
Java How to Program, 10/e

©1992-2015 by Pearson Education, Inc. All Rights Reserved.

©1992-2015 by Pearson Education, Inc.
All Rights Reserved.

©1992-2015 by Pearson Education, Inc.
All Rights Reserved.

©1992-2015 by Pearson Education, Inc.
All Rights Reserved.

 Java is one of the world’s most widely used computer

programming languages.

 You’ll learn to write instructions commanding

computers to perform tasks.

 Software (i.e., the instructions you write) controls

hardware (i.e., computers).

 You’ll learn object-oriented programming—today’s

key programming methodology.

 You’ll create and work with many software objects.

©1992-2015 by Pearson Education, Inc.
All Rights Reserved.

 For many organizations, the preferred language for

meeting their enterprise programming needs is Java.

 Java is also widely used for implementing Internet-

based applications and software for devices that

communicate over a network.

 According to Oracle, 97% of enterprise desktops, 89%

of PC desktops, three billion devices (Fig. 1.1) and

100% of all Blu-ray Disc™ players run Java, and there

are over 9 million Java developers.
(http://www.oracle.com/technetwork/articles/java/javaone12revi
ew-1863742.html)

©1992-2015 by Pearson Education, Inc.
All Rights Reserved.

http://www.oracle.com/technetwork/articles/java/javaone12review-1863742.html
http://www.oracle.com/technetwork/articles/java/javaone12review-1863742.html

©1992-2015 by Pearson Education, Inc.
All Rights Reserved.

Java Standard Edition

 Java How to Program, 10/e is based on Java Standard

Edition 7 (Java SE 7) and Java Standard Edition 8 (Java

SE 8)

 Java Standard Edition contains the capabilities needed

to develop desktop and server applications.

 Prior to Java SE 8, Java supported three programming

paradigms—procedural programming, object-oriented

programming and generic programming. Java SE 8

adds functional programming.

©1992-2015 by Pearson Education, Inc.
All Rights Reserved.

Java Enterprise Edition

 Java is used in such a broad spectrum of applications

that it has two other editions.

 The Java Enterprise Edition (Java EE) is geared toward

developing large-scale, distributed networking

applications and web-based applications.

©1992-2015 by Pearson Education, Inc.
All Rights Reserved.

 Java Micro Edition (Java ME)

◦ a subset of Java SE.

◦ geared toward developing applications for resource-

constrained embedded devices, such as

 Smartwatches

 MP3 players

 television set-top boxes

 smart meters (for monitoring electric energy usage)

 and more.

©1992-2015 by Pearson Education, Inc.
All Rights Reserved.

 Computers can perform calculations and make logical
decisions phenomenally faster than human beings can.

 Today’s personal computers can perform billions of
calculations in one second—more than a human can
perform in a lifetime.

 Supercomputers are already performing thousands of
trillions (quadrillions) of instructions per second!

 Computers process data under the control of sequences of
instructions called computer programs.

©1992-2015 by Pearson Education, Inc.
All Rights Reserved.

 These software programs guide the computer through
ordered actions specified by people called computer
programmers.

 You’ll learn a key programming methodology that’s
enhancing programmer productivity, thereby reducing
software development costs—object-oriented
programming.

©1992-2015 by Pearson Education, Inc.
All Rights Reserved.

 A computer consists of various devices referred to as
hardware
◦ (e.g., the keyboard, screen, mouse, hard disks, memory, DVD drives

and processing units).

 Computing costs are dropping dramatically, owing to rapid
developments in hardware and software technologies.

 Computers that might have filled large rooms and cost
millions of dollars decades ago are now inscribed on silicon
chips smaller than a fingernail, costing perhaps a few
dollars each.

 Silicon-chip technology has made computing so economical
that computers have become a commodity.

©1992-2015 by Pearson Education, Inc.
All Rights Reserved.

 Every year or two, the capacities of computers have
approximately doubled inexpensively.

 This remarkable trend often is called Moore’s Law.

 Named for the person who identified the trend, Gordon
Moore, co-founder of Intel.

 Moore’s Law and related observations apply especially
to the amount of memory that computers have for
programs, the amount of secondary storage (such as
disk storage) they have to hold programs and data over
longer periods of time, and their processor speeds—the
speeds at which they execute their programs (i.e., do
their work).

©1992-2015 by Pearson Education, Inc.
All Rights Reserved.

 Similar growth has occurred in the communications

field.

 Costs have plummeted as enormous demand for

communications bandwidth (i.e., information-carrying

capacity) has attracted intense competition.

 Such phenomenal improvement is fostering the

Information Revolution.

©1992-2015 by Pearson Education, Inc.
All Rights Reserved.

 Computers can be envisioned as divided into various

logical units or sections.

©1992-2015 by Pearson Education, Inc.
All Rights Reserved.

©1992-2015 by Pearson Education, Inc.
All Rights Reserved.

©1992-2015 by Pearson Education, Inc.
All Rights Reserved.

©1992-2015 by Pearson Education, Inc.
All Rights Reserved.

©1992-2015 by Pearson Education, Inc.
All Rights Reserved.

©1992-2015 by Pearson Education, Inc.
All Rights Reserved.

 Data items processed by computers form a data

hierarchy that becomes larger and more complex in

structure as we progress from the simplest data items

(called “bits”) to richer ones, such as characters and

fields.

©1992-2015 by Pearson Education, Inc.
All Rights Reserved.

©1992-2015 by Pearson Education, Inc.
All Rights Reserved.

Bits

 The smallest data item in a computer can assume the value
0 or the value 1.

 Such a data item is called a bit (short for “binary digit”—a
digit that can assume either of two values).

 Remarkably, the impressive functions performed by
computers involve only the simplest manipulations of 0s
and 1s—examining a bit’s value, setting a bit’s value and
reversing a bit’s value (from 1 to 0 or from 0 to 1).

©1992-2015 by Pearson Education, Inc.
All Rights Reserved.

Characters

 We prefer to work with decimal digits (0–9), uppercase
letters (A–Z), lowercase letters (a–z), and special symbols
(e.g., $, @, %, &, *, (,), –, +, ", :, ? and /).

 Digits, letters and special symbols are known as characters.
The computer’s character set is the set of all the characters
used to write programs and represent data items on that
device.

 Computers process only 1s and 0s, so every character is
represented as a pattern of 1s and 0s.

 Java uses Unicode® characters that are composed of one,
two or four bytes (8, 16 or 32 bits).

©1992-2015 by Pearson Education, Inc.
All Rights Reserved.

 Unicode contains characters for many of the world’s
languages.

 See Appendix B for more information on the ASCII
(American Standard Code for Information Interchange)
character set—the popular subset of Unicode that represents
uppercase and lowercase letters in the English alphabet,
digits and some common special characters.

©1992-2015 by Pearson Education, Inc.
All Rights Reserved.

Fields

 Just as characters are composed of bits, fields are composed
of characters or bytes.

 A field is a group of characters or bytes that conveys
meaning.

 For example, a field consisting of uppercase and lowercase
letters could be used to represent a person’s name, and a
field consisting of decimal digits could represent a person’s
age.

©1992-2015 by Pearson Education, Inc.
All Rights Reserved.

Records
 Several related fields can be used to compose a record

(implemented as a class in Java).
 In a payroll system, for example, the record for an

employee might consist of the following fields (possible
types for these fields are shown in parentheses):
◦ Employee identification number (a whole number)
◦ Name (a string of characters)
◦ Address (a string of characters)
◦ Hourly pay rate (a number with a decimal point)
◦ Year-to-date earnings (a number with a decimal point)
◦ Amount of taxes withheld (a number with a decimal point)

 Thus, a record is a group of related fields.
 In the preceding example, all the fields belong to the same

employee.

©1992-2015 by Pearson Education, Inc.
All Rights Reserved.

Files

 A file is a group of related records.
 More generally, a file contains arbitrary data in arbitrary

formats.
 In some operating systems, a file is viewed simply as a

sequence of bytes—any organization of the bytes in a file,
such as organizing the data into records, is a view created
by the application programmer.

©1992-2015 by Pearson Education, Inc.
All Rights Reserved.

Database

 A database is a collection of data that’s organized for easy
access and manipulation.

 The most popular database model is the relational database
in which data is stored in simple tables.

 A table includes records and fields.
◦ For example, a table of students might include first name, last name,

major, year, student ID number and grade point average fields.
◦ The data for each student is a record, and the individual pieces of

information in each record are the fields.

 You can search, sort and otherwise manipulate the data
based on its relationship to multiple tables or databases.

©1992-2015 by Pearson Education, Inc.
All Rights Reserved.

Big Data

 The amount of data being produced worldwide is enormous
and growing explosively.

 According to IBM, approximately 2.5 quintillion bytes (2.5
exabytes) of data are created daily and 90% of the world’s
data was created in just the past two years!
(www-01.ibm.com/software/data/bigdata/)

 Big data applications deal with such massive amounts of
data and this field is growing quickly, creating lots of
opportunity for software developers.

©1992-2015 by Pearson Education, Inc.
All Rights Reserved.

©1992-2015 by Pearson Education, Inc.
All Rights Reserved.

 Programmers write instructions in various

programming languages, some directly understandable

by computers and others requiring intermediate

translation steps.

 These may be divided into three general types:

◦ Machine languages

◦ Assembly languages

◦ High-level languages

©1992-2015 by Pearson Education, Inc.
All Rights Reserved.

Machine Languages

 Any computer can directly understand only its own machine
language, defined by its hardware design.
◦ Generally consist of strings of numbers (ultimately reduced to 1s and 0s)

that instruct computers to perform their most elementary operations one
at a time.

◦ Machine dependent—a particular ma-chine language can be used on
only one type of computer.

Assembly Languages and Assemblers

 English-like abbreviations that represent elementary operations
formed the basis of assembly languages.

 Translator programs called assemblers convert early assembly-
language programs to machine language.

©1992-2015 by Pearson Education, Inc.
All Rights Reserved.

High-Level Languages and Compilers

 High-level languages
◦ Single statements accomplish substantial tasks.
◦ Compilers convert high-level language programs into machine language.
◦ Allow you to write instructions that look almost like everyday English

and contain commonly used mathematical notations.
◦ A payroll program written in a high-level language might contain a

single statement such as
 grossPay = basePay + overTimePay

Interpreters

 Compiling a high-level language program into machine
language can take considerable computer time.

 Interpreter programs, developer to execute high-level language
programs directly, avoid the delay or compilation, although
they run slower than compiled programs.

©1992-2015 by Pearson Education, Inc.
All Rights Reserved.

 Objects, or more precisely, the classes objects come
from, are essentially reusable software components.
◦ There are date objects, time objects, audio objects, video

objects, automobile objects, people objects, etc.
◦ Almost any noun can be reasonably represented as a

software object in terms of attributes (e.g., name, color and
size) and behaviors (e.g., calculating, moving and
communicating).

 Software development groups can use a modular,
object-oriented design-and-implementation approach
to be much more productive than with earlier popular
techniques like “structured programming”—object-
oriented programs are often easier to understand,
correct and modify.

©1992-2015 by Pearson Education, Inc.
All Rights Reserved.

 The Automobile as an Object
◦ Let’s begin with a simple analogy.

◦ Suppose you want to drive a car and make it go faster by pressing its
accelerator pedal.

◦ Before you can drive a car, someone has to design it.

◦ A car typically begins as engineering drawings, similar to the blueprints
that describe the design of a house.

◦ Drawings include the design for an accelerator pedal.

◦ Pedal hides from the driver the complex mechanisms that actually make
the car go faster, just as the brake pedal hides the mechanisms that slow
the car, and the steering wheel “hides” the mechanisms that turn the car.

©1992-2015 by Pearson Education, Inc.
All Rights Reserved.

◦ Enables people with little or no knowledge of how engines,
braking and steering mechanisms work to drive a car easily.

◦ Before you can drive a car, it must be built from the
engineering drawings that describe it.

◦ A completed car has an actual accelerator pedal to make it go
faster, but even that’s not enough—the car won’t accelerate on
its own (hopefully!), so the driver must press the pedal to
accelerate the car.

©1992-2015 by Pearson Education, Inc.
All Rights Reserved.

 Performing a task in a program requires a method.
 The method houses the program statements that actually

perform its tasks.
 Hides these statements from its user, just as the accelerator

pedal of a car hides from the driver the mechanisms of
making the car go faster.

 In Java, we create a program unit called a class to house the
set of methods that perform the class’s tasks.

 A class is similar in concept to a car’s engineering
drawings, which house the design of an accelerator pedal,
steering wheel, and so on.

©1992-2015 by Pearson Education, Inc.
All Rights Reserved.

 Just as someone has to build a car from its engineering

drawings before you can actually drive a car, you must

build an object of a class before a program can perform

the tasks that the class’s methods define.

 An object is then referred to as an instance of its class.

©1992-2015 by Pearson Education, Inc.
All Rights Reserved.

 Just as a car’s engineering drawings can be reused many times
to build many cars, you can reuse a class many times to build
many objects.

 Reuse of existing classes when building new classes and
programs saves time and effort.

 Reuse also helps you build more reliable and effective
systems, because existing classes and components often have
undergone extensive testing, debugging and performance
tuning.

 Just as the notion of interchangeable parts was crucial to the
Industrial Revolution, reusable classes are crucial to the
software revolution that has been spurred by object
technology.

©1992-2015 by Pearson Education, Inc.
All Rights Reserved.

©1992-2015 by Pearson Education, Inc.
All Rights Reserved.

 When you drive a car, pressing its gas pedal sends a

message to the car to perform a task—that is, to go

faster.

 Similarly, you send messages to an object.

 Each message is implemented as a method call that

tells a method of the object to perform its task.

©1992-2015 by Pearson Education, Inc.
All Rights Reserved.

 A car has attributes

 Color, its number of doors, the amount of gas in its

tank, its current speed and its record of total miles

driven (i.e., its odometer reading).

 The car’s attributes are represented as part of its design

in its engineering diagrams.

 Every car maintains its own attributes.

 Each car knows how much gas is in its own gas tank,

but not how much is in the tanks of other cars.

©1992-2015 by Pearson Education, Inc.
All Rights Reserved.

◦ An object, has attributes that it carries along as it’s used in a

program.

◦ Specified as part of the object’s class.

◦ A bank-account object has a balance attribute that represents

the amount of money in the account.

◦ Each bank-account object knows the balance in the account it

represents, but not the balances of the other accounts in the

bank.

◦ Attributes are specified by the class’s instance variables.

©1992-2015 by Pearson Education, Inc.
All Rights Reserved.

 Classes (and their objects) encapsulate, i.e., encase,

their attributes and methods.

 Objects may communicate with one another, but

they’re normally not allowed to know how other

objects are implemented—implementation details are

hidden within the objects themselves.

 Information hiding, as we’ll see, is crucial to good

software engineering.

©1992-2015 by Pearson Education, Inc.
All Rights Reserved.

 A new class of objects can be created conveniently by

inheritance—the new class (called the subclass) starts

with the characteristics of an existing class (called the

superclass), possibly customizing them and adding

unique characteristics of its own.

 In our car analogy, an object of class “convertible”

certainly is an object of the more general class

“automobile,” but more specifically, the roof can be

raised or lowered.

©1992-2015 by Pearson Education, Inc.
All Rights Reserved.

 Interfaces are collections of related methods that typically

enable you to tell objects what to do, but not how to do it

(we’ll see an exception to this in Java SE 8).

 In the car analogy, a “basic-driving-capabilities” interface

consisting of a steering wheel, an accelerator pedal and a

brake pedal would enable a driver to tell the car what to do.

 Once you know how to use this interface for turning,

accelerating and braking, you can drive many types of cars,

even though manufacturers may implement these systems

differently.

©1992-2015 by Pearson Education, Inc.
All Rights Reserved.

 A class implements zero or more interfaces, each of which can

have one or more methods, just as a car implements separate

interfaces for basic driving functions, controlling the radio,

controlling the heating and air conditioning systems, and the

like.

 Just as car manufacturers implement capabilities differently,

classes may implement an interface’s methods differently.

©1992-2015 by Pearson Education, Inc.
All Rights Reserved.

 How will you create the code (i.e., the program

instructions) for your programs?

 Follow a detailed analysis process for determining your

project’s requirements (i.e., defining what the system is

supposed to do)

 Develop a design that satisfies them (i.e., specifying

how the system should do it).

 Carefully review the design (and have your design

reviewed by other software professionals) before

writing any code.

©1992-2015 by Pearson Education, Inc.
All Rights Reserved.

 Analyzing and designing your system from an object-

oriented point of view is called an object-oriented-

analysis-and-design (OOAD) process.

 Languages like Java are object oriented.

 Object-oriented programming (OOP) allows you to

implement an object-oriented design as a working

system.

©1992-2015 by Pearson Education, Inc.
All Rights Reserved.

 The Unified Modeling Language (UML) is the most

widely used graphical scheme for modeling object-

oriented systems.

©1992-2015 by Pearson Education, Inc.
All Rights Reserved.

 Software systems that make using computers more convenient.

 Provide services that allow each application to execute safely,
efficiently and concurrently (i.e., in parallel) with other
applications.

 The software that contains the core components of the
operating system is called the kernel.

 Popular desktop operating systems include Linux, Windows 7
and Mac OS X.

 Popular mobile operating systems used in smartphones and
tablets include Google’s Android, Apple’s iOS (for its iPhone,
iPad and iPod Touch devices), Windows Phone and
Blackberry OS.

©1992-2015 by Pearson Education, Inc.
All Rights Reserved.

 Mid-1980s: Microsoft developed the Windows

operating system, consisting of a graphical user

interface built on top of DOS—an enormously popular

personal-computer operating system that users

interacted with by typing commands.

 Windows borrowed many concepts (such as icons,

menus and windows) popularized by early Apple

Macintosh operating systems and originally developed

by Xerox PARC.

©1992-2015 by Pearson Education, Inc.
All Rights Reserved.

 Windows 8, Microsoft’s latest operating system,

features include PC and tablet, a tiles-based user

interface, security enhancements, touch-screen and

multi-touch support, and more.

 Windows is a proprietary operating system—it’s

controlled by Microsoft exclusively.

 It’s by far the world’s most widely used operating

system.

©1992-2015 by Pearson Education, Inc.
All Rights Reserved.

 Open-source software

◦ A software development style that departs from the proprietary

development that dominated software’s early years.

◦ Individuals and companies—often worldwide—contribute

their efforts in developing, maintaining and evolving software

in exchange for the right to use that software for their own

purposes, typically at no charge.

©1992-2015 by Pearson Education, Inc.
All Rights Reserved.

 Some organizations in the open-source community

◦ Eclipse Foundation (the Eclipse Integrated Development

Environment helps Java programmers conveniently develop

software)

◦ Mozilla Foundation (creators of the Firefox web browser)

◦ Apache Software Foundation (creators of the Apache web

server)

◦ GitHub and SourceForge (which provide the tools for

managing open source projects)

©1992-2015 by Pearson Education, Inc.
All Rights Reserved.

 Fastest-growing mobile and smartphone operating

system

 Based on the Linux kernel and uses Java.

 Open source and free.

 Developed by Android, Inc., which was acquired by

Google in 2005.

 As of April 2013, more than 1.5 million Android

devices (smartphones, tablets, etc.) were being

activated daily. (www.technobuffalo.com/2013/04/16/

google-daily-android-activations-1-5-million/)

©1992-2015 by Pearson Education, Inc.
All Rights Reserved.

 Android devices now include smartphones, tablets, e-readers,

robots, jet engines, NASA satellites, game consoles, refrigerators,

televisions, cameras, health-care devices, smartwatches,

automobile in-vehicle infotainment systems (for controlling the

radio, GPS, phone calls, thermostat, etc.) and more.

 Android smartphones include the functionality of a mobile

phone, Internet client (for web browsing and Internet

communication), MP3 player, gaming console, digital camera

and more.

 These handheld devices feature full-color multitouch screens—

screens which allow you to control the device with gestures

involving one touch or multiple simultaneous touches.

©1992-2015 by Pearson Education, Inc.
All Rights Reserved.

©1992-2015 by Pearson Education, Inc.
All Rights Reserved.

1.7 Programming Languages

©1992-2015 by Pearson Education, Inc.
All Rights Reserved.

1.7 Programming Languages

©1992-2015 by Pearson Education, Inc.
All Rights Reserved.

1.7 Programming Languages

©1992-2015 by Pearson Education, Inc.
All Rights Reserved.

1.7 Programming Languages

 Microprocessors have had a profound impact in

intelligent consumer-electronic devices.

 1991

◦ Recognizing this, Sun Microsystems funded an internal

corporate research project led by James Gosling, which

resulted in a C++-based object-oriented programming language

that Sun called Java.

◦ Key goal of Java is to be able to write programs that will run

on a great variety of computer systems and computer-

controlled devices.

◦ This is sometimes called “write once, run anywhere.”

©1992-2015 by Pearson Education, Inc.
All Rights Reserved.

 1993

◦ The web exploded in popularity

◦ Sun saw the potential of using Java to add dynamic content to

web pages.

 Java drew the attention of the business community

because of the phenomenal interest in the web.

 Java is used to develop large-scale enterprise

applications, to enhance the functionality of web

servers, to provide applications for consumer devices

and for many other purposes.

©1992-2015 by Pearson Education, Inc.
All Rights Reserved.

Java Class Libraries

 Rich collections of existing classes and methods

 Also known as the Java APIs (Application

Programming Interfaces).

©1992-2015 by Pearson Education, Inc.
All Rights Reserved.

©1992-2015 by Pearson Education, Inc.
All Rights Reserved.

 Normally there are five phases
◦ edit
◦ compile
◦ load
◦ verify
◦ execute.

 See the Before You Begin section for information on
downloading and installing the JDK on Windows,
Linux and OS X.

©1992-2015 by Pearson Education, Inc.
All Rights Reserved.

 Phase 1 consists of editing a file with an editor

program

◦ Using the editor, you type a Java program (source code).

◦ Make any necessary corrections.

◦ Save the program.

◦ Java source code files are given a name ending with the .java

extension indicating that the file contains Java source code.

©1992-2015 by Pearson Education, Inc.
All Rights Reserved.

©1992-2015 by Pearson Education, Inc.
All Rights Reserved.

 Linux editors: vi and emacs.

 Windows provides Notepad.

 OSX provides TextEdit.

 Many freeware and shareware editors available online:

◦ Notepad++ (notepad-plus-plus.org)

◦ EditPlus (www.editplus.com)

◦ TextPad (www.textpad.com)

◦ jEdit (www.jedit.org).

 Integrated development environments (IDEs)

◦ Provide tools that support the software development process, such as

editors, debuggers for locating logic errors (errors that cause programs to

execute incorrectly) and more.

©1992-2015 by Pearson Education, Inc.
All Rights Reserved.

 Popular Java IDEs

◦ Eclipse (www.eclipse.org)

◦ NetBeans (www.netbeans.org)

◦ IntelliJ IDEA (www.jetbrains.com)

 On the book’s website at
www.deitel.com/books/jhtp10

◦ Dive-Into® videos that show you how to execute this book’s

Java applications and how to develop new Java applications

with Eclipse, NetBeans and IntelliJ IDEA.

©1992-2015 by Pearson Education, Inc.
All Rights Reserved.

 Phase 2: Compiling a Java Program into Bytecodes

◦ Use the command javac (the Java compiler) to compile a

program. For example, to compile a program called

Welcome.java, you’d type

 javac Welcome.java

◦ If the program compiles, the compiler produces a .class file

called Welcome.class that contains the compiled version.

©1992-2015 by Pearson Education, Inc.
All Rights Reserved.

©1992-2015 by Pearson Education, Inc.
All Rights Reserved.

 Java compiler translates Java source code into bytecodes
that represent the tasks to execute.

 The Java Virtual Machine (JVM)—a part of the JDK and
the foundation of the Java platform—executes bytecodes.

 Virtual machine (VM)—a software application that
simulates a computer
◦ Hides the underlying operating system and hardware from the

programs that interact with it.

 If the same VM is implemented on many computer
platforms, applications written for that type of VM can be
used on all those platforms.

©1992-2015 by Pearson Education, Inc.
All Rights Reserved.

 Bytecode instructions are platform independent

 Bytecodes are portable
◦ The same bytecode instructions can execute on any platform

containing a JVM that understands the version of Java in which the
bytecode instructions were compiled.

 The JVM is invoked by the java command. For example, to
execute a Java application called Welcome, you’d type the
command

 java Welcome

©1992-2015 by Pearson Education, Inc.
All Rights Reserved.

 Phase 3: Loading a Program into Memory
◦ The JVM places the program in memory to execute it—this is

known as loading.

◦ Class loader takes the .class files containing the program’s
bytecodes and transfers them to primary memory.

◦ Also loads any of the .class files provided by Java that your
program uses.

 The .class files can be loaded from a disk on your
system or over a network.

©1992-2015 by Pearson Education, Inc.
All Rights Reserved.

©1992-2015 by Pearson Education, Inc.
All Rights Reserved.

 Phase 4: Bytecode Verification

◦ As the classes are loaded, the bytecode verifier examines their

bytecodes

◦ Ensures that they’re valid and do not violate Java’s security

restrictions.

 Java enforces strong security to make sure that Java

programs arriving over the network do not damage

your files or your system (as computer viruses and

worms might).

©1992-2015 by Pearson Education, Inc.
All Rights Reserved.

©1992-2015 by Pearson Education, Inc.
All Rights Reserved.

 Phase 5: Execution
◦ The JVM executes the program’s bytecodes.

◦ JVMs typically execute bytecodes using a combination of
interpretation and so-called just-in-time (JIT) compilation.

◦ Analyzes the bytecodes as they’re interpreted

◦ A just-in-time (JIT) compiler—such as Oracle’s Java HotSpot™
compiler—translates the bytecodes into the underlying computer’s
machine language.

©1992-2015 by Pearson Education, Inc.
All Rights Reserved.

◦ When the JVM encounters these compiled parts again, the
faster machine-language code executes.

◦ Java programs go through two compilation phases
◦ One in which source code is translated into bytecodes (for

portability across JVMs on different computer platforms)
and

◦ A second in which, during execution, the bytecodes are
translated into machine language for the actual computer on
which the program executes.

©1992-2015 by Pearson Education, Inc.
All Rights Reserved.

©1992-2015 by Pearson Education, Inc.
All Rights Reserved.

©1992-2015 by Pearson Education, Inc.
All Rights Reserved.

 Checking your setup. Read the Before You Begin

section to confirm that you’ve set up Java properly on

your computer, that you’ve copied the book’s examples

to your hard drive and that you know how to open a

command window on your system.

©1992-2015 by Pearson Education, Inc.
All Rights Reserved.

©1992-2015 by Pearson Education, Inc.
All Rights Reserved.

©1992-2015 by Pearson Education, Inc.
All Rights Reserved.

©1992-2015 by Pearson Education, Inc.
All Rights Reserved.

©1992-2015 by Pearson Education, Inc.
All Rights Reserved.

©1992-2015 by Pearson Education, Inc.
All Rights Reserved.

©1992-2015 by Pearson Education, Inc.
All Rights Reserved.

©1992-2015 by Pearson Education, Inc.
All Rights Reserved.

 In the late 1960s, ARPA—the Advanced Research
Projects Agency of the Department of Defense—rolled
out plans to network the main computer systems of
approximately a dozen ARPA-funded universities and
research institutions.

 ARPA implemented what quickly became known as the
ARPAnet, the precursor of today’s Internet.

 Its main benefit proved to be the capability for quick
and easy communication via e-mail.

 This is true even on today’s Internet, with e-mail,
instant messaging, file transfer and social media such
as Facebook and Twitter, enabling billions of people
worldwide to communicate quickly and easily.

©1992-2015 by Pearson Education, Inc.
All Rights Reserved.

 The protocol (set of rules) for communicating over the
ARPAnet became known as the Transmission Control
Protocol (TCP).

 TCP ensured that messages, consisting of sequentially
numbered pieces called packets, were properly routed
from sender to receiver, arrived intact and were
assembled in the correct order.

©1992-2015 by Pearson Education, Inc.
All Rights Reserved.

 In parallel with the early evolution of the Internet,
organizations worldwide were implementing their own
networks for both intraorganization (that is, within an
organization) and interorganization (that is, between
organizations) communication.

 One challenge was to enable these different networks to
communicate with each other.

 The Internet Protocol (IP) created a true “network of
networks,” the current architecture of the Internet.

 The combined set of protocols is now called TCP/IP.

©1992-2015 by Pearson Education, Inc.
All Rights Reserved.

 Businesses rapidly realized that by using the Internet,

they could improve their operations and offer new and

better services to their clients.

 This generated fierce competition among

communications carriers and hardware and software

suppliers to meet the increased infrastructure demand.

 As a result, bandwidth—the information-carrying

capacity of communications lines—on the Internet has

increased tremendously, while hardware costs have

plummeted.

©1992-2015 by Pearson Education, Inc.
All Rights Reserved.

 The World Wide Web (simply called “the web”) is a

collection of hardware and software associated with the

Internet that allows computer users to locate and view

multimedia-based documents (documents with various

combinations of text, graphics, animations, audios and

videos) on almost any subject.

©1992-2015 by Pearson Education, Inc.
All Rights Reserved.

 In 1989, Tim Berners-Lee of CERN (the European

Organization for Nuclear Research) began to develop a

technology for sharing information via “hyperlinked”

text documents.

 Berners-Lee called his invention the HyperText

Markup Language (HTML).

 He also wrote communication protocols such as

HyperText Transfer Protocol (HTTP) to form the

backbone of his new hypertext information system,

which he referred to as the World Wide Web.

©1992-2015 by Pearson Education, Inc.
All Rights Reserved.

 In 1994, Berners-Lee founded the World Wide Web
Consortium (W3C), devoted to developing web
technologies.

 One of the W3C’s goals is to make the web accessible to
everyone regardless of disabilities, language or culture.

©1992-2015 by Pearson Education, Inc.
All Rights Reserved.

 Mashup is an applications-development methodology

in which you can rapidly develop powerful software

applications by combining (often free) complementary

web services and other forms of information feeds.

©1992-2015 by Pearson Education, Inc.
All Rights Reserved.

©1992-2015 by Pearson Education, Inc.
All Rights Reserved.

©1992-2015 by Pearson Education, Inc.
All Rights Reserved.

 Ajax helps Internet-based applications perform like desktop
applications

 A difficult task, given that such applications suffer
transmission delays as data is shuttled back and forth
between your computer and server computers on the
Internet.

 Applications like Google Maps have used Ajax to achieve
excellent performance and approach the look-and-feel of
desktop applications.

©1992-2015 by Pearson Education, Inc.
All Rights Reserved.

 The Internet is no longer just a network of computers—it’s
an Internet of Things.

 A thing is any object with an IP address and the ability to
send data automatically over a network:
◦ a car with a transponder for paying tolls

◦ a heart monitor implanted in a human

◦ a smart meter that reports energy usage

◦ mobile apps that can track your movement and location

◦ smart thermostats that adjust room temperatures based on weather
forecasts and activity in the home.

©1992-2015 by Pearson Education, Inc.
All Rights Reserved.

©1992-2015 by Pearson Education, Inc.
All Rights Reserved.

1.12 Software Technologies

©1992-2015 by Pearson Education, Inc.
All Rights Reserved.

1.12 Software Technologies

©1992-2015 by Pearson Education, Inc.
All Rights Reserved.

1.12 Software Technologies

©1992-2015 by Pearson Education, Inc.
All Rights Reserved.

1.12 Software Technologies

©1992-2015 by Pearson Education, Inc.
All Rights Reserved.

1.12 Software Technologies

©1992-2015 by Pearson Education, Inc.
All Rights Reserved.

1.13 Keeping Up-to-Date with Information

Technologies

©1992-2015 by Pearson Education, Inc.
All Rights Reserved.

1.13 Keeping Up-to-Date with Information

Technologies

	Slide 1: Chapter 1 Introduction to Computers, the Internet and Java
	Slide 2
	Slide 3
	Slide 4
	Slide 5: 1.1 Introduction
	Slide 6: 1.1 Introduction (Cont.)
	Slide 7
	Slide 8: 1.1 Introduction (Cont.)
	Slide 9: 1.1 Introduction (Cont.)
	Slide 10: 1.1 Introduction (Cont.)
	Slide 11: 1.2 Hardware and Software
	Slide 12: 1.2 Computers: Hardware and Software (Cont.)
	Slide 13: 1.2 Computers: Hardware and Software (Cont.)
	Slide 14: 1.2 .1 Moore’s Law
	Slide 15: 1.2 .1 Moore’s Law (Cont.)
	Slide 16: 1.2.2 Computer Organization
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22: 1.3 Data Hierarchy
	Slide 23
	Slide 24: 1.3 Data Hierarchy (Cont.)
	Slide 25: 1.3 Data Hierarchy (Cont.)
	Slide 26: 1.3 Data Hierarchy (Cont.)
	Slide 27: 1.3 Data Hierarchy (Cont.)
	Slide 28: 1.3 Data Hierarchy (Cont.)
	Slide 29: 1.3 Data Hierarchy (Cont.)
	Slide 30: 1.3 Data Hierarchy (Cont.)
	Slide 31: 1.3 Data Hierarchy (Cont.)
	Slide 32
	Slide 33: 1.4 Machine Languages, Assembly Languages and High-Level Languages
	Slide 34: 1.4 Machine Languages, Assembly Languages and High-Level Languages (Cont.)
	Slide 35: 1.4 Machine Languages, Assembly Languages and High-Level Languages (Cont.)
	Slide 36: 1.5 Introduction to Object Technology
	Slide 37: 1.5.1 The Automobile as an Object
	Slide 38: 1.5.1 The Automobile as an Object (Cont.)
	Slide 39: 1.5.2 Methods and Classes
	Slide 40: 1.5.3 Instantiation
	Slide 41: 1.5.4 Reuse
	Slide 42
	Slide 43: 1.5.5 Messages and Method Calls
	Slide 44: 1.5.6 Attributes and Instance Variables
	Slide 45: 1.5.6 Attributes and Instance Variables (Cont.)
	Slide 46: 1.5.7 Encapsulation
	Slide 47: 1.5.8 Inheritance
	Slide 48: 1.5.9 Interfaces
	Slide 49: 1.5.9 Interfaces (Cont.)
	Slide 50: 1.5.10 Object-Oriented Analysis and Design (OOAD)
	Slide 51: 1.5.10 Object-Oriented Analysis and Design (OOAD) (Cont.)
	Slide 52: 1.5.11 The UML (Unified Modeling Language)
	Slide 53: 1.6 Operating Systems
	Slide 54: 1.6.1 Windows—A Proprietary Operating System
	Slide 55: 1.6.1 Windows—A Proprietary Operating System (Cont.)
	Slide 56: 1.6.2 Linux—An Open Source Operating System
	Slide 57: 1.6.2 Linux—An Open Source Operating System (Cont.)
	Slide 58: 1.6.3 Android
	Slide 59: 1.6.3 Android (Cont.)
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64: 1.8 Java
	Slide 65: 1.8 Java (Cont.)
	Slide 66: 1.8 Java (Cont.)
	Slide 67
	Slide 68: 1.9 A Typical Java Development Environment
	Slide 69: 1.9 A Typical Java Development Environment (Cont.)
	Slide 70
	Slide 71: 1.9 A Typical Java Development Environment (Cont.)
	Slide 72: 1.9 Java and a Typical Java Development Environment (Cont.)
	Slide 73: 1.9 A Typical Java Development Environment (Cont.)
	Slide 74
	Slide 75: 1.9 A Typical Java Development Environment (Cont.)
	Slide 76: 1.9 A Typical Java Development Environment (Cont.)
	Slide 77: 1.9 A Typical Java Development Environment (Cont.)
	Slide 78
	Slide 79: 1.9 A Typical Java Development Environment (Cont.)
	Slide 80
	Slide 81: 1.9 A Typical Java Development Environment (Cont.)
	Slide 82: 1.9 A Typical Java Development Environment (Cont.)
	Slide 83
	Slide 84
	Slide 85: 1.10 Test-Driving a Java Application
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91
	Slide 92
	Slide 93: 1.11 Internet and the World Wide Web
	Slide 94: 1.11 Internet and the World Wide Web (Cont.)
	Slide 95: 1.11.1 The Internet: A Network of Networks
	Slide 96: 1.11.1 The Internet: A Network of Networks (Cont.)
	Slide 97: 1.11.2 The World Wide Web: Making the Internet User-Friendly
	Slide 98: 1.11.2 The World Wide Web: Making the Internet User-Friendly (Cont.)
	Slide 99: 1.11.2 The World Wide Web: Making the Internet User-Friendly (Cont.)
	Slide 100: 1.11.3 Web Services and Mashups
	Slide 101
	Slide 102
	Slide 103: 1.11.4 Ajax
	Slide 104: 1.11.5 The Internet of Things
	Slide 105
	Slide 106
	Slide 107
	Slide 108
	Slide 109
	Slide 110
	Slide 111

