
Java™ How to Program, 10/e

© Copyright 1992-2015 by Pearson Education, Inc. All Rights
Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

 Before writing a program to solve a problem, have a

thorough understanding of the problem and a carefully

planned approach to solving it.

 Understand the types of building blocks that are

available and employ proven program-construction

techniques.

 In this chapter we discuss

▪ Java’s if, if…else and while statements

▪ Compound assignment, increment and decrement operators

▪ Portability of Java’s primitive types

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

 Any computing problem can be solved by executing a series of
actions in a specific order.

 An algorithm is a procedure for solving a problem in terms of
▪ the actions to execute and
▪ the order in which these actions execute

 The “rise-and-shine algorithm” followed by one executive for
getting out of bed and going to work:
▪ (1) Get out of bed; (2) take off pajamas; (3) take a shower; (4) get

dressed; (5) eat breakfast; (6) carpool to work.

 Suppose that the same steps are performed in a slightly different
order:
▪ (1) Get out of bed; (2) take off pajamas; (3) get dressed; (4) take a

shower; (5) eat breakfast; (6) carpool to work.

 Specifying the order in which statements (actions) execute in a
program is called program control.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

 Pseudocode is an informal language that helps you develop algorithms
without having to worry about the strict details of Java language
syntax.

 Particularly useful for developing algorithms that will be converted to
structured portions of Java programs.

 Similar to everyday English.

 Helps you “think out” a program before attempting to write it in a
programming language, such as Java.

 You can type pseudocode conveniently, using any text-editor program.

 Carefully prepared pseudocode can easily be converted to a
corresponding Java program.

 Pseudocode normally describes only statements representing the
actions that occur after you convert a program from pseudocode to Java
and the program is run on a computer.
▪ e.g., input, output or calculations.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

 Sequential execution: Statements in a program execute one after
the other in the order in which they are written.

 Transfer of control: Various Java statements, enable you to
specify that the next statement to execute is not necessarily the
next one in sequence.

 Bohm and Jacopini
▪ Demonstrated that programs could be written without any goto

statements.
▪ All programs can be written in terms of only three control structures—

the sequence structure, the selection structure and the repetition
structure.

 When we introduce Java’s control-structure implementations,
we’ll refer to them in the terminology of the Java Language
Specification as “control statements.”

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

Sequence Structure in Java

 Built into Java.

 Unless directed otherwise, the computer executes Java

statements one after the other in the order in which they’re

written.

 The activity diagram in Fig. 4.1 illustrates a typical sequence

structure in which two calculations are performed in order.

 Java lets you have as many actions as you want in a sequence

structure.

 Anywhere a single action may be placed, we may place

several actions in sequence.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

 UML activity diagram
 Models the workflow (also called the activity) of a portion of a

software system.
 May include a portion of an algorithm, like the sequence

structure in Fig. 4.1.
 Composed of symbols

▪ action-state symbols (rectangles with their left and right sides replaced
with outward arcs)

▪ diamonds
▪ small circles

 Symbols connected by transition arrows, which represent the
flow of the activity—the order in which the actions should occur.

 Help you develop and represent algorithms.
 Clearly show how control structures operate.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

 Sequence-structure activity diagram in Fig. 4.1.

 Two action states that represent actions to perform.

 Each contains an action expression that specifies a
particular action to perform.

 Arrows represent transitions (order in which the actions
represented by the action states occur).

 Solid circle at the top represents the initial state—the
beginning of the workflow before the program performs the
modeled actions.

 Solid circle surrounded by a hollow circle at the bottom
represents the final state—the end of the workflow after the
program performs its actions.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

 UML notes

▪ Like comments in Java.

▪ Rectangles with the upper-right corners folded over.

▪ Dotted line connects each note with the element it describes.

▪ Activity diagrams normally do not show the Java code that

implements the activity. We do this here to illustrate how the

diagram relates to Java code.

 More information on the UML

▪ see our optional case study (Chapters 33–34)

▪ visit www.uml.org

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

Selection Statements in Java

 Three types of selection statements.
 if statement:

▪ Performs an action, if a condition is true; skips it, if false.
▪ Single-selection statement—selects or ignores a single action (or

group of actions).

 if…else statement:
▪ Performs an action if a condition is true and performs a different

action if the condition is false.
▪ Double-selection statement—selects between two different actions

(or groups of actions).

 switch statement
▪ Performs one of several actions, based on the value of an expression.
▪ Multiple-selection statement—selects among many different actions

(or groups of actions).

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

Repetition Statements in Java

 Three repetition statements (also called iteration statements or

looping statements)

▪ Perform statements repeatedly while a loop-continuation condition

remains true.

 while and for statements perform the action(s) in their

bodies zero or more times

▪ if the loop-continuation condition is initially false, the body will not

execute.

 The do…while statement performs the action(s) in its body

one or more times.

 if, else, switch, while, do and for are keywords.

▪ Appendix C: Complete list of Java keywords.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

Summary of Control Statements in Java

 Every program is formed by combining the sequence
statement, selection statements (three types) and
repetition statements (three types) as appropriate for the
algorithm the program implements.

 Can model each control statement as an activity
diagram.
▪ Initial state and a final state represent a control statement’s

entry point and exit point, respectively.

▪ Single-entry/single-exit control statements

▪ Control-statement stacking—connect the exit point of one to
the entry point of the next.

▪ Control-statement nesting—a control statement inside another.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

 Pseudocode
If student’s grade is greater than or equal to 60

Print “Passed”

 If the condition is false, the Print statement is ignored, and
the next pseudocode statement in order is performed.

 Indentation
▪ Optional, but recommended

▪ Emphasizes the inherent structure of structured programs

 The preceding pseudocode If in Java:
if (studentGrade >= 60)

System.out.println("Passed");

 Corresponds closely to the pseudocode.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

UML Activity Diagram for an if Statement

 Figure 4.2 if statement UML activity diagram.

 Diamond, or decision symbol, indicates that a decision is to be

made.

 Workflow continues along a path determined by the symbol’s

guard conditions, which can be true or false.

 Each transition arrow emerging from a decision symbol has a

guard condition (in square brackets next to the arrow).

 If a guard condition is true, the workflow enters the action

state to which the transition arrow points.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

 if…else double-selection statement—specify an action to
perform when the condition is true and a different action
when the condition is false.

 Pseudocode
If student’s grade is greater than or equal to 60

Print “Passed”
Else

Print “Failed”

 The preceding If…Else pseudocode statement in Java:
if (grade >= 60)

System.out.println("Passed");
else

System.out.println("Failed");

 Note that the body of the else is also indented.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

UML Activity Diagram for an if…else Statement

 Figure 4.3 illustrates the flow of control in the

if…else statement.

 The symbols in the UML activity diagram (besides the

initial state, transition arrows and final state) represent

action states and decisions.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

Nested if…else Statements

 A program can test multiple cases by placing if…else
statements inside other if…else statements to create nested
if…else statements.

 Pseudocode:
If student’s grade is greater than or equal to 90

Print “A”
else

If student’s grade is greater than or equal to 80
Print “B”

else
If student’s grade is greater than or equal to 70

Print “C”
else

If student’s grade is greater than or equal to 60
Print “D”

else
Print “F”

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

 This pseudocode may be written in Java as
if (studentGrade >= 90)

System.out.println("A");
else

if (studentGrade >= 80)
System.out.println("B");

else
if (studentGrade >= 70)

System.out.println("C");
else

if (studentGrade >= 60)
System.out.println("D");

else
System.out.println("F");

 If studentGrade >= 90, the first four conditions will be true,
but only the statement in the if part of the first if…else
statement will execute. After that, the else part of the
“outermost” if…else statement is skipped.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

 Most Java programmers prefer to write the preceding nested
if…else statement as

if (studentGrade >= 90)
System.out.println("A");

else if (studentGrade >= 80)
System.out.println("B");

else if (studentGrade >= 70)
System.out.println("C");

else if (studentGrade >= 60)
System.out.println("D");

else
System.out.println("F");

 The two forms are identical except for the spacing and
indentation, which the compiler ignores.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

Dangling-else Problem

 The Java compiler always associates an else with the
immediately preceding if unless told to do otherwise by the
placement of braces ({ and }).

 Referred to as the dangling-else problem.
 The following code is not what it appears:

if (x > 5)
if (y > 5)

System.out.println("x and y are > 5");
else

System.out.println("x is <= 5");

 Beware! This nested if…else statement does not execute as it
appears. The compiler actually interprets the statement as

if (x > 5)
if (y > 5)

System.out.println("x and y are > 5");
else

System.out.println("x is <= 5");

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

 To force the nested if…else statement to execute as it
was originally intended, we must write it as follows:

if (x > 5)
{

if (y > 5)
System.out.println("x and y are > 5");

}
else

System.out.println("x is <= 5");

 The braces indicate that the second if is in the body of the
first and that the else is associated with the first if.

 Exercises 4.27–4.28 investigate the dangling-else
problem further.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

Blocks
 The if statement normally expects only one statement in its body.

 To include several statements in the body of an if (or the body of an
else for an if…else statement), enclose the statements in braces.

 Statements contained in a pair of braces (such as the body of a method)
form a block.

 A block can be placed anywhere in a method that a single statement can
be placed.

 Example: A block in the else part of an if…else statement:
if (grade >= 60)

System.out.println("Passed");
else
{

System.out.println("Failed");
System.out.println("You must take this course again.");

}

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

 Syntax errors (e.g., when one brace in a block is left

out of the program) are caught by the compiler.

 A logic error (e.g., when both braces in a block are left

out of the program) has its effect at execution time.

 A fatal logic error causes a program to fail and

terminate prematurely.

 A nonfatal logic error allows a program to continue

executing but causes it to produce incorrect results.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

 Just as a block can be placed anywhere a single

statement can be placed, it’s also possible to have an

empty statement.

 The empty statement is represented by placing a

semicolon (;) where a statement would normally be.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

Conditional operator (?:)
 Conditional operator (?:)—shorthand if…else.
 Ternary operator (takes three operands)
 Operands and ?: form a conditional expression
 Operand to the left of the ? is a boolean expression—

evaluates to a boolean value (true or false)
 Second operand (between the ? and :) is the value if the
boolean expression is true

 Third operand (to the right of the :) is the value if the
boolean expression evaluates to false.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

 Example:
System.out.println(

studentGrade >= 60 ? "Passed" : "Failed");

 Evaluates to the string "Passed" if the boolean
expression studentGrade >= 60 is true and to the
string "Failed" if it is false.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

Class Student
 Class Student (Fig. 4.4) stores a student’s name and average

and provides methods for manipulating these values.
 The class contains:

▪ instance variable name of type String to store a Student’s name
▪ instance variable average of type double to store a Student’s

average in a course
▪ a constructor that initializes the name and average
▪ methods setName and getName to set and get the Student’s name
▪ methods setAverage and getAverage to set and get the
Student’s average

▪ method getLetterGrade (lines 49–65), which uses nested
if…else statements to determine the Student’s letter grade based on
the Student’s average

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

 The constructor and method setAverage each use
nested if statements to validate the value used to set
the average—these statements ensure that the
value is greater than 0.0 and less than or equal to
100.0; otherwise, average’s value is left
unchanged.

 Each if statement contains a simple condition. If the
condition in line 15 is true, only then will the
condition in line 16 be tested, and only if the
conditions in both line 15 and line 16 are true will the
statement in line 17 execute.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

Class StudentTest

 To demonstrate the nested if…else statements in class

Student’s getLetterGrade method, class

StudentTest’s main method creates two Student

objects.

 Next, lines 10–13 display each Student’s name and

letter grade by calling the objects’ getName and

getLetterGrade methods, respectively.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

 Repetition statement—repeats an action while a

condition remains true.

 Pseudocode
While there are more items on my shopping list

Purchase next item and cross it off my list

 The repetition statement’s body may be a single

statement or a block.

 Eventually, the condition will become false. At this

point, the repetition terminates, and the first statement

after the repetition statement executes.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

 Example of Java’s while repetition statement: find the first
power of 3 larger than 100. Assume int variable
product is initialized to 3.

while (product <= 100)
product = 3 * product;

 Each iteration multiplies product by 3, so product
takes on the values 9, 27, 81 and 243 successively.

 When product becomes 243, product <= 100
becomes false.

 Repetition terminates. The final value of product is 243.

 Program execution continues with the next statement after
the while statement.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

UML Activity Diagram for a while Statement

 The UML activity diagram in Fig. 4.6 illustrates the flow of
control in the preceding while statement.

 The UML represents both the merge symbol and the decision
symbol as diamonds.

 The merge symbol joins two flows of activity into one.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

 The decision and merge symbols can be distinguished by the
number of “incoming” and “outgoing” transition arrows.
▪ A decision symbol has one transition arrow pointing to the

diamond and two or more pointing out from it to indicate
possible transitions from that point. Each transition arrow
pointing out of a decision symbol has a guard condition next
to it.

▪ A merge symbol has two or more transition arrows pointing
to the diamond and only one pointing from the diamond, to
indicate multiple activity flows merging to continue the
activity. None of the transition arrows associated with a
merge symbol has a guard condition.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

 A class of ten students took a quiz. The grades (integers in the
range 0-100) for this quiz are available to you. Determine the
class average on the quiz.

 The class average is equal to the sum of the grades divided by
the number of students.

 The algorithm for solving this problem on a computer must
input each grade, keep track of the total of all grades input,
perform the averaging calculation and print the result.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

Pseudocode Algorithm with Counter-Controlled Repetition

 Use counter-controlled repetition to input the grades one at a
time.

 A variable called a counter (or control variable) controls the
number of times a set of statements will execute.

 Counter-controlled repetition is often called definite repetition,
because the number of repetitions is known before the loop
begins executing.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

 A total is a variable used to accumulate the sum of

several values.

 A counter is a variable used to count.

 Variables used to store totals are normally initialized to

zero before being used in a program.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

Local Variables in Method main

 Variables declared in a method body are local variables

and can be used only from the line of their declaration

to the closing right brace of the method declaration.

 A local variable’s declaration must appear before the

variable is used in that method.

 A local variable cannot be accessed outside the method

in which it’s declared.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

Notes on Integer Division and Truncation

 The program’s output indicates that the sum of the
grade values in the sample execution is 846, which,
when divided by 10, should yield the floating-point
number 84.6.

 The result of the calculation total / 10 (line 26 of
Fig. 4.8) is the integer 84, because total and 10 are
both integers.

 Dividing two integers results in integer division—any
fractional part of the calculation is truncated (i.e., lost).

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

A Note About Arithmetic Overflow

 In Fig. 4.8, line 21
total = total + grade; // add grade to total

 added each grade entered by the user to the total.

 Even this simple statement has a potential problem—
adding the integers could result in a value that’s too
large to store in an int variable.

 This is known as arithmetic overflow and causes
undefined behavior, which can lead to unintended
results.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

 Figure 2.7’s Addition program had the same issue in
line 23, which calculated the sum of two int values
entered by the user:
// add numbers, then store total in sum
sum = number1 + number2;



© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

 The maximum and minimum values that can be stored
in an int variable are represented by the constants
MIN_VALUE and MAX_VALUE, respectively, which are
defined in class Integer.

 There are similar constants for the other integral types
and for floating-point types.

 Each primitive type has a corresponding class type in
package java.lang.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

 It’s considered a good practice to ensure, before you
perform arithmetic calculations like those in line 21 of
Fig. 4.8 and line 23 of Fig. 2.7, that they will not
overflow.

 The code for doing this is shown on the CERT website
www.securecoding.cert.org—just search for
guideline “NUM00-J.”

 The code uses the && (logical AND) and || (logical
OR) operators, which are introduced in Chapter 5.

 In industrial-strength code, you should perform checks
like these for all calculations.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

A Deeper Look at Receiving User Input

 Any time a program receives input from the user, various
problems might occur. For example, in line 20 of Fig. 4.8
int grade = input.nextInt(); // input next grade

 we assume that the user will enter an integer grade in the range
0 to 100.

 However, the person entering a grade could enter an integer
less than 0, an integer greater than 100, an integer outside the
range of values that can be stored in an int variable, a number
containing a decimal point or a value containing letters or
special symbols that’s not even an integer.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

 To ensure that inputs are valid, industrial-strength programs
must test for all possible erroneous cases.

 A program that inputs grades should validate the grades by
using range checking to ensure that hey are values from 0 to
100.

 You can then ask the user to reenter any value that’s out of
range.

 If a program requires inputs from a specific set of values (e.g.,
nonsequential product codes), you can ensure that each input
matches a value in the set.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

 Develop a class-averaging program that processes
grades for an arbitrary number of students each time it
is run.

 Sentinel-controlled repetition is often called indefinite

repetition because the number of repetitions is not

known before the loop begins executing.

 A special value called a sentinel value (also called a

signal value, a dummy value or a flag value) can be

used to indicate “end of data entry.”

 A sentinel value must be chosen that cannot be

confused with an acceptable input value.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

Developing the Pseudocode Algorithm with Top-Down, Stepwise
Refinement: The Top and First Refinement

 Top-down, stepwise refinement
 Begin with a pseudocode representation of the top—a single

statement that conveys the overall function of the program:
▪ Determine the class average for the quiz

 The top is a complete representation of a program. Rarely
conveys sufficient detail from which to write a Java program.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

 Divide the top into a series of smaller tasks and list these in
the order in which they’ll be performed.

 First refinement:
▪ Initialize variables

Input, sum and count the quiz grades
Calculate and print the class average

 This refinement uses only the sequence structure—the steps
listed should execute in order, one after the other.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

Proceeding to the Second Refinement

 Second refinement: commit to specific variables.

 The pseudocode statement
Initialize variables

 can be refined as follows:
Initialize total to zero

Initialize counter to zero

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

 The pseudocode statement
Input, sum and count the quiz grades

 requires repetition to successively input each grade.
 We do not know in advance how many grades will be

entered, so we’ll use sentinel-controlled repetition.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

 The second refinement of the preceding pseudocode
statement is then

Prompt the user to enter the first grade
Input the first grade (possibly the sentinel)

While the user has not yet entered the sentinel
Add this grade into the running total
Add one to the grade counter
Prompt the user to enter the next grade
Input the next grade (possibly the sentinel)

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

 The pseudocode statement
Calculate and print the class average

 can be refined as follows:
If the counter is not equal to zero

Set the average to the total divided by the counter

Print the average

else

Print “No grades were entered”

 Test for the possibility of division by zero—a logic

error that, if undetected, would cause the program to

fail or produce invalid output.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

Program Logic for Sentinel-Controlled Repetition vs.

Counter-Controlled Repetition

 Program logic for sentinel-controlled repetition

▪ Reads the first value before reaching the while.

▪ This value determines whether the program’s flow of control

should enter the body of the while. If the condition of the

while is false, the user entered the sentinel value, so the body

of the while does not execute (i.e., no grades were entered).

▪ If the condition is true, the body begins execution and

processes the input.

▪ Then the loop body inputs the next value from the user before

the end of the loop.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

Explicitly and Implicitly Converting Between Primitive Types

 Integer division yields an integer result.
 To perform a floating-point calculation with integers, temporarily

treat these values as floating-point numbers for use in the
calculation.

 The unary cast operator (double) creates a temporary floating-
point copy of its operand.

 Cast operator performs explicit conversion (or type cast).
 The value stored in the operand is unchanged.
 Java evaluates only arithmetic expressions in which the

operands’ types are identical.
 Promotion (or implicit conversion) performed on operands.
 In an expression containing values of the types int and
double, the int values are promoted to double values for
use in the expression.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

 Cast operators are available for any type.
 Cast operator formed by placing parentheses around the

name of a type.
 The operator is a unary operator (i.e., an operator that takes

only one operand).
 Java also supports unary versions of the plus (+) and minus

(–) operators.
 Cast operators associate from right to left; same precedence

as other unary operators, such as unary + and unary -.
 This precedence is one level higher than that of the

multiplicative operators *, / and %.
 Appendix A: Operator precedence chart

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

Floating-Point Number Precision

 Floating-point numbers are not always 100% precise, but
they have numerous applications.

 For example, when we speak of a “normal” body
temperature of 98.6, we do not need to be precise to a large
number of digits.

 Floating-point numbers often arise as a result of division,
such as in this example’s class-average calculation.

 In conventional arithmetic, when we divide 10 by 3, the
result is 3.3333333…, with the sequence of 3s repeating
infinitely.

 The computer allocates only a fixed amount of space to
hold such a value, so clearly the stored floating-point value
can be only an approximation.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

 Owing to the imprecise nature of floating-point numbers,
type double is preferred over type float, because
double variables can represent floating-point numbers
more accurately.

 In some applications, the precision of float and double
variables will be inadequate.

 For precise floating-point numbers (such as those required
by monetary calculations), Java provides class
BigDecimal (package java.math), which we’ll discuss
in Chapter 8.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

 This case study examines nesting one control statement

within another.

 A college offers a course that prepares students for the

state licensing exam for real-estate brokers. Last year,

ten of the students who completed this course took the

exam. The college wants to know how well its students

did on the exam. You’ve been asked to write a program

to summarize the results. You’ve been given a list of

these 10 students. Next to each name is written a 1 if

the student passed the exam or a 2 if the student failed.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

 This case study examines nesting one control statement
within another.

 Your program should analyze the results of the exam as
follows:
▪ Input each test result (i.e., a 1 or a 2). Display the message

“Enter result” on the screen each time the program requests
another test result.

▪ Count the number of test results of each type.

▪ Display a summary of the test results, indicating the number of
students who passed and the number who failed.

▪ If more than eight students passed the exam, print “Bonus to
instructor!”

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

 Compound assignment operators abbreviate assignment
expressions.

 Statements like
variable = variable operator expression;

where operator is one of the binary operators +, -, *, / or % can
be written in the form

variable operator= expression;

 Example:
c = c + 3;

can be written with the addition compound assignment operator,
+=, as

c += 3;

 The += operator adds the value of the expression on its right to
the value of the variable on its left and stores the result in the
variable on the left of the operator.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

 Unary increment operator, ++, adds one to its operand

 Unary decrement operator, --, subtracts one from its

operand

 An increment or decrement operator that is prefixed to

(placed before) a variable is referred to as the prefix

increment or prefix decrement operator, respectively.

 An increment or decrement operator that is postfixed to

(placed after) a variable is referred to as the postfix

increment or postfix decrement operator, respectively.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

 Using the prefix increment (or decrement) operator to add
(or subtract) 1 from a variable is known as preincrementing
(or predecrementing) the variable.

 Preincrementing (or predecrementing) a variable causes the
variable to be incremented (decremented) by 1; then the
new value is used in the expression in which it appears.

 Using the postfix increment (or decrement) operator to add
(or subtract) 1 from a variable is known as
postincrementing (or postdecrementing) the variable.

 This causes the current value of the variable to be used in
the expression in which it appears; then the variable’s value
is incremented (decremented) by 1.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

 Appendix D lists the eight primitive types in Java.

 Java requires all variables to have a type.

 Java is a strongly typed language.

 Primitive types in Java are portable across all
platforms.

 Instance variables of types char, byte, short, int,
long, float and double are all given the value 0
by default. Instance variables of type boolean are
given the value false by default.

 Reference-type instance variables are initialized by
default to the value null.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

 Java’s coordinate system is a scheme for identifying points on the
screen.

 The upper-left corner of a GUI component has the coordinates (0,
0).

 A coordinate pair is composed of an x-coordinate (the horizontal
coordinate) and a y-coordinate (the vertical coordinate).

 The x-coordinate is the horizontal location (from left to right).

 The y-coordinate is the vertical location (from top to bottom).

 The x-axis describes every horizontal coordinate, and the y-axis
every vertical coordinate.

 Coordinate units are measured in pixels. The term pixel stands
for “picture element.” A pixel is a display monitor’s smallest unit
of resolution.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

First Drawing Application

 Class Graphics (from package java.awt) provides

various methods for drawing text and shapes onto the

screen.

 Class JPanel (from package javax.swing) provides

an area on which we can draw.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

 The keyword extends creates a so-called inheritance

relationship.

 The class from which DrawPanel inherits, JPanel,

appears to the right of keyword extends.

 In this inheritance relationship, JPanel is called the

superclass and DrawPanel is called the subclass.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

Method paintComponent

 JPanel has a paintComponent method, which the system

calls every time it needs to display the DrawPanel.

 The first statement in every paintComponent method you

create should always be
paintComponent(g);

 JPanel methods getWidth and getHeight return the

JPanel’s width and height, respectively.

 Graphics method drawLine draws a line between two points

represented by its four arguments. The first two are the x- and

y-coordinates for one endpoint, and the last two arguments are

the coordinates for the other endpoint.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

Class DrawPanelTest

 To display the DrawPanel on the screen, place it in a window.

 Create a window with an object of class JFrame.

 JFrame method setDefaultCloseOperation with the argument
JFrame.EXIT_ON_CLOSE indicates that the application should
terminate when the user closes the window.

 JFrame’s add method attaches the DrawPanel (or any other
GUI component) to a JFrame.

 JFrame method setSize takes two parameters that represent the
width and height of the JFrame, respectively.

 JFrame method setVisible with the argument true displays the
JFrame.

 When a JFrame is displayed, the DrawPanel’s
paintComponent method is implicitly called

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

	Slide 1: Chapter 4 Control Statements: Part I; Assignment, ++ and -- Operators
	Slide 2
	Slide 3
	Slide 4: 4.1 Introduction
	Slide 5: 4.2 Algorithms
	Slide 6: 4.3 Pseudocode
	Slide 7: 4.4 Control Structures
	Slide 8: 4.4 Control Structures (Cont.)
	Slide 9
	Slide 10: 4.4 Control Structures (Cont.)
	Slide 11: 4.4 Control Structures (Cont.)
	Slide 12: 4.4 Control Structures (Cont.)
	Slide 13: 4.4 Control Structures (Cont.)
	Slide 14: 4.4 Control Structures (Cont.)
	Slide 15: 4.4 Control Structures (Cont.)
	Slide 16: 4.5 if Single-Selection Statement
	Slide 17: 4.5 if Single-Selection Statement (Cont.)
	Slide 18
	Slide 19: 4.6 if…else Double-Selection Statement
	Slide 20
	Slide 21
	Slide 22: 4.6 if…else Double-Selection Statement (Cont.)
	Slide 23
	Slide 24: 4.6 if…else Double-Selection Statement (Cont.)
	Slide 25
	Slide 26: 4.6 if…else Double-Selection Statement (Cont.)
	Slide 27: 4.6 if…else Double-Selection Statement (Cont.)
	Slide 28: 4.6 if…else Double-Selection Statement (Cont.)
	Slide 29: 4.6 if…else Double-Selection Statement (Cont.)
	Slide 30: 4.6 if…else Double-Selection Statement (Cont.)
	Slide 31: 4.6 if…else Double-Selection Statement (Cont.)
	Slide 32: 4.6 if…else Double-Selection Statement (Cont.)
	Slide 33
	Slide 34: 4.6 if…else Double-Selection Statement (Cont.)
	Slide 35: 4.6 if…else Double-Selection Statement (Cont.)
	Slide 36
	Slide 37: 4.7 Student Class: Nested if…else Statement
	Slide 38: 4.7 Student Class: Nested if…else Statement (Cont.)
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43: 4.7 Student Class: Nested if…else Statement (Cont.)
	Slide 44
	Slide 45: 4.8 while Repetition Statement
	Slide 46: 4.8 while Repetition Statement (Cont.)
	Slide 47
	Slide 48: 4.8 while Repetition Statement (Cont.)
	Slide 49: 4.8 while Repetition Statement (Cont.)
	Slide 50
	Slide 51: 4.9 Formulating Algorithms: Counter-Controlled Repetition
	Slide 52: 4.9 Formulating Algorithms: Counter-Controlled Repetition
	Slide 53
	Slide 54: 4.9 Formulating Algorithms: Counter-Controlled Repetition (Cont.)
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59: 4.9 Formulating Algorithms: Counter-Controlled Repetition (Cont.)
	Slide 60
	Slide 61
	Slide 62: 4.9 Formulating Algorithms: Counter-Controlled Repetition (Cont.)
	Slide 63
	Slide 64: 4.9 Formulating Algorithms: Counter-Controlled Repetition (Cont.)
	Slide 65: 4.9 Formulating Algorithms: Counter-Controlled Repetition (Cont.)
	Slide 66: 4.9 Formulating Algorithms: Counter-Controlled Repetition (Cont.)
	Slide 67: 4.9 Formulating Algorithms: Counter-Controlled Repetition (Cont.)
	Slide 68: 4.9 Formulating Algorithms: Counter-Controlled Repetition (Cont.)
	Slide 69: 4.9 Formulating Algorithms: Counter-Controlled Repetition (Cont.)
	Slide 70: 4.10 Formulating Algorithms: Sentinel-Controlled Repetition
	Slide 71: 4.10 Formulating Algorithms: Sentinel-Controlled Repetition (Cont.)
	Slide 72: 4.10 Formulating Algorithms: Sentinel-Controlled Repetition (Cont.)
	Slide 73
	Slide 74
	Slide 75: 4.10 Formulating Algorithms: Sentinel-Controlled Repetition (Cont.)
	Slide 76: 4.10 Formulating Algorithms: Sentinel-Controlled Repetition (Cont.)
	Slide 77: 4.10 Formulating Algorithms: Sentinel-Controlled Repetition (Cont.)
	Slide 78: 4.10 Formulating Algorithms: Sentinel-Controlled Repetition (Cont.)
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86: 4.10 Formulating Algorithms: Sentinel-Controlled Repetition (Cont.)
	Slide 87
	Slide 88
	Slide 89: 4.10 Formulating Algorithms: Sentinel-Controlled Repetition (Cont.)
	Slide 90
	Slide 91: 4.10 Formulating Algorithms: Sentinel-Controlled Repetition (Cont.)
	Slide 92
	Slide 93
	Slide 94: 4.10 Formulating Algorithms: Sentinel-Controlled Repetition (Cont.)
	Slide 95: 4.10 Formulating Algorithms: Sentinel-Controlled Repetition (Cont.)
	Slide 96
	Slide 97: 4.11 Formulating Algorithms: Nested Control Statements
	Slide 98: 4.10 Formulating Algorithms: Nested Control Statements (Cont.)
	Slide 99
	Slide 100
	Slide 101
	Slide 102
	Slide 103
	Slide 104
	Slide 105: 4.12 Compound Assignment Operators
	Slide 106
	Slide 107: 4.13 Increment and Decrement Operators
	Slide 108
	Slide 109: 4.12 Increment and Decrement Operators (Cont.)
	Slide 110
	Slide 111
	Slide 112
	Slide 113
	Slide 114
	Slide 115
	Slide 116: 4.14 Primitive Types
	Slide 117
	Slide 118: 4.15 (Optional) GUI and Graphics Case Study: Creating Simple Drawings
	Slide 119
	Slide 120: 4.15 (Optional) GUI and Graphics Case Study: Creating Simple Drawings (Cont.)
	Slide 121
	Slide 122
	Slide 123
	Slide 124: 4.15 (Optional) GUI and Graphics Case Study: Creating Simple Drawings (Cont.)
	Slide 125: 4.15 (Optional) GUI and Graphics Case Study: Creating Simple Drawings (Cont.)
	Slide 126: 4.14 (Optional) GUI and Graphics Case Study: Creating Simple Drawings (Cont.)

