Chapter 3
Introduction to Classes, Objects
Methods and Strings

Java™ How to Program, 10/e

© Copyright 1992-2015 by Pearson Education, Inc. All Rights
Reserved.

OBJECTIVES

In this chapter you'll learn:

m How to declare a class and use it to create an object.

m How to implement a class’s behaviors as methods.

m How to implement a class’s attributes as instance variables.

m How to call an object’s methods to make them perform their tasks.

m What local variables of a method are and how they differ from instance variables.
m What primitive types and reference types are.

m How to use a constructor to initialize an object’s data.

m How to represent and use numbers containing decimal points.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

3.1 Introduction
3.2 Instance Variables, sef Methods and gef Methods

32.1 Account Class with an Instance Variable, a set Method and a get Method

322 AccountTest Class That Creates and Uses an Object of Class Account

323 Compiling and Executing an App with Multiple Classes

324 Account UML Class Diagram with an Instance Variable and set and get Methods
3.2.5 Additional Notes on Class AccountTest

32.6 Software Engineering with private Instance Variables and public¢ sef and get Methods

3.3 Primitive Types vs. Reference Types

3.4 Account Class: Initializing Objects with Constructors

34.1 Declaring an Account Constructor for Custom Object Initialization
342 Class AccountTest: Initializing Account Cbjects When They're Created

3.5 Account Class with a Balance; Floating-Point Numbers

35.1 Account Class with a balance Instance Variable of Type double
352 AccountTest Class to Use Class Account

3.6 (Optional) GUI and Graphics Case Study: Using Dialog Boxes
3.7 Wrap-Up

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

3.2 Instance Variables, set Methods
and get Methods

» Each class you create becomes a new type that can be
used to declare variables and create objects.

» You can declare new classes as needed,; this Is one
reason Java Is known as an extensible language.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

3.2.1 Account Class with an Instance Variable,

a set Method and a get Method

<

O~ Oy WM

19
20

// Fig. 3.1: Account.java
// Account class that contains a name instance variable
// and methods to set and get its value.

public class Account

{

private String name; // instance variable

// method to set the name in the object
public void setName(String name)

{
}

this.name = name; // store the name

// method to retrieve the name from the object
public String getName()

{
}

} // end class Account

return name; // return value of name to caller

Fig. 3.1 | Account class that contains a name instance variable and methods to set
and get its value

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

<

3.2.1 Account Class with an Instance Variable, a set
Method and a get Method (Cont.)

Class Declaration

» Each class declaration that begins with the access
modifier public must be stored in a file that has the
same name as the class and ends with the .java
filename extension.

» Every class declaration contains keyword class
followed immediately by the class’s name.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

<

3.2.1 Account Class with an Instance Variable, a set
Method and a get Method (Cont.)

Identifiers and Camel Case Naming
» Class, method and variable names are identifiers.
» By convention all use camel case names.

» Class names begin with an uppercase letter, and
method and variable names begin with a lowercase
letter.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

<

3.2.1 Account Class with an Instance Variable, a set
Method and a get Method (Cont.)

Instance Variable nhame

» An object has attributes that are implemented as Instance
variables and carried with it throughout its lifetime.

» Instance variables exist before methods are called on an
object, while the methods are executing and after the
methods complete execution.

» Aclass normally contains one or more methods that
manipulate the instance variables that belong to particular
objects of the class.

» Instance variables are declared inside a class declaration
but outside the bodies of the class’s method declarations.

» Each object (instance) of the class has its own copy of each
of the class’s instance variables.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

Good Programming Practice 3.1

We prefer to list a class’s instance variables first in the
class’s bodly, so that you see the names and types of the
variables before theyre used in the class’s methods. You
can list the class’s instance variables anywbhere in the class
outside its method declarations, but scattering the in-
stance variables can lead to hard-to-read code.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

<

3.2.1 Account Class with an Instance Variable, a set
Method and a get Method (Cont.)

Access Modifiers publ7cand private

» Most instance-variable declarations are preceded with
the keyword private, which is an access modifier.

» Variables or methods declared with access modifier
private are accessible only to methods of the class in
which they’re declared.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

<

3.1.1 Account Class with an Instance Variable, a set
Method and a get Method (Cont.)

setName Method of Class Account

» Parameters are declared in a comma-separated
parameter list, which is located inside the parentheses
that follow the method name in the method
declaration.

» Multiple parameters are separated by commas.

» Each parameter must specify a type followed by a
variable name.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

<

3.1.1 Account Class with an Instance Variable, a set
Method and a get Method (Cont.)

Parameters Are Local Variables

» Variables declared in the body of a particular method
are local variables and can be used only in that
method.

» When a method terminates, the values of its local
variables are lost.

» A method’s parameters are local variables of the
method.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

<

3.1.1 Account Class with an Instance Variable, a set
Method and a get Method (Cont.)

setName Method Body

» Every method’s body is delimited by left and right
braces ({ and }).

» Each method’s body contains one or more statements
that perform the method’s task(s).

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

Good Programming Practice 3.2

We could have avoided the need for keyword this here
by choosing a different name for the parameter in line
10, but using the this keyword as shown in line 12 is a

widely accepted practice to minimize the proliferation of
identifier names.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

<

3.2.1 Account Class with an Instance Variable, a set
Method and a get Method (Cont.)

getName Method of Class Account

» The method’s return type specifies the type of data
returned to a method’s caller.

» Keyword void indicates that a method will perform a
task but will not return any information.

» Empty parentheses following a method name indicate
that the method does not require any parameters to
perform its task.

» When a method that specifies a return type other than
void Is called and completes its task, the method must
return a result to its calling method.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

<

3.2.1 Account Class with an Instance Variable, a set
Method and a get Method (Cont.)

» The return statement passes a value from a called
method back to its caller.

» Classes often provide public methods to allow the
class’s clients to set or get private instance variables.

» The names of these methods need not begin with set or
get, but this naming convention is recommended.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

3.2.2 AccountTest Class That Creates
and Uses an Object of Class Account

Driver Class Accountrest

» Aclass that creates an object of another class, then
calls the object’s methods, 1s a driver class.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

1 // Fig. 3.2: AccountTest.java

2 // Creating and manipulating an Account object.

3 dimport java.util.Scanner;

4

5 public class AccountTest

6 {

7 public static void main(String[] args)

8 {

9 // create a Scanner object to obtain input from the command window
10 Scanner input = new Scanner{System.in);

11

12 // create an Account object and assign it to myAccount

13 Account myAccount = new Account();

14

15 // display initial value of name (null)

16 System.out.printf("Initial name 1is: %s%n%n", myAccount.getName());
17

18 // prompt for and read name

19 System.out.println("Please enter the name:");
20 String theName = input.nextLine(); // read a line of text
21 myAccount. setName (theName); // put theName in myAccount
22 System.out.println(); // outputs a blank Tine
23

Fig. 3.2 | Creating and manipulating an Account object. (Part | of 2.)

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

24 // display the name stored in object myAccount

25 System.out.printf{"'Name in ohject myAccount 1is:%n%s%n’,
26 myAccount.getName());
27 }

28 1} // end class AccountTest

Initial name is: null

Please enter the name:
Jane Green

Name 1in object myAccount 1is:
Jane Green

Fig. 3.2 | Creating and manipulating an Account object. (Part 2 of 2.)

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

3.2.2 AccountTest Class That Creates and
Uses an Object of Class Account (Cont.)

Scanner Object for Receiving Input from the User

» Scanner method nextLine reads characters until a
newline character iIs encountered, then returns the
characters as a String.

» Scanner method next reads characters until any white-
space character Is encountered, then returns the
characters as a String.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

<

3.2.2 AccountTest Class That Creates and Uses an
Object of Class Account (Cont.)

Instantiating an Object—Keyword newand
Constructors

» Aclass instance creation expression begins with
keyword new and creates a new object.

» A constructor is similar to a method but is called
Implicitly by the new operator to initialize an object’s
Instance variables at the time the object Is created.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

3.2.2 AccountTest Class That Creates and Uses an
Object of Class Account (Cont.)

Calling Class Account’s getName Method

» To call a method of an object, follow the object name
with a dot separator, the method name and a set of
parentheses containing the method’s arguments.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

- Error-Prevention Tip 3.1

¥ Never use as a format-control a string that was input
from the user. When method System.out.printf
evaluates the format-control string in its first argument,
the method performs tasks based on the conversion specifi-
er(s) in that string. If the format-control string were 0b-
tained from the user, a malicious user could supply
conversion specifiers that would be executed by

System.out.printf, possibly causing a security
breach.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

<

3.2.2 AccountTest Class That Creates and Uses an
Object of Class Account (Cont.)

nul I—the Default Initial Value for Str7ng Variables
» Local variables are not automatically initialized.

» Every instance variable has a default initial value—a
value provided by Java when you do not specify the
instance variable’s initial value.

» The default value for an instance variable of type
String 1S null.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

3.2.2 AccountTest Class That Creates and
Uses an Object of Class Account (Cont.)

Calling Class Account’s setName Method

» A method call supplies values—known as
arguments—ifor each of the method’s parameters.

» Each argument’s value 1s assigned to the
corresponding parameter in the method header.

» The number of arguments in a method call must match

the number of parameters in the method declaration’s
parameter list.

» The argument types in the method call must be
consistent with the types of the corresponding
parameters in the method’s declaration.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

3.2.3 Compiling and Executing an App
with Multiple Classes

4

The javac command can compile multiple classes at
once.

Simply list the source-code filenames after the
command with each filename separated by a space
from the next.

If the directory containing the app includes only one
app’s files, you can compile all of its classes with the
command javac *.java.

The asterisk (*) in *.java indicates that all files in the
current directory ending with the filename extension
“. Java” should be compiled.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

3.2.4 Account UML Class Diagram with an Instance
Variable and set and get Methods

Top Compartment
» Inthe UML, each class is modeled in a class diagram
as a rectangle with three compartments. The top one
contains the class’s name centered horizontally in

boldface.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

Account Top compartment

- name : String Middle compartment

+ setMame(name : String)

. Bottom compartment
+ gethame() : String P

Fig. 3.3 | UML class diagram for class Account of Fig. 3.1.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

3.2.4 Account UML Class Diagram with an Instance
Variable and set and get Methods (Cont.)

Middle Compartment

» The middle compartment contains the class’s
attributes, which correspond to instance variables in
Java.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

3.2.4 Account UML Class Diagram with an Instance
Variable and set and get Methods (Cont.)

Bottom Compartment

» The bottom compartment contains the class’s operations,
which correspond to methods and constructors in Java.

» The UML represents instance variables as an attribute
name, followed by a colon and the type.

» Private attributes are preceded by a minus sign (=) in the
UML.

» The UML models operations by listing the operation name
followed by a set of parentheses.

» Aplus sign (+) In front of the operation name indicates that
the operation is a public one in the UML (i.e., a public
method In Java).

\
A\ \
N \ \
AN\ A

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

3.2.4 Account UML Class Diagram with an Instance
Variable and set and get Methods (Cont.)

Return Types

» The UML indicates an operation’s return type by
placing a colon and the return type after the
parentheses following the operation name.

» UML class diagrams do not specify return types for
operations that do not return values.

» Declaring instance variables private Is known as data
hiding or information hiding.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

3.2.4 Account UML Class Diagram with an Instance
Variable and set and get Methods (Cont.)

Parameters

» The UML models a parameter of an operation by
listing the parameter name, followed by a colon and
the parameter type between the parentheses after the
operation name

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

3.2.5 Additional Notes on Class
ACCoUuntrTest

staticMethod main

» You must call most methods other than main explicitly
to tell them to perform their tasks.

» Akey part of enabling the JVM to locate and call
method main to begin the app’s execution is the static
keyword, which indicates that main Is a static method
that can be called without first creating an object of the
class in which the method is declared.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

3.2.5 Additional Notes on Class
AccountTest (Cont.)
Notes on 1mport Declarations
» Most classes you’ll use in Java programs must be
Imported explicitly.
» There’s a special relationship between classes that are

compiled in the same directory.

» By default, such classes are considered to be in the
same package—known as the default package.

» Classes in the same package are implicitly imported
Into the source-code files of other classes In that
package.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

3.2.5 Additional Notes on Class
AccountTest (Cont.)

<

An import declaration is not required when one class
In a package uses another in the same package.

An import- declaration is not required if you always
refer to a class with its fully qualified class name,
which includes its package name and class name.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

hE7 Software Engineering Observation 3.1

d.‘.‘}: The Java compiler does not require import declarations
in a_fava source-code file if the fully qualified class name
is specified every time a class name is used. Most Java
programmers prefer the more concise programming style
enabled by import declarations.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

3.2.6 Software Engineering with private Instance
Variables and public set and get Methods

» Declaring instance variables private Is known as data
hiding or information hiding.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

Y

E‘t .
=:far“'

Software Engineering Observation 3.2

S Precede each instance variable and method declaration

with an access modifier. Generally, instance variables
should be declared private and methods public.
Later in the book, well discuss why you might want to
declare a method private.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

3.2.7 Software Engineering with private Instance
Variables and public set and get Methods

Fig. 3.4 | Conceptual view of an Account object with its encapsulated private
instance variable name and protective layer of pub1ic methods.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

3.3 Primitive Types vs. Reference
Types

» Types In Java are divided into two categories—primitive

types and reference types.

» The primitive types are boolean, byte, char, short, int,
long, float and double.

» All other types are reference types, so classes, which
specify the types of objects, are reference types.

» A primitive-type variable can store exactly one value of its
declared type at a time.

» Primitive-type instance variables are initialized by default.

» Variables of types byte, char, short, int, long, float and
double are initialized to 0.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

3.3 Primitive Types vs. Reference

Types (Cont.)

>
>

Variables of type boolean are initialized to false.

Reference-type variables (called references) store the
location of an object in the computer’s memory.

Such variables refer to objects in the program.

The object that’s referenced may contain many instance
variables and methods.

Reference-type instance variables are initialized by default
to the value null.

A reference to an object 1s required to invoke an object’s
methods.

A primitive-type variable does not refer to an object and
therefore cannot be used to invoke a method.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

3.4 Account Class: Initializing

Objects with Constructors

4

Each class you declare can optionally provide a
constructor with parameters that can be used to
Initialize an object of a class when the object Is
created.

Java requires a constructor call for every object that’s
created.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

. , <>
3.4.1 Declaring an Account Constructor for

Custom Object Initialization

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

1 // Fig. 3.5: Account.java

2 // Account class with a constructor that initializes the name.
3

4 public class Account

5

6 private String name; // instance variable

7

8 // constructor initializes name with parameter name
9 public Account(String name) // constructor name is class name
10 {

11 this.name = name;

12 }

13

14 // method to set the name

15 public void setName(String name)

16 {

17 this.name = name;

18 }

19
20 // method to retrieve the name
21 public String getName()
22 {
23 return name;
24 }

25 1} // end class Account

Fig. 3.5 | Account class with a constructor that initializes the name.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

3.4.1 Declaring an Account Constructor
for Custom Object Initialization (Cont.)

<z, Error-Prevention Tip 3.2

t@ Even though it’s possible to do so, do not call methods
from constructors. We'll explain this in Chapter 10,
Object-Oriented Programming: Polymorphism and In-
terfaces.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

3.4.2 Class AccountTest: Initializing
Account Objects When They’re Created

1 // Fig. 3.6: AccountTest.java

2 // Using the Account constructor to initialize the name 1instance

3 // variable at the time each Account object is created.

4

5 public class AccountTest

6 {

7 public static void main(String[] args)

8 {

9 // create two Account objects

10 Account accountl = new Account("Jane Green');

11 Account account2 = new Account("John Blue™);

12

13 // display initial value of name for each Account

14 System.out.printf("accountl name is: %s%n", accountl.getName());
15 System.out.printf("account2 name is: %s%n", account2.getName());
16 }

1T 1} // end class AccountTest

accountl name is: Jane Green
account?2 name is: John Blue

Fig. 3.6 | Using the Account constructor to initialize the name instance variable at
the time each Account object is created.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

3.4.2 Class AccountTest: Initializing Account
Objects When They’re Created (Cont.)

Constructors Cannot Return Values

» Constructors can specify parameters but not return types.

Default Constructor

» If a class does not define constructors, the compiler
provides a default constructor with no parameters, and the

class’s instance variables are initialized to their default
values.

There’s No Default Constructor in a Class That Declares a
Constructor

» If you declare a constructor for a class, the compiler will
not create a default constructor for that class.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

X Unnless deﬁm[t initialization of your c[ass s instance
ydrzdb[es is acceptable, provide a custom constructor to
ensure that your instance variables are properly
initialized with meaningful values when each new
object of your class is created.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

3.4.2 Class AccountTest: Initializing Account
Objects When They’re Created (Cont.)

Adding the Contructor to Class Account’s UML Class
Diagram

» The UML models constructors in the third
compartment of a class diagram.

» To distinguish a constructor from a class’s operations,

the UML places the word “constructor” between
guillemets (« and ») before the constructor’s name.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

Account

- name : String

wconstructor: Account{name: String)
+ setMame(name: String)
+ gethame() : String

Fig. 3.7 | UML class diagram for Account class of Fig. 3.5.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

<

3.5 Account Class with a Balance;
Floating-Point Numbers and Type double

» A floating-point number is a number with a decimal point.

» Java provides two primitive types for storing floating-point
numbers in memory—float and double.

» Variables of type float represent single-precision floating-
point numbers and have seven significant digits.

» Variables of type double represent double-precision
floating-point numbers.

» These require twice as much memory as float variables and

provide 15 significant digits—approximately double the
precision of float variables.

» Floating-point literals are of type double by default.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

3.5.1 Account Class with a balance
Instance Variable of Type double

1 // Fig. 3.8: Account.java

2 // Account class with a double instance variable balance and a constructor
3 // and deposit method that perform validation.

4

5 public class Account

6 {

7 private String name; // instance variable

8 private double balance; // instance variable

9

10 // Account constructor that receives two parameters

11 public Account(String name, double balance)

12 {

13 this.name = name; // assign name to instance variable name

14

15 // validate that the balance 1is greater than 0.0; if it's not,

16 // instance variable balance keeps 1its default initial value of 0.0
17 if (balance > 0.0) // if the balance 1is valid

18 this.balance = balance; // assign it to instance variable balance
19 1
20

Fig. 3.8 | Account class with a double instance variable balance and a
constructor and deposit method that perform validation. (Part | of 3.)

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38

39

// method that deposits (adds) only a valid amount to the balance
public void deposit{double depositAmount)

{
if (depositAmount » 0.0) // if the depositAmount is valid

balance = balance + depositAmount; // add it to the balance

}

// method returns the account balance
public double getBalance()

{

return balance;

}

// method that sets the name
public void setName(String name)

{
¥

this.name = name;

Fig. 3.8 | Account class with a doubTe instance variable balance and a
constructor and deposit method that perform validation. (Part 2 of 3.)

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

40 // method that returns the name

41 public String getName()

42 {

43 return name; // give value of name back to caller
44 } // end method getName

45 1} // end class Account

Fig. 3.8 | Account class with a double instance variable balance and a
constructor and deposit method that perform validation. {Part 3 of 3.)

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

3.5.2 AccountTest Class to Use Class
AcCccount

1 // Fig. 3.9: AccountTest.java

2 // Inputting and outputting floating-point numbers with Account objects.
3 dmport java.util.Scanner;

4

5 public class AccountTest

6 {

7 public static void main(String[] args)

8 {

9 Account accountl = new Account("Jane Green'™, 50.00);
10 Account account2 = new Account("John Blue™, -7.53);
11

12 // display initial balance of each object

13 System.out.printf("%s balance: $%.2f%n",

14 accountl.getName(), accountl.getBalance());

15 System.out.printf("%s balance: $%.2f%n%n",

16 account2.getName(), account2.getBalance());

17

Fig. 3.9 | Inputting and outputting floating-point numbers with Account objects.
(Part | of 4.)

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

18 // create a Scanner to obtain input from the command window

19 Scanner input = new Scanner{System.in);

20

21 System.out.print{"Enter deposit amount for accountl: ™); // prompt
22 double depositAmount = input.nextDouble(); // obtain user input

23 System.out.printf("%nadding %.2f to accountl balance%n%n",

24 depositAmount) ;

25 accountl.deposit(depositAmount); // add to accountl’s balance

26

27 // display balances

28 System.out.printf("%s balance: $%.2f%n",

29 accountl.getName(), accountl.getBalance());

30 System.out.printf("%s balance: $%.2T%n%n",

31 account2.getName(), account2.getBalance());

32

33 System.out.print("Enter deposit amount for account2: "™); // prompt
34 depositAmount = input.nextDouble(); // obtain user input

35 System.out.printf("%nadding %.2f to account2 balance%n%n™,

36 depositAmount) ;

37 account2.deposit{depositAmount); // add to account2 balance

38

Fig. 3.9 | Inputting and outputting floating-point numbers with Account objects.
(Part 2 of 4.)

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

39 // display balances

40 System.out.printf{("%s balance: $%.2t%n",

41 accountl.getName(), accountl.getBalance());
42 System.out.printf("%s balance: $%.2T%n%n",

43 account2.getName(), account2.getBalance());
44 } // end main

45 1} // end class AccountTest

Jane Green balance: $50.00
John Blue balance: $0.00

Enter deposit amount for accountl: 25.53
adding 25.53 to accountl balance

Jane Green balance: $75.53
John Blue balance: $0.00

Fig. 3.9 | Inputting and outputting floating-point numbers with Account objects.
(Part 3 0f 4.)

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

Enter deposit amount for account2: 123.45
adding 123.45 to account2 balance

Jane Green balance: $75.53
John Blue balance: $123.45

Fig. 3.9 | Inputting and outputting floating-point numbers with Account objects.
(Part 4 of 4.)

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

3.5.2 AccountTest Class to Use Class

Account (Cont.)

» Scanner method nextDouble returns a double value.

p—

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

<

<

3.5.2 AccountTest Class to Use Class
Account (Cont.)

Formatting Floating-Point Numbers for Display

» The format specifier %f Is used to output values of type
float or double.

» The format specifier %.2f specifies that two digits of
precision should be output to the right of the decimal
point in the floating-point number.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

3.5.2 AccountTest Class to Use Class
Account (Cont.)

Common Programming Error 3.1

ﬁ The Java compiler will issue a compilation error if you
attempt to use the value of an uninitialized local vari-
able. This belps you avoid dangerous execution-time log-
ic errors. It’s always better to get the errors out of your
programs at compilation time rather than execution
time.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

3.5.2 AccountTest Class to Use Class
Account (Cont.)

» The default value for an instance variable of type
double is 0.0, and the default value for an instance
variable of type int Is 0.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

3.5.2 AccountTest Class to Use Class
Account (Cont.)

REz Software Engineering Observation 3.4

e Replacing duplicated code with calls to a method that
contains one copy of that code can reduce the size of your
program and improve its maintainability.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

<

3.5.2 AccountTest Class to Use Class
Account (Cont.)

Account

— name ; String
- balance ; double

sconstructor: Account(name ; String, balance: double)
+ deposit(depositBmount double)

+ getBalance() : double

+ setMName(name : String)

+ getName() : String

Fig. 3.10 | UML class diagram for Account class of Fig. 3.8,

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

3.6 (Optional) GUI and Graphics
Case Study: Using Dialog Boxes

Section 3.6 Using Dialog Boxes—Basic input and output with dialog boxes

Section 4.15 Creating Simple Drawings—Displaying and drawing lines on the
screen

Section 5.11 Drawing Rectangles and Ovals—Using shapes to represent data

Section 6.13 Colors and Filled Shapes—Drawing a bull’s-eye and random graphics

Section 7.17 Drawing Arcs—Drawing spirals with arcs

Section 8.16 Using Objects with Graphics—Storing shapes as objects

Section 9.7 Displaying Text and Images Using Labels—DProviding status
information

Section 10.11 Drawing with Polymorphism—Identifying the similarities between
shapes

Exercise 12.17 Expanding the Interface—Using GUI components and event handling
Exercise 13.31 Adding Java 2D—Ugsing the Java 2D API to enhance drawings

Fig. 3.11 | Summary of the GUI and Graphics Case Study in each chapter.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

1 // Fig. 3.12: Dialogl.java

2 // Using JOptionPane to display multiple lines in a dialog box.
3 1dmport javax.swing.JOptionPane;

4

5 public class Dialogl

6 {

T public static void main(String[] args)

8 {

9 // display a dialog with a message

10 JOptionPane.showMessageDialogCnull, "Welcome to Java');
11 }

12 } // end class Dialogl

Message

6 Welcome to Java

(ox]

Fig. 3.12 | Using JoptionPane to display multiple lines in a dialog box.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

1 // Fig. 3.13: NameDialog.java

2 // Obtaining user 1input from a dialog.

3 dmport javax.swing.JOptionPane;

4

5 public class NameDialog

6 {

7 public static void main(String[] args)

8 {

9 // prompt user to enter name

10 String name = JOptionPane.showInputDialog("What is your name?™);
11

12 // create the message

13 String message =

14 String.format{"Welcome, %s, to Java Programming!™, name);
15

16 // display the message to welcome the user by name

17 JOptionPane.showMessageDialog(null, message);

18 } // end main

19 1} // end class NameDialog

Fig. 3.13 | Obtaining user input from a dialog. (Part | of 2.)

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

Input Message

What is your name?
Welcome, Paul, to Java Programming!
| Paul| |

(o] | cen 3

Fig. 3.13 | Obtaining user input from a dialog. (Part 2 of 2.)

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

	Slide 1: Chapter 3 Introduction to Classes, Objects Methods and Strings
	Slide 2
	Slide 3
	Slide 4: 3.2 Instance Variables, set Methods and get Methods
	Slide 5
	Slide 6: 3.2.1 Account Class with an Instance Variable, a set Method and a get Method (Cont.)
	Slide 7: 3.2.1 Account Class with an Instance Variable, a set Method and a get Method (Cont.)
	Slide 8: 3.2.1 Account Class with an Instance Variable, a set Method and a get Method (Cont.)
	Slide 9
	Slide 10: 3.2.1 Account Class with an Instance Variable, a set Method and a get Method (Cont.)
	Slide 11: 3.1.1 Account Class with an Instance Variable, a set Method and a get Method (Cont.)
	Slide 12: 3.1.1 Account Class with an Instance Variable, a set Method and a get Method (Cont.)
	Slide 13: 3.1.1 Account Class with an Instance Variable, a set Method and a get Method (Cont.)
	Slide 14
	Slide 15: 3.2.1 Account Class with an Instance Variable, a set Method and a get Method (Cont.)
	Slide 16: 3.2.1 Account Class with an Instance Variable, a set Method and a get Method (Cont.)
	Slide 17: 3.2.2 AccountTest Class That Creates and Uses an Object of Class Account
	Slide 18
	Slide 19
	Slide 20: 3.2.2 AccountTest Class That Creates and Uses an Object of Class Account (Cont.)
	Slide 21: 3.2.2 AccountTest Class That Creates and Uses an Object of Class Account (Cont.)
	Slide 22: 3.2.2 AccountTest Class That Creates and Uses an Object of Class Account (Cont.)
	Slide 23
	Slide 24: 3.2.2 AccountTest Class That Creates and Uses an Object of Class Account (Cont.)
	Slide 25: 3.2.2 AccountTest Class That Creates and Uses an Object of Class Account (Cont.)
	Slide 26: 3.2.3 Compiling and Executing an App with Multiple Classes
	Slide 27: 3.2.4 Account UML Class Diagram with an Instance Variable and set and get Methods
	Slide 28
	Slide 29: 3.2.4 Account UML Class Diagram with an Instance Variable and set and get Methods (Cont.)
	Slide 30: 3.2.4 Account UML Class Diagram with an Instance Variable and set and get Methods (Cont.)
	Slide 31: 3.2.4 Account UML Class Diagram with an Instance Variable and set and get Methods (Cont.)
	Slide 32: 3.2.4 Account UML Class Diagram with an Instance Variable and set and get Methods (Cont.)
	Slide 33: 3.2.5 Additional Notes on Class AccountTest
	Slide 34: 3.2.5 Additional Notes on Class AccountTest (Cont.)
	Slide 35: 3.2.5 Additional Notes on Class AccountTest (Cont.)
	Slide 36
	Slide 37: 3.2.6 Software Engineering with private Instance Variables and public set and get Methods
	Slide 38
	Slide 39
	Slide 40: 3.3 Primitive Types vs. Reference Types
	Slide 41: 3.3 Primitive Types vs. Reference Types (Cont.)
	Slide 42: 3.4 Account Class: Initializing Objects with Constructors
	Slide 43: 3.4.1 Declaring an Account Constructor for Custom Object Initialization
	Slide 44
	Slide 45
	Slide 46
	Slide 47: 3.4.2 Class AccountTest: Initializing Account Objects When They’re Created (Cont.)
	Slide 48
	Slide 49: 3.4.2 Class AccountTest: Initializing Account Objects When They’re Created (Cont.)
	Slide 50
	Slide 51: 3.5 Account Class with a Balance; Floating-Point Numbers and Type double
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59: 3.5.2 AccountTest Class to Use Class Account (Cont.)
	Slide 60: 3.5.2 AccountTest Class to Use Class Account (Cont.)
	Slide 61
	Slide 62: 3.5.2 AccountTest Class to Use Class Account (Cont.)
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68

