
Java™ How to Program, 10/e

© Copyright 1992-2015 by Pearson Education, Inc. All Rights
Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

 Java application programming

 Use tools from the JDK to compile and run programs.

 Videos at www.deitel.com/books/jhtp10/
▪ Help you get started with Eclipse, NetBeans and IntelliJ IDEA

integrated development environments.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

 Java application

▪ A computer program that executes when you use the java

command to launch the Java Virtual Machine (JVM).

 Sample program in Fig. 2.1 displays a line of text.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

Commenting Your Programs

 Comments
// Fig. 2.1: Welcome1.java

▪ // indicates that the line is a comment.

▪ Used to document programs and improve their readability.

▪ Compiler ignores comments.

▪ A comment that begins with // is an end-of-line comment—it

terminates at the end of the line on which it appears.

 Traditional comment, can be spread over several lines as in
/* This is a traditional comment. It

can be split over multiple lines */

▪ This type of comment begins with /* and ends with */.

▪ All text between the delimiters is ignored by the compiler.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

 Javadoc comments

▪ Delimited by /** and */.

▪ All text between the Javadoc comment delimiters is ignored by

the compiler.

▪ Enable you to embed program documentation directly in your

programs.

▪ The javadoc utility program (online Appendix G) reads

Javadoc comments and uses them to prepare program

documentation in HTML format.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

Using Blank Lines

 Blank lines, space characters and tabs

▪ Make programs easier to read.

▪ Together, they’re known as white space (or whitespace).

▪ White space is ignored by the compiler.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

Declaring a class

 Class declaration
public class Welcome1

▪ Every Java program consists of at least one class that you

define.

▪ class keyword introduces a class declaration and is

immediately followed by the class name.

▪ Keywords (Appendix C) are reserved for use by Java and are

always spelled with all lowercase letters.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

Filename for a public Class

 A public class must be placed in a file that has a

filename of the form ClassName.java, so class

Welcome1 is stored in the file Welcome1.java.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

Class Names and Identifiers

 By convention, begin with a capital letter and capitalize the

first letter of each word they include (e.g.,

SampleClassName).

 A class name is an identifier—a series of characters

consisting of letters, digits, underscores (_) and dollar signs

($) that does not begin with a digit and does not contain

spaces.

 Java is case sensitive—uppercase and lowercase letters are

distinct—so a1 and A1 are different (but both valid)

identifiers.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

Class Body

 A left brace, {, begins the body of every class

declaration.

 A corresponding right brace, }, must end each class

declaration.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

Declaring a Method
public static void main(String[] args)

 Starting point of every Java application.

 Parentheses after the identifier main indicate that it’s a
program building block called a method.

 Java class declarations normally contain one or more methods.

 main must be defined as shown; otherwise, the JVM will not
execute the application.

 Methods perform tasks and can return information when they
complete their tasks.

 Keyword void indicates that this method will not return any
information.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

 Body of the method declaration
▪ Enclosed in left and right braces.

 Statement
System.out.println("Welcome to Java Programming!");

▪ Instructs the computer to perform an action

 Display the characters contained between the double quotation
marks.

▪ Together, the quotation marks and the characters between them
are a string—also known as a character string or a string literal.

▪ White-space characters in strings are not ignored by the
compiler.

▪ Strings cannot span multiple lines of code.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

 System.out object

▪ Standard output object.

▪ Allows a Java application to display information in the

command window from which it executes.

 System.out.println method

▪ Displays (or prints) a line of text in the command window.

▪ The string in the parentheses the argument to the method.

▪ Positions the output cursor at the beginning of the next line in

the command window.

 Most statements end with a semicolon.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

Compiling Your First Java Application

 Open a command window and change to the directory where the program

is stored.

 Many operating systems use the command cd to change directories.

 To compile the program, type

javac Welcome1.java

 If the program contains no compilation errors, preceding command creates

a.class file (known as the class file) containing the platform-

independent Java bytecodes that represent the application.

 When we use the java command to execute the application on a given

platform, these bytecodes will be translated by the JVM into instructions

that are understood by the underlying operating system.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

Executing the Welcome1 Application

 To execute this program in a command window, change to the

directory containing Welcome1.java—C:\examples\ch02\

fig02_01 on Microsoft Windows or ~/Documents/

examples/ch02/fig02_01 on Linux/OS X.

 Next, type java Welcome1.

 This launches the JVM, which loads the Welcome1.class
file.

 The command omits the .class file-name extension;

otherwise, the JVM will not execute the program.

 The JVM calls class Welcome1’s main method.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

 Class Welcome2, shown in Fig. 2.3, uses two
statements to produce the same output as that shown in
Fig. 2.1.

 New and key features in each code listing are
highlighted.

 System.out’s method print displays a string.

 Unlike println, print does not position the output
cursor at the beginning of the next line in the command
window.
▪ The next character the program displays will appear

immediately after the last character that print displays.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

 Newline characters indicate to System.out’s print and
println methods when to position the output cursor at
the beginning of the next line in the command window.

 Newline characters are whitespace characters.

 The backslash (\) is called an escape character.
▪ Indicates a “special character”

 Backslash is combined with the next character to form an
escape sequence—\n represents the newline character.

 Complete list of escape sequences
http://docs.oracle.com/javase/specs/jls/se7/html/

jls-3.html#jls-3.10.6.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

 System.out.printf method
▪ f means “formatted”
▪ displays formatted data

 Multiple method arguments are placed in a comma-separated list.
 Calling a method is also referred to as invoking a method.
 Java allows large statements to be split over many lines.

▪ Cannot split a statement in the middle of an identifier or string.

 Method printf’s first argument is a format string
▪ May consist of fixed text and format specifiers.
▪ Fixed text is output as it would be by print or println.
▪ Each format specifier is a placeholder for a value and specifies the type

of data to output.

 Format specifiers begin with a percent sign (%) and are followed
by a character that represents the data type.

 Format specifier %s is a placeholder for a string.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

 Integers

▪ Whole numbers, like –22, 7, 0 and 1024)

 Programs remember numbers and other data in the

computer’s memory and access that data through

program elements called variables.

 The program of Fig. 2.7 demonstrates these concepts.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

 Helps the compiler locate a class that is used in this

program.

 Rich set of predefined classes that you can reuse rather

than “reinventing the wheel.”

 Classes are grouped into packages—named groups of

related classes—and are collectively referred to as the

Java class library, or the Java Application Programming

Interface (Java API).

 You use import declarations to identify the

predefined classes used in a Java program.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

 Variable declaration statement
Scanner input = new Scanner(System.in);

▪ Specifies the name (input) and type (Scanner) of a variable that
is used in this program.

 Variable
▪ A location in the computer’s memory where a value can be stored for

use later in a program.

▪ Must be declared with a name and a type before they can be used.

▪ A variable’s name enables the program to access the value of the
variable in memory.

▪ The name can be any valid identifier.

▪ A variable’s type specifies what kind of information is stored at that
location in memory.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

 Scanner
▪ Enables a program to read data for use in a program.
▪ Data can come from many sources, such as the user at the keyboard or a

file on disk.
▪ Before using a Scanner, you must create it and specify the source of

the data.

 The equals sign (=) in a declaration indicates that the variable
should be initialized (i.e., prepared for use in the program) with
the result of the expression to the right of the equals sign.

 The new keyword creates an object.
 Standard input object, System.in, enables applications to read

bytes of data typed by the user.
 Scanner object translates these bytes into types that can be

used in a program.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

 Variable declaration statements
int number1; // first number to add
int number2; // second number to add
int sum; // sum of number1 and number2

declare that variables number1, number2 and sum hold

data of type int
▪ They can hold integer.

▪ Range of values for an int is –2,147,483,648 to +2,147,483,647.

▪ The int values you use in a program may not contain commas.

 Several variables of the same type may be declared in one

declaration with the variable names separated by commas.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

 Prompt

▪ Output statement that directs the user to take a specific action.

 Class System
▪ Part of package java.lang.

▪ Class System is not imported with an import declaration at

the beginning of the program.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

 Scanner method nextInt
number1 = input.nextInt(); // read first number from
user

▪ Obtains an integer from the user at the keyboard.

▪ Program waits for the user to type the number and press the
Enter key to submit the number to the program.

 The result of the call to method nextInt is placed in
variable number1 by using the assignment operator, =.
▪ “number1 gets the value of input.nextInt().”

▪ Operator = is called a binary operator—it has two operands.

▪ Everything to the right of the assignment operator, =, is always
evaluated before the assignment is performed.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

 Arithmetic
sum = number1 + number2; // add numbers then store total
in sum

▪ Assignment statement that calculates the sum of the variables

number1 and number2 then assigns the result to variable sum
by using the assignment operator, =.

▪ “sum gets the value of number1 + number2.”

▪ Portions of statements that contain calculations are called

expressions.

▪ An expression is any portion of a statement that has a value

associated with it.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

 Integer formatted output
System.out.printf("Sum is %d%n", sum);

▪ Format specifier %d is a placeholder for an int value

▪ The letter d stands for “decimal integer.”

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

 Variables

▪ Every variable has a name, a type, a size (in bytes) and a value.

▪ When a new value is placed into a variable, the new value

replaces the previous value (if any)

▪ The previous value is lost, so this process is said to be

destructive.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

 Arithmetic operators are summarized in Fig. 2.11.

 The asterisk (*) indicates multiplication

 The percent sign (%) is the remainder operator

 The arithmetic operators are binary operators because

they each operate on two operands.

 Integer division yields an integer quotient.

▪ Any fractional part in integer division is simply truncated (i.e.,

discarded)—no rounding occurs.

 The remainder operator, %, yields the remainder after

division.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

 Arithmetic expressions in Java must be written in
straight-line form to facilitate entering programs into
the computer.

 Expressions such as “a divided by b” must be written
as a / b, so that all constants, variables and operators
appear in a straight line.

 Parentheses are used to group terms in expressions in
the same manner as in algebraic expressions.

 If an expression contains nested parentheses, the
expression in the innermost set of parentheses is
evaluated first.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

 Rules of operator precedence
▪ Multiplication, division and remainder operations are applied first.

▪ If an expression contains several such operations, they are applied from
left to right.

▪ Multiplication, division and remainder operators have the same level of
precedence.

▪ Addition and subtraction operations are applied next.

▪ If an expression contains several such operations, the operators are
applied from left to right.

▪ Addition and subtraction operators have the same level of precedence.

 When we say that operators are applied from left to right, we are
referring to their associativity.

 Some operators associate from right to left.

 Complete precedence chart is included in Appendix A.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

 As in algebra, it’s acceptable to place redundant

parentheses (unnecessary parentheses) in an ex-

pression to make the expression clearer.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

 Condition
▪ An expression that can be true or false.

 if selection statement
▪ Allows a program to make a decision based on a condition’s value.

 Equality operators (== and !=)

 Relational operators (>, <, >= and <=)

 Both equality operators have the same level of precedence,
which is lower than that of the relational operators.

 The equality operators associate from left to right.

 The relational operators all have the same level of
precedence and also associate from left to right.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

 An if statement always begins with keyword if,
followed by a condition in parentheses.
▪ Expects one statement in its body, but may contain multiple

statements if they are enclosed in a set of braces ({}).

▪ The indentation of the body statement is not required, but it
improves the program’s readability by emphasizing that
statements are part of the body.

 Note that there is no semicolon (;) at the end of the
first line of each if statement.
▪ Such a semicolon would result in a logic error at execution

time.

▪ Treated as the empty statement—semicolon by itself.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

© Copyright 1992-2015 by Pearson
Education, Inc. All Rights Reserved.

	Slide 1: Chapter 2 Introduction to Java Applications; Input/Output and Operators
	Slide 2
	Slide 3
	Slide 4: 2.1 Introduction
	Slide 5: 2.2 Your First Program in Java: Printing a Line of Text
	Slide 6
	Slide 7: 2.2 Your First Program in Java: Printing a Line of Text (Cont.)
	Slide 8: 2.2 Our First Program in Java: Printing a Line of Text (Cont.)
	Slide 9
	Slide 10
	Slide 11
	Slide 12: 2.2 Your First Program in Java: Printing a Line of Text (Cont.)
	Slide 13
	Slide 14: 2.2 Your First Program in Java: Printing a Line of Text (Cont.)
	Slide 15: 2.2 Your First Program in Java: Printing a Line of Text (Cont.)
	Slide 16
	Slide 17: 2.2 Your First Program in Java: Printing a Line of Text (Cont.)
	Slide 18: 2.2 Your First Program in Java: Printing a Line of Text (Cont.)
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23: 2.2 Your First Program in Java: Printing a Line of Text (Cont.)
	Slide 24
	Slide 25: 2.2 Your First Program in Java: Printing a Line of Text (Cont.)
	Slide 26
	Slide 27: 2.2 Your First Program in Java: Printing a Line of Text (Cont.)
	Slide 28: 2.2 Your First Program in Java: Printing a Line of Text (Cont.)
	Slide 29
	Slide 30
	Slide 31: 2.2 Your First Program in Java: Printing a Line of Text (Cont.)
	Slide 32
	Slide 33
	Slide 34: 2.3 Modifying Your First Java Program
	Slide 35
	Slide 36: 2.3 Modifying Your First Java Program (Cont.)
	Slide 37
	Slide 38
	Slide 39: 2.4 Displaying Text with printf
	Slide 40
	Slide 41
	Slide 42
	Slide 43: 2.5 Another Application: Adding Integers
	Slide 44
	Slide 45
	Slide 46: 2.5.1 import Declarations
	Slide 47
	Slide 48
	Slide 49
	Slide 50: 2.5.3 Declaring and Creating a Scanner to Obtain User Input from the Keyboard
	Slide 51: 2.5 Another Application: Adding Integers (Cont.)
	Slide 52: 2.5.4 Declaring Variables to Store Integers
	Slide 53
	Slide 54
	Slide 55
	Slide 56: 2.5.5 Prompting the User for Input
	Slide 57
	Slide 58: 2.5.6 Obtaining an int as Input from the User
	Slide 59
	Slide 60: 2.5 Another Application: Adding Integers (Cont.)
	Slide 61: 2.5.9 Displaying the Result of the Calculation
	Slide 62: 2.6 Memory Concepts
	Slide 63
	Slide 64
	Slide 65
	Slide 66: 2.7 Arithmetic
	Slide 67
	Slide 68: 2.7 Arithmetic (Cont.)
	Slide 69: 2.7 Arithmetic (Cont.)
	Slide 70
	Slide 71
	Slide 72: 2.7 Arithmetic (Cont.)
	Slide 73: 2.8 Decision Making: Equality and Relational Operators
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78: 2.8 Decision Making: Equality and Relational Operators (Cont.)
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83

