
Java™ How to Program, 10/e

© Copyright 1992-2015 by Pearson Education, Inc. All Rights
Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

 Each class you create becomes a new type that can be

used to declare variables and create objects.

 You can declare new classes as needed; this is one

reason Java is known as an extensible language.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

3.2.1 Account Class with an Instance Variable,
a set Method and a get Method

Class Declaration

 Each class declaration that begins with the access

modifier public must be stored in a file that has the

same name as the class and ends with the .java
filename extension.

 Every class declaration contains keyword class
followed immediately by the class’s name.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

Identifiers and Camel Case Naming

 Class, method and variable names are identifiers.

 By convention all use camel case names.

 Class names begin with an uppercase letter, and

method and variable names begin with a lowercase

letter.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

Instance Variable name
 An object has attributes that are implemented as instance

variables and carried with it throughout its lifetime.
 Instance variables exist before methods are called on an

object, while the methods are executing and after the
methods complete execution.

 A class normally contains one or more methods that
manipulate the instance variables that belong to particular
objects of the class.

 Instance variables are declared inside a class declaration
but outside the bodies of the class’s method declarations.

 Each object (instance) of the class has its own copy of each
of the class’s instance variables.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

Access Modifiers public and private

 Most instance-variable declarations are preceded with

the keyword private, which is an access modifier.

 Variables or methods declared with access modifier

private are accessible only to methods of the class in

which they’re declared.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

setName Method of Class Account

 Parameters are declared in a comma-separated

parameter list, which is located inside the parentheses

that follow the method name in the method

declaration.

 Multiple parameters are separated by commas.

 Each parameter must specify a type followed by a

variable name.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

Parameters Are Local Variables

 Variables declared in the body of a particular method

are local variables and can be used only in that

method.

 When a method terminates, the values of its local

variables are lost.

 A method’s parameters are local variables of the

method.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

setName Method Body

 Every method’s body is delimited by left and right

braces ({ and }).

 Each method’s body contains one or more statements

that perform the method’s task(s).

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

getName Method of Class Account
 The method’s return type specifies the type of data

returned to a method’s caller.

 Keyword void indicates that a method will perform a
task but will not return any information.

 Empty parentheses following a method name indicate
that the method does not require any parameters to
perform its task.

 When a method that specifies a return type other than
void is called and completes its task, the method must
return a result to its calling method.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

 The return statement passes a value from a called

method back to its caller.

 Classes often provide public methods to allow the

class’s clients to set or get private instance variables.

 The names of these methods need not begin with set or

get, but this naming convention is recommended.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

Driver Class AccountTest

 A class that creates an object of another class, then

calls the object’s methods, is a driver class.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

Scanner Object for Receiving Input from the User

 Scanner method nextLine reads characters until a

newline character is encountered, then returns the

characters as a String.

 Scanner method next reads characters until any white-

space character is encountered, then returns the

characters as a String.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

Instantiating an Object—Keyword new and
Constructors

 A class instance creation expression begins with

keyword new and creates a new object.

 A constructor is similar to a method but is called

implicitly by the new operator to initialize an object’s

instance variables at the time the object is created.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

Calling Class Account’s getName Method

 To call a method of an object, follow the object name

with a dot separator, the method name and a set of

parentheses containing the method’s arguments.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

null—the Default Initial Value for String Variables

 Local variables are not automatically initialized.

 Every instance variable has a default initial value—a

value provided by Java when you do not specify the

instance variable’s initial value.

 The default value for an instance variable of type

String is null.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

Calling Class Account’s setName Method

 A method call supplies values—known as
arguments—for each of the method’s parameters.

 Each argument’s value is assigned to the
corresponding parameter in the method header.

 The number of arguments in a method call must match
the number of parameters in the method declaration’s
parameter list.

 The argument types in the method call must be
consistent with the types of the corresponding
parameters in the method’s declaration.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

 The javac command can compile multiple classes at
once.

 Simply list the source-code filenames after the
command with each filename separated by a space
from the next.

 If the directory containing the app includes only one
app’s files, you can compile all of its classes with the
command javac *.java.

 The asterisk (*) in *.java indicates that all files in the
current directory ending with the filename extension
“.java” should be compiled.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

Top Compartment

 In the UML, each class is modeled in a class diagram

as a rectangle with three compartments. The top one

contains the class’s name centered horizontally in

boldface.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

Middle Compartment

 The middle compartment contains the class’s

attributes, which correspond to instance variables in

Java.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

Bottom Compartment

 The bottom compartment contains the class’s operations,
which correspond to methods and constructors in Java.

 The UML represents instance variables as an attribute
name, followed by a colon and the type.

 Private attributes are preceded by a minus sign (–) in the
UML.

 The UML models operations by listing the operation name
followed by a set of parentheses.

 A plus sign (+) in front of the operation name indicates that
the operation is a public one in the UML (i.e., a public
method in Java).

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

Return Types

 The UML indicates an operation’s return type by

placing a colon and the return type after the

parentheses following the operation name.

 UML class diagrams do not specify return types for

operations that do not return values.

 Declaring instance variables private is known as data

hiding or information hiding.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

Parameters

 The UML models a parameter of an operation by

listing the parameter name, followed by a colon and

the parameter type between the parentheses after the

operation name

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

static Method main

 You must call most methods other than main explicitly

to tell them to perform their tasks.

 A key part of enabling the JVM to locate and call

method main to begin the app’s execution is the static
keyword, which indicates that main is a static method

that can be called without first creating an object of the

class in which the method is declared.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

Notes on import Declarations

 Most classes you’ll use in Java programs must be

imported explicitly.

 There’s a special relationship between classes that are

compiled in the same directory.

 By default, such classes are considered to be in the

same package—known as the default package.

 Classes in the same package are implicitly imported

into the source-code files of other classes in that

package.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

 An import declaration is not required when one class

in a package uses another in the same package.

 An import- declaration is not required if you always

refer to a class with its fully qualified class name,

which includes its package name and class name.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

 Declaring instance variables private is known as data

hiding or information hiding.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

3.2.7 Software Engineering with private Instance
Variables and public set and get Methods

 Types in Java are divided into two categories—primitive
types and reference types.

 The primitive types are boolean, byte, char, short, int,
long, float and double.

 All other types are reference types, so classes, which
specify the types of objects, are reference types.

 A primitive-type variable can store exactly one value of its
declared type at a time.

 Primitive-type instance variables are initialized by default.

 Variables of types byte, char, short, int, long, float and
double are initialized to 0.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

 Variables of type boolean are initialized to false.

 Reference-type variables (called references) store the
location of an object in the computer’s memory.

 Such variables refer to objects in the program.

 The object that’s referenced may contain many instance
variables and methods.

 Reference-type instance variables are initialized by default
to the value null.

 A reference to an object is required to invoke an object’s
methods.

 A primitive-type variable does not refer to an object and
therefore cannot be used to invoke a method.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

 Each class you declare can optionally provide a

constructor with parameters that can be used to

initialize an object of a class when the object is

created.

 Java requires a constructor call for every object that’s

created.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

3.4.1 Declaring an Account Constructor
for Custom Object Initialization (Cont.)

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

3.4.2 Class AccountTest: Initializing
Account Objects When They’re Created

Constructors Cannot Return Values

 Constructors can specify parameters but not return types.

Default Constructor

 If a class does not define constructors, the compiler
provides a default constructor with no parameters, and the
class’s instance variables are initialized to their default
values.

There’s No Default Constructor in a Class That Declares a
Constructor

 If you declare a constructor for a class, the compiler will
not create a default constructor for that class.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

Adding the Contructor to Class Account’s UML Class
Diagram

 The UML models constructors in the third

compartment of a class diagram.

 To distinguish a constructor from a class’s operations,

the UML places the word “constructor” between

guillemets (« and ») before the constructor’s name.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

 A floating-point number is a number with a decimal point.

 Java provides two primitive types for storing floating-point
numbers in memory—float and double.

 Variables of type float represent single-precision floating-
point numbers and have seven significant digits.

 Variables of type double represent double-precision
floating-point numbers.

 These require twice as much memory as float variables and
provide 15 significant digits—approximately double the
precision of float variables.

 Floating-point literals are of type double by default.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

3.5.1 Account Class with a balance
Instance Variable of Type double

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

3.5.2 AccountTest Class to Use Class
Account

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

 Scanner method nextDouble returns a double value.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

Formatting Floating-Point Numbers for Display

 The format specifier %f is used to output values of type

float or double.

 The format specifier %.2f specifies that two digits of

precision should be output to the right of the decimal

point in the floating-point number.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

3.5.2 AccountTest Class to Use Class
Account (Cont.)

 The default value for an instance variable of type

double is 0.0, and the default value for an instance

variable of type int is 0.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

3.5.2 AccountTest Class to Use Class
Account (Cont.)

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

3.5.2 AccountTest Class to Use Class
Account (Cont.)

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

3.6 (Optional) GUI and Graphics
Case Study: Using Dialog Boxes

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

	Slide 1: Chapter 3 Introduction to Classes, Objects Methods and Strings
	Slide 2
	Slide 3
	Slide 4: 3.2 Instance Variables, set Methods and get Methods
	Slide 5
	Slide 6: 3.2.1 Account Class with an Instance Variable, a set Method and a get Method (Cont.)
	Slide 7: 3.2.1 Account Class with an Instance Variable, a set Method and a get Method (Cont.)
	Slide 8: 3.2.1 Account Class with an Instance Variable, a set Method and a get Method (Cont.)
	Slide 9
	Slide 10: 3.2.1 Account Class with an Instance Variable, a set Method and a get Method (Cont.)
	Slide 11: 3.1.1 Account Class with an Instance Variable, a set Method and a get Method (Cont.)
	Slide 12: 3.1.1 Account Class with an Instance Variable, a set Method and a get Method (Cont.)
	Slide 13: 3.1.1 Account Class with an Instance Variable, a set Method and a get Method (Cont.)
	Slide 14
	Slide 15: 3.2.1 Account Class with an Instance Variable, a set Method and a get Method (Cont.)
	Slide 16: 3.2.1 Account Class with an Instance Variable, a set Method and a get Method (Cont.)
	Slide 17: 3.2.2 AccountTest Class That Creates and Uses an Object of Class Account
	Slide 18
	Slide 19
	Slide 20: 3.2.2 AccountTest Class That Creates and Uses an Object of Class Account (Cont.)
	Slide 21: 3.2.2 AccountTest Class That Creates and Uses an Object of Class Account (Cont.)
	Slide 22: 3.2.2 AccountTest Class That Creates and Uses an Object of Class Account (Cont.)
	Slide 23
	Slide 24: 3.2.2 AccountTest Class That Creates and Uses an Object of Class Account (Cont.)
	Slide 25: 3.2.2 AccountTest Class That Creates and Uses an Object of Class Account (Cont.)
	Slide 26: 3.2.3 Compiling and Executing an App with Multiple Classes
	Slide 27: 3.2.4 Account UML Class Diagram with an Instance Variable and set and get Methods
	Slide 28
	Slide 29: 3.2.4 Account UML Class Diagram with an Instance Variable and set and get Methods (Cont.)
	Slide 30: 3.2.4 Account UML Class Diagram with an Instance Variable and set and get Methods (Cont.)
	Slide 31: 3.2.4 Account UML Class Diagram with an Instance Variable and set and get Methods (Cont.)
	Slide 32: 3.2.4 Account UML Class Diagram with an Instance Variable and set and get Methods (Cont.)
	Slide 33: 3.2.5 Additional Notes on Class AccountTest
	Slide 34: 3.2.5 Additional Notes on Class AccountTest (Cont.)
	Slide 35: 3.2.5 Additional Notes on Class AccountTest (Cont.)
	Slide 36
	Slide 37: 3.2.6 Software Engineering with private Instance Variables and public set and get Methods
	Slide 38
	Slide 39
	Slide 40: 3.3 Primitive Types vs. Reference Types
	Slide 41: 3.3 Primitive Types vs. Reference Types (Cont.)
	Slide 42: 3.4 Account Class: Initializing Objects with Constructors
	Slide 43: 3.4.1 Declaring an Account Constructor for Custom Object Initialization
	Slide 44
	Slide 45
	Slide 46
	Slide 47: 3.4.2 Class AccountTest: Initializing Account Objects When They’re Created (Cont.)
	Slide 48
	Slide 49: 3.4.2 Class AccountTest: Initializing Account Objects When They’re Created (Cont.)
	Slide 50
	Slide 51: 3.5 Account Class with a Balance; Floating-Point Numbers and Type double
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59: 3.5.2 AccountTest Class to Use Class Account (Cont.)
	Slide 60: 3.5.2 AccountTest Class to Use Class Account (Cont.)
	Slide 61
	Slide 62: 3.5.2 AccountTest Class to Use Class Account (Cont.)
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68

