.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

 The solution to this problem (Fig. 5.6) involves a loop

that performs the indicated calculation for each of the

10 years the money remains on deposit.

 Java treats floating-point constants like 1000.0 and

0.05 as type double.

 Java treats whole-number constants like 7 and -22 as

type int.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

 In the format specifier %20s, the integer 20 between the %
and the conversion character s indicates that the value
output should be displayed with a field width of 20—that
is, printf displays the value with at least 20 character
positions.

 If the value to be output is less than 20 character positions
wide, the value is right justified in the field by default.

 If the year value to be output were more thanhas more
characters than the field width, the field width would be
extended to the right to accommodate the entire value.

 To indicate that values should be output left justified,
precede the field width with the minus sign (–) formatting
flag (e.g., %-20s).

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

 Classes provide methods that perform common tasks on objects.

 Most methods must be called on a specific object.

 Someclasses also provide methods that perform common tasks
and do not require you to first create objects of those classes.
These are called static methods.

 Java does not include an exponentiation operator—Math class
static method pow can be used for raising a value to a power.

 You can call a static method by specifying the class name
followed by a dot (.) and the method name, as in

 ClassName.methodName(arguments)

 Math.pow(x, y) calculates the value of x raised to the yth

power. The method receives two double arguments and returns
a double value.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

 In the format specifier %,20.2f, the comma (,)
formatting flag indicates that the floating-point value
should be output with a grouping separator.

 Separator is specific to the user’s locale (i.e., country).
 In the United States, the number will be output using

commas to separate every three digits and a decimal point
to separate the fractional part of the number, as in 1,234.45.

 The number 20 in the format specification indicates that the
value should be output right justified in a field width of 20
characters.

 The .2 specifies the formatted number’s precision—in this
case, the number is rounded to the nearest hundredth and
output with two digits to the right of the decimal point.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

 The do…while repetition statement is similar to the
while statement.

 In the while, the program tests the loop-continuation
condition at the beginning of the loop, before executing
the loop’s body; if the condition is false, the body never
executes.

 The do…while statement tests the loop-continuation
condition after executing the loop’s body; therefore, the
body always executes at least once.

 When a do…while statement terminates, execution
continues with the next statement in sequence.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

 Figure 5.8 contains the UML activity diagram for the

do…while statement.

 The diagram makes it clear that the loop-continuation

condition is not evaluated until after the loop performs

the action state at least once.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

 Braces are not required in the do…while repetition

statement if there’s only one statement in the body.

 Most programmers include the braces, to avoid

confusion between the while and do…while
statements.

 Thus, the do…while statement with one body

statement is usually written as follows:
 do
{

statement
} while (condition);

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

 switch multiple-selection statement performs different

actions based on the possible values of a constant

integral expression of type byte, short, int or

char.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

 The end-of-file indicator is a system-dependent keystroke
combination which the user enters to indicate that there is no
more data to input.

 On UNIX/Linux/Mac OS X systems, end-of-file is entered by
typing the sequence

 <Ctrl> d

 on a line by itself. This notation means to simultaneously press
both the Ctrl key and the d key.

 On Windows systems, end-of-file can be entered by typing
 <Ctrl> z

 On some systems, you must press Enter after typing the end-of-
file key sequence.

 Windows typically displays the characters ^Z on the screen when
the end-of-file indicator is typed.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

 Scanner method hasNext determine whether there is

more data to input. This method returns the boolean
value true if there is more data; otherwise, it returns

false.

 As long as the end-of-file indicator has not been typed,

method hasNext will return true.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

 The switch statement consists of a block that contains a

sequence of case labels and an optional default case.

 The program evaluates the controlling expression in the

parentheses following keyword switch.

 The program compares the controlling expression’s value

(which must evaluate to an integral value of type byte,

char, short or int, or to a String) with each case label.

 If a match occurs, the program executes that case’s

statements.

 The break statement causes program control to proceed with

the first statement after the switch.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

 switch does not provide a mechanism for testing ranges of
values—every value must be listed in a separate case label.

 Note that each case can have multiple statements.

 switch differs from other control statements in that it does not
require braces around multiple statements in a case.

 Without break, the statements for a matching case and
subsequent cases execute until a break or the end of the
switch is encountered. This is called “falling through.”

 If no match occurs between the controlling expression’s value
and a case label, the default case executes.

 If no match occurs and there is no default case, program
control simply continues with the first statement after the
switch.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

 Figure 5.10 shows the UML activity diagram for the

general switch statement.

 Most switch statements use a break in each case
to terminate the switch statement after processing the

case.

 The break statement is not required for the switch’s

last case (or the optional default case, when it

appears last), because execution continues with the next

statement after the switch.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

 When using the switch statement, remember that each
case must contain a constant integral expression.

 An integer constant is simply an integer value.

 In addition, you can use character constants—specific
characters in single quotes, such as 'A', '7' or '$'—
which represent the integer values of characters.

 The expression in each case can also be a constant
variable—a variable that contains a value which does not
change for the entire program. Such a variable is declared
with keyword final.

 Java has a feature called enum types—enum type constants
can also be used in case labels.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

 Strings can be used as controlling expressions in switch

statements, and String literals can be used in case labels.

 App requirements:

▪ You’ve been hired by an auto insurance company that serves

these northeast states—Connecticut, Maine, Massachusetts,

New Hampshire, New Jersey, New York, Pennsylvania,

Rhode Island and Vermont. The company would like you to

create a program that produces a report indicating for each

of their auto insurance policies whether the policy is held in

a state with “no-fault” auto insurance—Massachusetts, New

Jersey, New York and Pennsylvania.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

 Class AutoPolicy represents an auto insurance policy. The class

contains:

 int instance variable accountNumber to store the policy’s account

number

 String instance variable makeAndModel to store the car’s make and

model (such as a "Toyota Camry")

 String instance variable state to store a two-character state

abbreviation representing the state in which the policy is held (e.g., "MA"
for Massachusetts)

 a constructor that initializes the class’s instance variables

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

 methods setAccountNumber and getAccountNumber to set and

get an AutoPolicy’s accountNumber instance variable

 methods setMakeAndModel and getMakeAndModel to set and get

an AutoPolicy’s makeAndModel instance variable

 methods setState and getState to set and get an AutoPolicy’s

state instance variable

 method isNoFaultState to return a boolean value indicating whether

the policy is held in a no-fault auto insurance state; note the method

name—the naming convention for a get method that returns a boolean

value is to begin the name with "is" rather than "get" (such a method is

commonly called a predicate method).

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

 Class AutoPolicyTest (Fig. 5.12) creates two AutoPolicy objects.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

 The break statement, when executed in a while,

for, do…while or switch, causes immediate exit

from that statement.

 Execution continues with the first statement after the

control statement.

 Common uses of the break statement are to escape

early from a loop or to skip the remainder of a

switch.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

 The continue statement, when executed in a

while, for or do…while, skips the remaining

statements in the loop body and proceeds with the next

iteration of the loop.

 In while and do…while statements, the program

evaluates the loop-continuation test immediately after

the continue statement executes.

 In a for statement, the increment expression executes,

then the program evaluates the loop-continuation test.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

 Java’s logical operators enable you to form more
complex conditions by combining simple conditions.

 The logical operators are
▪ && (conditional AND)

▪ || (conditional OR)

▪ & (boolean logical AND)

▪ | (boolean logical inclusive OR)

▪ ^ (boolean logical exclusive OR)

▪ ! (logical NOT).

 [Note: The &, | and ^ operators are also bitwise
operators when they are applied to integral operands.]

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

 The & (conditional AND) operator ensures that two

conditions are both true before choosing a certain path

of execution.

 The table in Fig. 5.15 summarizes the && operator. The

table shows all four possible combinations of false
and true values for expression1 and expression2.

 Such tables are called truth tables. Java evaluates to

false or true all expressions that include relational

operators, equality operators or logical operators.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

 The || (conditional OR) operator ensures that either

or both of two conditions are true before choosing a

certain path of execution.

 Figure 5.16 is a truth table for operator conditional OR

(||).

 Operator && has a higher precedence than operator ||.

 Both operators associate from left to right.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

 The parts of an expression containing && or ||
operators are evaluated only until it’s known whether

the condition is true or false. T

 This feature of conditional AND and conditional OR

expressions is called short-circuit evaluation.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

 The boolean logical AND (&) and boolean logical

inclusive OR (|) operators are identical to the && and

|| operators, except that the & and | operators always

evaluate both of their operands (i.e., they do not

perform short-circuit evaluation).

 This is useful if the right operand has a required side

effect—a modification of a variable’s value.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

 A simple condition containing the boolean logical

exclusive OR (^) operator is true if and only if one of

its operands is true and the other is false.

 If both are true or both are false, the entire

condition is false.

 Figure 5.17 is a truth table for the boolean logical

exclusive OR operator (^).

 This operator is guaranteed to evaluate both of its

operands.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

 The ! (logical NOT, also called logical negation or logical
complement) operator “reverses” the meaning of a
condition.

 The logical negation operator is a unary operator that has
only one condition as an operand.

 The logical negation operator is placed before a condition to
choose a path of execution if the original condition (without
the logical negation operator) is false.

 In most cases, you can avoid using logical negation by
expressing the condition differently with an appropriate
relational or equality operator.

 Figure 5.18 is a truth table for the logical negation operator.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

 Figure 5.19 produces the truth tables discussed in this

section.

 The %b format specifier displays the word “true” or

the word “false” based on a boolean expression’s

value.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

 Figure 5.21 uses UML activity diagrams to summarize
Java’s control statements.

 Java includes only single-entry/single-exit control
statements—there is only one way to enter and only one
way to exit each control statement.

 Connecting control statements in sequence to form
structured programs is simple. The final state of one control
statement is connected to the initial state of the next—that
is, the control statements are placed one after another in a
program in sequence. We call this control-statement
stacking.

 The rules for forming structured programs also allow for
control statements to be nested.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

 Structured programming promotes simplicity.

 Bohm and Jacopini: Only three forms of control are

needed to implement an algorithm:

▪ sequence

▪ selection

▪ repetition

 The sequence structure is trivial. Simply list the

statements to execute in the order in which they should

execute.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

 Selection is implemented in one of three ways:

▪ if statement (single selection)

▪ if…else statement (double selection)

▪ switch statement (multiple selection)

 The simple if statement is sufficient to provide any

form of selection—everything that can be done with the

if…else statement and the switch statement can

be implemented by combining if statements.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

 Repetition is implemented in one of three ways:

▪ while statement

▪ do…while statement

▪ for statement

 The while statement is sufficient to provide any form

of repetition. Everything that can be done with

do…while and for can be done with the while
statement.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

 Combining these results illustrates that any form of

control ever needed in a Java program can be expressed

in terms of

▪ sequence

▪ if statement (selection)

▪ while statement (repetition)

and that these can be combined in only two ways—

stacking and nesting.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

 Graphics methods drawRect and drawOval

 Method drawRect requires four arguments. The first two

represent the x- and y-coordinates of the upper-left corner of

the rectangle; the next two represent the rectangle’s width

and height.

 To draw an oval, method drawOval creates an imaginary

rectangle called a bounding rectangle and places inside it

an oval that touches the midpoints of all four sides.

 Method drawOval requires the same four arguments as

method drawRect. The arguments specify the position

and size of the bounding rectangle for the oval.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

	Slide 1: Chapter 5 Control Statements: Part 2; Logical Operators
	Slide 2
	Slide 3
	Slide 4: 5.1 Introduction
	Slide 5: 5.2 Essentials of Counter-Controlled Repetition
	Slide 6
	Slide 7: 5.2 Essentials of Counter-Controlled Repetition (Cont.)
	Slide 8
	Slide 9
	Slide 10
	Slide 11: 5.3 for Repetition Statement
	Slide 12
	Slide 13: 5.3 for Repetition Statement (Cont.)
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18: 5.3 for Repetition Statement (Cont.)
	Slide 19: 5.3 for Repetition Statement (Cont.)
	Slide 20: 5.3 for Repetition Statement (Cont.)
	Slide 21
	Slide 22: 5.3 for Repetition Statement (Cont.)
	Slide 23
	Slide 24
	Slide 25: 5.3 for Repetition Statement (Cont.)
	Slide 26
	Slide 27
	Slide 28: 5.4 Examples Using the for Statement
	Slide 29: 5.4 Examples Using the for Statement (Cont.)
	Slide 30
	Slide 31
	Slide 32
	Slide 33: 5.4 Examples Using the for Statement (Cont.)
	Slide 34
	Slide 35: 5.4 Examples Using the for Statement (Cont.)
	Slide 36: 5.4 Examples Using the for Statement (Cont.)
	Slide 37
	Slide 38
	Slide 39: 5.4 Examples Using the for Statement (Cont.)
	Slide 40: 5.4 Examples Using the for Statement (Cont.)
	Slide 41
	Slide 42: 5.4 Examples Using the for Statement (Cont.)
	Slide 43
	Slide 44: 5.5 do…while Repetition Statement
	Slide 45
	Slide 46: 5.5 do…while Repetition Statement (Cont.)
	Slide 47
	Slide 48: 5.5 do…while Repetition Statement (Cont.)
	Slide 49
	Slide 50: 5.6 switch Multiple-Selection Statement
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56: 5.6 switch Multiple-Selection Statement (Cont.)
	Slide 57
	Slide 58: 5.6 switch Multiple-Selection Statement (Cont.)
	Slide 59: 5.6 switch Multiple-Selection Statement (Cont.)
	Slide 60: 5.6 switch Multiple-Selection Statement (Cont.)
	Slide 61
	Slide 62
	Slide 63: 5.6 switch Multiple-Selection Statement (Cont.)
	Slide 64
	Slide 65
	Slide 66
	Slide 67: 5.6 switch Multiple-Selection Statement (Cont.)
	Slide 68: 5.7 Class AutoPolicy Case Study: Strings in switch Statements
	Slide 69: 5.7 Class AutoPolicy Case Study: Strings in switch Statements (Cont.)
	Slide 70
	Slide 71
	Slide 72
	Slide 73: 5.7 Class AutoPolicy Case Study: Strings in switch Statements (Cont.)
	Slide 74: 5.7 Class AutoPolicy Case Study: Strings in switch Statements (Cont.)
	Slide 75
	Slide 76
	Slide 77: 5.8 break and continue Statements
	Slide 78
	Slide 79: 5.8 break and continue Statements (Cont.)
	Slide 80
	Slide 81
	Slide 82
	Slide 83: 5.9 Logical Operators
	Slide 84: 5.9 Logical Operators (Cont.)
	Slide 85
	Slide 86: 5.9 Logical Operators (Cont.)
	Slide 87
	Slide 88: 5.9 Logical Operators (Cont.)
	Slide 89
	Slide 90: 5.9 Logical Operators (Cont.)
	Slide 91
	Slide 92
	Slide 93: 5.9 Logical Operators (Cont.)
	Slide 94
	Slide 95: 5.9 Logical Operators (Cont.)
	Slide 96
	Slide 97: 5.9 Logical Operators (Cont.)
	Slide 98
	Slide 99
	Slide 100
	Slide 101
	Slide 102
	Slide 103: 5.10 Structured Programming Summary
	Slide 104
	Slide 105
	Slide 106
	Slide 107
	Slide 108
	Slide 109
	Slide 110
	Slide 111: 5.10 Structured Programming Summary (Cont.)
	Slide 112: 5.10 Structured Programming Summary (Cont.)
	Slide 113: 5.10 Structured Programming Summary (Cont.)
	Slide 114: 5.10 Structured Programming Summary (Cont.)
	Slide 115: 5.11 (Optional) GUI and Graphics Case Study: Drawing Rectangles and Ovals
	Slide 116
	Slide 117
	Slide 118
	Slide 119
	Slide 120

