Chapter 1

Introduction to
Computers, the Internet
and Java

Java How to Program, 10/e

©1992-2015 by Pearson Education, Inc. All Rights Reserve

OBJECTIVES
In this chapter you'll:

m Learn about exciting recent developments in the computer field.

m Learn computer hardware, software and networking basics.

m Understand the data hierarchy.

m Understand the different types of programming languages.

m Understand the importance of Java and other leading programming languages.
m Understand object-oriented programming basics.

m Learn the importance of the Internet and the web.

m Learn a typical Java program-development environment.

m Test-drive a Java application.

m Learn some key recent software technologies.

m See how to keep up-to-date with information technologies.

©1992-2015 by Pearson Education, Inc.
All Rights Reserved.

.1 Introduction

1.2 Hardware and Software

.21 Moore’s Law
1.22 Computer Organization

1.3 Data Hierarchy
1.4 Machine Languages, Assembly Languages and High-Level Languages

1.5 Introduction to Object Technology

I.5.1 The Automobile as an Object

1.5.2 Methods and Classes

.53 Instantiation

.54 Reuse

1.55 Messages and Method Calls

1.5.6 Attributes and Instance Variables

1.5.7 Encapsulation and Information Hiding

1.5.8 Inheritance

159 Interfaces
[.5.10 Object-Oriented Analysis and Design (OOAD)
[.5.11 The UML (Unified Modeling Language)

©1992-2015 by Pearson Education, Inc.
All Rights Reserved.

1.6 Operating Systems

I.6. 'Windows—A Proprietary Operating System
1.6.2 Linux—An Open-Source Operating System
1.63 Android

1.7 Programming Languages

1.8 Java
1.9 ATypical Java Development Environment
I.10 Test-Driving a Java Application

.11 Internet and World Wide Web

[.Il.I The Internet: A Network of Networks
[.11.2 The World Wide Web: Making the Internet User-Friendly
[.11.3 Web Services and Mashups
I.11.4 Ajax
[.I1.5 The Internet of Things

I.12 Software Technologies
I.13 Keeping Up-to-Date with Information Technologies

©1992-2015 by Pearson Education, Inc.
All Rights Reserved.

1.1 Introduction

» Java is one of the world’s most widely used computer
programming languages.

» You’ll learn to write instructions commanding
computers to perform tasks.

» Software (1.e., the instructions you write) controls
hardware (I.e., computers).

» You’ll learn object-oriented programming—today’s
key programming methodology.

» You’ll create and work with many software objects.

©1992-2015 by Pearson Education, Inc.
All Rights Reserved.

1.1 Introduction (Cont.)

» For many organizations, the preferred language for
meeting their enterprise programming needs is Java.

» Java is also widely used for implementing Internet-
based applications and software for devices that
communicate over a network.

» According to Oracle, 97% of enterprise desktops, 89%
of PC desktops, three billion devices (Fig. 1.1) and
100% of all Blu-ray Disc™ players run Java, and there
are over 9 million Java developers.

©1992-2015 by Pearson Education, Inc.
All Rights Reserved.

http://www.oracle.com/technetwork/articles/java/javaone12review-1863742.html
http://www.oracle.com/technetwork/articles/java/javaone12review-1863742.html

Airplane systems
Blu-ray Disc™ players
Credit cards
e-Readers

Home appliances
Lottery terminals
MRIs

Transportation passes
Smart cards
Smartphones

TV set-top boxes

ATMs

Cable boxes

CT scanners

Game consoles

Home security systems
Medical devices

Parking payment stations
Robots

Smart meters

Tablets

Thermostats

Fig. 1.1 | Some devices that use Java.

Automobile infotainment systems
Copiers

Desktop computers

GPS navigation systems

Light switches

Mobile phones

Printers

Routers

Smartpens

Televisions

Vehicle diagnostic systems

©1992-2015 by Pearson Education, Inc.

All Rights Reserved.

1.1 Introduction (Cont.)

Java Standard Edition

» Java How to Program, 10/e is based on Java Standard
Edition 7 (Java SE 7) and Java Standard Edition 8 (Java
SE 8)

» Java Standard Edition contains the capabilities needed
to develop desktop and server applications.

» Prior to Java SE 8, Java supported three programming
paradigms—procedural programming, object-oriented
programming and generic programming. Java SE 8
adds functional programming.

©1992-2015 by Pearson Education, Inc.
All Rights Reserved.

1.1 Introduction (Cont.)

Java Enterprise Edition
» Java Is used in such a broad spectrum of applications

<

that it has two other editions.

he Java Enterprise Edition (Java EE) Is geared toward

C

eveloping large-scale, distributed networking

applications and web-based applications.

©1992-2015 by Pearson Education, Inc.
All Rights Reserved.

1.1 Introduction (Cont.)

» Java Micro Edition (Java ME)

> a subset of Java SE.

- geared toward developing applications for resource-
constrained embedded devices, such as

- Smartwatches

- MP3 players

- television set-top boxes

- smart meters (for monitoring electric energy usage)
- and more.

©1992-2015 by Pearson Education, Inc.
All Rights Reserved.

1.2 Hardware and Software

» Computers can perform calculations and make logical
decisions phenomenally faster than human beings can.

» Today’s personal computers can perform billions of
calculations in one second—more than a human can
perform in a lifetime.

» Supercomputers are already performing thousands of
trillions (quadrillions) of instructions per second!

» Computers process data under the control of sequences of
Instructions called computer programs.

©1992-2015 by Pearson Education, Inc.
All Rights Reserved.

1.2 Computers: Hardware and Software
(Cont.)

» These software programs guide the computer through
ordered actions specified by people called computer
programmers.

» You’ll learn a key programming methodology that’s
enhancing programmer productivity, thereby reducing
software development costs—aobject-oriented
programming.

©1992-2015 by Pearson Education, Inc.
All Rights Reserved.

1.2 Computers: Hardware and Software
(Cont.)

» A computer consists of various devices referred to as
hardware
> (e.g., the keyboard, screen, mouse, hard disks, memory, DVD drives
and processing units).
» Computing costs are dropping dramatically, owing to rapid
developments in hardware and software technologies.

» Computers that might have filled large rooms and cost
millions of dollars decades ago are now inscribed on silicon
chips smaller than a fingernail, costing perhaps a few
dollars each.

» Silicon-chip technology has made computing so economical
that computers have become a commaodity.

©1992-2015 by Pearson Education, Inc.
All Rights Reserved.

1.2 .1 Moore’s Law

» Every year or two, the capacities of computers have
approximately doubled inexpensively.

» This remarkable trend often i1s called Moore’s Law.

» Named for the person who identified the trend, Gordon
Moore, co-founder of Intel.

» Moore’s Law and related observations apply especially
to the amount of memory that computers have for
programs, the amount of secondary storage (such as
disk storage) they have to hold programs and data over
longer periods of time, and their processor speeds—the
speeds at which they execute their programs (i.e., do
their work).

©1992-2015 by Pearson Education, Inc.
All Rights Reserved.

1.2 .1 Moore’s Law (Cont.)

» Similar growth has occurred in the communications
field.

» Costs have plummeted as enormous demand for
communications bandwidth (i.e., information-carrying
capacity) has attracted intense competition.

» Such phenomenal improvement is fostering the
Information Revolution.

©1992-2015 by Pearson Education, Inc.
All Rights Reserved.

1.2.2 Computer Organization

» Computers can be envisioned as divided into various
logical units or sections.

©1992-2015 by Pearson Education, Inc.
All Rights Reserved.

Input unit This “receiving” section obtains information (data and computer programs)
from input devices and places it at the disposal of the other units for pro-
cessing. Most user input is entered into computers through keyboards,
touch screens and mouse devices. Other forms of input include receiving
voice commands, scanning images and barcodes, reading from secondary
storage devices (such as hard drives, DVD drives, Blu-ray Disc™ drives and
USB flash drives—also called “thumb drives” or “memory sticks”), receiving
video from a webcam and having your computer receive information from
the Internet (such as when you stream videos from YouTube® or download
e-books from Amazon). Newer forms of input include position data from a
GPS device, and motion and orientation information from an accelerometer
(a device that responds to up/down, left/right and forward/backward accel-
eration) in a smartphone or game controller (such as Microsoft® Kinect®
and Xbox®, Wii™ Remote and Sony® PlayStation® Move).

Fig. 1.2 | Logical units of a computer. (Part | of 5.)

©1992-2015 by Pearson Education, Inc.
All Rights Reserved.

Output unit This “shipping” section takes information the computer has processed and
places it on various output devices to make it available for use outside the
computer. Most information that’s output from computers today is dis-
played on screens (including touch screens), printed on paper (“going
green” discourages this), played as audio or video on PCs and media players
(such as Apple’s iPods) and giant screens in sports stadiums, transmitted
over the Internet or used to control other devices, such as robots and “intel-
ligent” appliances. Information is also commonly output to secondary stor-
age devices, such as hard drives, DVD drives and USB flash drives. A
popular recent form of output is smartphone vibration.

Fig. 1.2 | Logical units of a computer. (Part 2 of 5.)

©1992-2015 by Pearson Education, Inc.
All Rights Reserved.

Memory unit This rapid-access, relatively low-capacity “warehouse” section retains
information that has been entered through the input unit, making it
immediately available for processing when needed. The memory unit also
retains processed information until it can be placed on output devices by
the output unit. Information in the memory unit is volatile—it’s typically
lost when the computer’s power is turned off. The memory unit is often
called either memory, primary memory or RAM (Random Access Mem-
ory). Main memories on desktop and notebook computers contain as much
as 128 GB of RAM. GB stands for gigabytes; a gigabyte is approximately
one billion bytes. A byte is eight bits. A bit is eithera 0 ora 1.

Arithmetic This “manufacturing” section performs calculations, such as addition, sub-
and logicunit traction, muldplication and division. It also contains the decision mecha-
(ALU) nisms that allow the computer, for example, to compare two items from the

memory unit to determine whether they’re equal. In today’s systems, the
ALU is implemented as part of the next logical unit, the CPU.

Fig. 1.2 | Logical units of a computer. (Part 3 of 5.)

©1992-2015 by Pearson Education, Inc.
All Rights Reserved.

Central This “administrative” section coordinates and supervises the operation of

processing the other sections. The CPU tells the input unit when information should

unit (CPU) be read into the memory unit, tells the ALU when information from the
memory unit should be used in calculations and tells the output unit when
to send information from the memory unit to certain output devices. Many
of today’s computers have multiple CPUs and, hence, can perform many
operations simultaneously. A multi-core processor implements multiple
processors on a single integrated-circuit chip—a dual-core processor has two
CPUs and a guad-core processor has four CPUs. Today’s desktop computers
have processors that can execute billions of instructions per second.

Fig. 1.2 | Logical units of a computer. (Part 4 of 5.)

©1992-2015 by Pearson Education, Inc.
All Rights Reserved.

Secondary This is the long-term, high-capacity “warehousing” section. Programs or

storage unit data not actively being used by the other units normally are placed on sec-
ondary storage devices (e.g., your hard drive) until they’re again needed,
possibly hours, days, months or even years later. Information on secondary
storage devices is persistent—it’s preserved even when the computer’s power
is turned off. Secondary storage information takes much longer to access
than information in primary memory, but its cost per unit is much less.
Examples of secondary storage devices include hard drives, DVD drives and
USB flash drives, some of which can hold over 2 TB (TB stands for tera-
bytes; a terabyte is approximately one trillion bytes). Typical hard drives on
desktop and notebook computers hold up to 2 TB, and some desktop hard
drives can hold up to 4 TB.

Fig. 1.2 | Logical units of a computer. (Part 5 of 5.)

©1992-2015 by Pearson Education, Inc.
All Rights Reserved.

1.3 Data Hierarchy

» Data items processed by computers form a data
hierarchy that becomes larger and more complex in
structure as we progress from the simplest data items
(called “bits”) to richer ones, such as characters and

fields.

©1992-2015 by Pearson Education, Inc.
All Rights Reserved.

Sally Black \

Tom Blue
— Judy Green } File
Iris Orange
Randy Red }
Judy Green Record

Judy Field

T

00000000 01001010 Unicode character J

T

1 Bit

©1992-2015 by Pearson Education, Inc.
All Rights Reserved.

1.3 Data Hierarchy (Cont.)

Bits
» The smallest data item in a computer can assume the value
0 or the value 1.

» Such a data item is called a bit (short for “binary digit”—a
digit that can assume either of two values).

» Remarkably, the impressive functions performed by
computers involve only the simplest manipulations of Os
and 1s—examining a bit's value, setting a bit s value and
reversing a bits value (from 1to 0 or from 0 to 1).

©1992-2015 by Pearson Education, Inc.
All Rights Reserved.

1.3 Data Hierarchy (Cont.)

Characters

» We prefer to work with decimal digits (0-9), uppercase
letters (A—Z), lowercase Ietters (a—z), and special symbols
e0.,% @, %, &, * (), -+ " ,?2and/).

» Digits, letters and special symbols are known as characters.
The computer’s character set is the set of all the characters
gse(_:l to write programs and represent data items on that

evice.

» Computers process only 1s and 0s, so every character is
represented as a pattern of 1s and Os.

» Java uses Unicode® characters that are composed of one,
two or four bytes (8, 16 or 32 bits).

©1992-2015 by Pearson Education, Inc.
All Rights Reserved.

1.3 Data Hierarchy (Cont.)

» Unicode contains characters for many of the world’s
languages.

» See Appendix B for more information on the ASCI|
(American Standard Code for Information Interchange)
character set—the popular subset of Unicode that represents
uppercase and lowercase letters in the English alphabet,
digits and some common special characters.

©1992-2015 by Pearson Education, Inc.
All Rights Reserved.

1.3 Data Hierarchy (Cont.)

Fields

» Just as characters are composed of bits, fields are composed
of characters or bytes.

» Afield is a group of characters or bytes that conveys
meaning.

» For example, a field consisting of uppercase and lowercase
letters could be used to represent a person’s name, and a
field consisting of decimal digits could represent a person’s
age.

©1992-2015 by Pearson Education, Inc.
All Rights Reserved.

1.3 Data Hierarchy (Cont.)

Records

» Several related fields can be used to compose a record
(implemented as a class In Java).

» In a payroll system, for example, the record for an
employee might consist of the following fields (possible
types for these fields are shown in parentheses):

Employee identification number (a whole number)

Name (a string of characters)

Address (a string of characters)

Hourly pay rate (a number with a decimal point)

Year-to-date earnings (a number with a decimal point)

Amount of taxes withheld (a number with a decimal point)

» Thus, a record is a group of related fields.

(¢] (¢] (¢] o (¢]

(¢]

» In the preceding example, all the fields belong to the same
employee.

©1992-2015 by Pearson Education, Inc.
All Rights Reserved.

1.3 Data Hierarchy (Cont.)

Files

» Afile is a group of related records.

» More generally, a file contains arbitrary data in arbitrary
formats.

» In some operating systems, a file is viewed simply as a
sequence of bytes—any organization of the bytes in a file,
such as organizing the data into records, Is a view created

by the application programmer.

©1992-2015 by Pearson Education, Inc.
All Rights Reserved.

1.3 Data Hierarchy (Cont.)

Database

» A database 1s a collection of data that’s organized for easy
access and manipulation.

» The most popular database model is the relational database
In which data Is stored in simple tables.

» A table includes records and fields.

> For example, a table of students might include first name, last name,
major, year, student ID number and grade point average fields.

> The data for each student is a record, and the individual pieces of
information in each record are the fields.
» You can search, sort and otherwise manipulate the data
based on its relationship to multiple tables or databases.

©1992-2015 by Pearson Education, Inc.
All Rights Reserved.

1.3 Data Hierarchy (Cont.)

Big Data

» The amount of data being produced worldwide is enormous
and growing explosively.

» According to IBM, approximately 2.5 quintillion bytes (2.5
exabytes) of data are created daily and 90% of the world’s
data was created In just the past two years!
(www-01.ibm.com/software/data/bigdata/)

» Big data applications deal with such massive amounts of
data and this field is growing quickly, creating lots of
opportunity for software developers.

©1992-2015 by Pearson Education, Inc.
All Rights Reserved.

1 kilobyte (KB) 1024 bytes
1 megabyte (MB) 1024 kilobytes
1 gigabyte (GB) 1024 megabytes

1 terabyte (TB) 1024 gigabytes
1 petabyte (PB) 1024 terabytes
1 exabyte (EB) 1024 petabytes

1 zettabyte (ZB) 1024 exabytes

Fig. 1.4 | Byte measurements.

102 (1024 bytes exactly)

10° (1,000,000 bytes)

107 (1,000,000,000 bytes)

102 (1,000,000,000,000 bytes)

10> (1,000,000,000,000,000 bytes)

10" (1,000,000,000,000,000,000 bytes)
10! (1,000,000,000,000,000,000,000 bytes)

©1992-2015 by Pearson Education, Inc.
All Rights Reserved.

<

1.4 Machine Languages, Assembly Languages
and High-Level Languages

4

4

Programmers write instructions in various
programming languages, some directly understandable
ny computers and others requiring intermediate
translation steps.

These may be divided into three general types:
> Machine languages

- Assembly languages

- High-level languages

©1992-2015 by Pearson Education, Inc.
All Rights Reserved.

<

1.4 Machine Languages, Assembly Languages
and High-Level Languages (Cont.)

Machine Languages

» Any computer can directly understand only its own machine
language, defined by its hardware design.

> Generally consist of strings of numbers (ultimately reduced to 1s and 0s)
that instruct computers to perform their most elementary operations one
at a time.

> Machine dependent—a particular ma-chine language can be used on
only one type of computer.

Assembly Languages and Assemblers

» English-like abbreviations that represent elementary operations
formed the basis of assembly languages.

» Translator programs called assemblers convert early assembly-
language programs to machine language.

©1992-2015 by Pearson Education, Inc.
All Rights Reserved.

<

1.4 Machine Languages, Assembly Languages
and High-Level Languages (Cont.)

High-Level Languages and Compilers

» High-level languages
o Single statements accomplish substantial tasks.
o Compilers convert high-level language programs into machine language.

> Allow you to write instructions that look almost like everyday English
and contain commonly used mathematical notations.

> A payroll program written in a high-level language might contain a
single statement such as

- grossPay = basePay + overTimePay
Interpreters
» Compiling a high-level language program into machine
language can take considerable computer time.
» Interpreter programs, developer to execute high-level language

programs directly, avoid the delay or compilation, although
they run slower than compiled programs.

©1992-2015 by Pearson Education, Inc.
All Rights Reserved.

1.5 Introduction to Object Technology

» Objects, or more precisely, the classes objects come
from, are essentially reusable software components.

> There are date objects, time objects, audio objects, video
objects, automobile objects, people objects, etc.

> Almost any noun can be reasonably represented as a
software object in terms of attributes (e.g., name, color and

size) and behaviors (e.g., calculating, moving and
communicating).

» Software development groups can use a modular,
object-oriented design-and-implementation approach
to be much more productive than with earlier popular
techniques like “structured programming”—object-
oriented programs are often easier to understand,

correct and modify.

©1992-2015 by Pearson Education, Inc.
All Rights Reserved.

1.5.1 The Automobile as an Object

» The Automobile as an Object

(¢]

o

Let’s begin with a simple analogy.

Suppose you want to drive a car and make it go faster by pressing its
accelerator pedal.

Before you can drive a car, someone has to design it.

A car typically begins as engineering drawings, similar to the blueprints
that describe the design of a house.

Drawings include the design for an accelerator pedal.

Pedal hides from the driver the complex mechanisms that actually make
the car go faster, just as the brake pedal hides the mechanisms that slow
the car, and the steering wheel “hides” the mechanisms that turn the car.

©1992-2015 by Pearson Education, Inc.
All Rights Reserved.

1.5.1 The Automobile as an Object
(Cont.)

- Enables people with little or no knowledge of how engines,
braking and steering mechanisms work to drive a car easily.

- Before you can drive a car, it must be built from the
engineering drawings that describe it.

- A completed car has an actual accelerator pedal to make it go
faster, but even that’s not enough—the car won’t accelerate on
Its own (hopefully!), so the driver must press the pedal to
accelerate the car.

©1992-2015 by Pearson Education, Inc.
All Rights Reserved.

1.5.2 Methods and Classes

» Performing a task in a program requires a method.

» The method houses the program statements that actually
perform its tasks.

» Hides these statements from its user, just as the accelerator
pedal of a car hides from the driver the mechanisms of
making the car go faster.

» In Java, we create a program unit called a class to house the
set of methods that perform the class’s tasks.

» A class 1s similar in concept to a car’s engineering
drawings, which house the design of an accelerator pedal,
steering wheel, and so on.

©1992-2015 by Pearson Education, Inc.
All Rights Reserved.

1.5.3 Instantiation

» Just as someone has to build a car from its engineering
drawings before you can actually drive a car, you must
build an object of a class before a program can perform
the tasks that the class’s methods define.

» An object Is then referred to as an instance of its class.

©1992-2015 by Pearson Education, Inc.
All Rights Reserved.

1.5.4 Reuse

» Just as a car’s engineering drawings can be reused many times
to build many cars, you can reuse a class many times to build
many objects.

» Reuse of existing classes when building new classes and
programs saves time and effort.

» Reuse also helps you build more reliable and effective
systems, because existing classes and components often have
undergone extensive testing, debugging and performance
tuning.

» Just as the notion of interchangeable parts was crucial to the
Industrial Revolution, reusable classes are crucial to the
software revolution that has been spurred by object
technology.

©1992-2015 by Pearson Education, Inc.
All Rights Reserved.

P,m, Software Engineering Observation 1.1

BE8X Use a building-block approach to creating your
programs. Avoid reinventing the wheel—use existing
high-quality pieces wherever possible. This software
reuse is a key benefit of object-oriented programming.

©1992-2015 by Pearson Education, Inc.
All Rights Reserved.

1.5.5 Messages and Method Calls

» When you drive a car, pressing its gas pedal sends a
message to the car to perform a task—that is, to go
faster.

» Similarly, you send messages to an object.

» Each message Is implemented as a method call that
tells a method of the object to perform its task.

©1992-2015 by Pearson Education, Inc.
All Rights Reserved.

1.5.6 Attributes and Instance Variables

» A car has attributes

» Color, its number of doors, the amount of gas in Its
tank, its current speed and its record of total miles
driven (i.e., its odometer reading).

» The car’s attributes are represented as part of its design
In Its engineering diagrams.
» Every car maintains its own attributes.

» Each car knows how much gas Is in its own gas tank,
but not how much iIs in the tanks of other cars.

©1992-2015 by Pearson Education, Inc.
All Rights Reserved.

1.5.6 Attributes and Instance Variables
(Cont.)

> An object, has attributes that it carries along as it’s used in a
program.

o Specified as part of the object’s class.

> A bank-account object has a balance attribute that represents
the amount of money in the account.

> Each bank-account object knows the balance in the account it
represents, but not the balances of the other accounts in the
bank.

o Attributes are specified by the class’s instance variables.

©1992-2015 by Pearson Education, Inc.
All Rights Reserved.

1.5.7 Encapsulation

» Classes (and their objects) encapsulate, I.e., encase,
their attributes and methods.

» Objects may communicate with one another, but
they’re normally not allowed to know how other
objects are implemented—implementation details are
hidden within the objects themselves.

» Information hiding, as we’ll see, is crucial to good
software engineering.

©1992-2015 by Pearson Education, Inc.
All Rights Reserved.

1.5.8 Inheritance

» A new class of objects can be created conveniently by
Inheritance—the new class (called the subclass) starts
with the characteristics of an existing class (called the
superclass), possibly customizing them and adding
unique characteristics of its own.

» In our car analogy, an object of class “convertible”
certainly Is an object of the more general class
“automobile,” but more specifically, the roof can be
raised or lowered.

©1992-2015 by Pearson Education, Inc.
All Rights Reserved.

1.5.9 Interfaces

» Interfaces are collections of related methods that typically
enable you to tell objects what to do, but not how to do it
(we’ll see an exception to this in Java SE 8).

» In the car analogy, a “basic-driving-capabilities” interface
consisting of a steering wheel, an accelerator pedal and a
brake pedal would enable a driver to tell the car what to do.

» Once you know how to use this interface for turning,
accelerating and braking, you can drive many types of cars,
even though manufacturers may implement these systems
differently.

©1992-2015 by Pearson Education, Inc.
All Rights Reserved.

1.5.9 Interfaces (Cont.)

» A class implements zero or more interfaces, each of which can
have one or more methods, just as a car implements separate
Interfaces for basic driving functions, controlling the radio,

controlling the heating and air conditioning systems, and the
like.

» Just as car manufacturers implement capabilities differently,
classes may implement an interface’s methods differently.

©1992-2015 by Pearson Education, Inc.
All Rights Reserved.

1.5.10 Object-Oriented Analysis and
Design (OOAD)

» How will you create the code (i.e., the program
Instructions) for your programs?

» Follow a detailed analysis process for determining your
project’s requirements (i.e., defining what the system is
supposed to do)

» Develop a design that satisfies them (i.e., specifying
how the system should do it).

» Carefully review the design (and have your design
reviewed by other software professionals) before
writing any code.

©1992-2015 by Pearson Education, Inc.
All Rights Reserved.

1.5.10 Object-Oriented Analysis and
Design (OOAD) (Cont.)

» Analyzing and designing your system from an object-
oriented point of view is called an object-oriented-
analysis-and-design (OOAD) process.

» Languages like Java are object oriented.

» Object-oriented programming (OOP) allows you to

Implement an object-oriented design as a working
system.

©1992-2015 by Pearson Education, Inc.
All Rights Reserved.

1.5.11 The UML (Unified Modeling
Language)

» The Unified Modeling Language (UML) Is the most
widely used graphical scheme for modeling object-
oriented systems.

©1992-2015 by Pearson Education, Inc.
All Rights Reserved.

1.6 Operating Systems

» Software systems that make using computers more convenient.

» Provide services that allow each application to execute safely,
efficiently and concurrently (i.e., in parallel) with other
applications.

» The software that contains the core components of the
operating system is called the kernel.

» Popular desktop operating systems include Linux, Windows 7
and Mac OS X.

» Popular mobile operating systems used in smartphones and
tablets include Google’s Android, Apple’s 10S (for its 1Phone,
IPad and 1Pod Touch devices), Windows Phone and
Blackberry OS.

©1992-2015 by Pearson Education, Inc.
All Rights Reserved.

<

1.6.1 Windows—A Proprietary Operating
System

» Mid-1980s: Microsoft developed the Windows
operating system, consisting of a graphical user
Interface built on top of DOS—an enormously popular
personal-computer operating system that users
Interacted with by typing commands.

» Windows borrowed many concepts (such as icons,
menus and windows) popularized by early Apple
Macintosh operating systems and originally developed
by Xerox PARC.

©1992-2015 by Pearson Education, Inc.
All Rights Reserved.

<

1.6.1 Windows—A Proprietary Operating
System (Cont.)

» Windows 8, Microsoft’s latest operating system,
features include PC and tablet, a tiles-based user
Interface, security enhancements, touch-screen and
multi-touch support, and more.

» Windows Is a proprietary operating system—it’s
controlled by Microsoft exclusively.

» It’s by far the world’s most widely used operating
system.

©1992-2015 by Pearson Education, Inc.
All Rights Reserved.

<

1.6.2 Linux—An Open Source Operating
System

» Open-source software

> A software development style that departs from the proprietary
development that dominated software’s early years.

> Individuals and companies—often worldwide—contribute
their efforts in developing, maintaining and evolving software
In exchange for the right to use that software for their own
purposes, typically at no charge.

©1992-2015 by Pearson Education, Inc.
All Rights Reserved.

<

1.6.2 Linux—An Open Source Operating
System (Cont.)

» Some organizations in the open-source community

(0]

o

(0]

o

Eclipse Foundation (the Eclipse Integrated Development
Environment helps Java programmers conveniently develop
software)

Mozilla Foundation (creators of the Firefox web browser)
Apache Software Foundation (creators of the Apache web
server)

GitHub and SourceForge (which provide the tools for
managing open source projects)

©1992-2015 by Pearson Education, Inc.
All Rights Reserved.

1.6.3 Android

» Fastest-growing mobile and smartphone operating
system

» Based on the Linux kernel and uses Java.
» Open source and free.

» Developed by Android, Inc., which was acquired by
Google in 2005.

» As of April 2013, more than 1.5 million Android
devices (smartphones, tablets, etc.) were being
activated daily. (www.technobuffalo.com/2013/04/16/

goog1e—dai1y—android—activations—l—S—mi11ion/)

©1992-2015 by Pearson Education, Inc.
All Rights Reserved.

1.6.3 Android (Cont.)

» Android devices now include smartphones, tablets, e-readers,
robots, jet engines, NASA satellites, game consoles, refrigerators,
televisions, cameras, health-care devices, smartwatches,
automobile in-vehicle infotainment systems (for controlling the
radio, GPS, phone calls, thermostat, etc.) and more.

» Android smartphones include the functionality of a mobile
phone, Internet client (for web browsing and Internet

communication), MP3 player, gaming console, digital camera
and more.

» These handheld devices feature full-color multitouch screens—
screens which allow you to control the device with gestures
Involving one touch or multiple simultaneous touches.

©1992-2015 by Pearson Education, Inc.
All Rights Reserved.

1.7 Programming Languages

Fortran Fortran (FORmula TRANGlator) was developed by IBM Corporation in the mid-
1950s for scientific and engineering applications that require complex mathemati-
cal computations. It’s still widely used, and its latest versions support object-ori-
ented programming.

COBOL COBOL (COmmon Business Oriented Language) was developed in the late
1950s by computer manufacturers, the U.S. government and industrial computer
users based on a language developed by Grace Hopper, a U.S. Navy Rear Admiral
and computer scientist who also advocated for the international standardization of
programming languages. COBOL is still widely used for commercial applications
that require precise and efficient manipulation of large amounts of data. Its latest
version supports object-oriented programming.

Pascal Research in the 1960s resulted in structured programming—a disciplined approach
to writing programs that are clearer, easier to test and debug and easier to modify
than large programs produced with previous techniques. One result of this research
was the development in 1971 of the Pascal programming language, which was
designed for teaching structured programming and was popular in college courses
for several decades.

Fig. 1.5 | Some other programming languages. (Part | of 4.)

©1992-2015 by Pearson Education, Inc.
All Rights Reserved.

1.7 Programming Languages

Ada Ada, based on Pascal, was developed under the sponsorship of the U.S. Depart-
ment of Defense (DOD) during the 1970s and early 1980s. The DOD wanted a
single language that would fill most of its needs. The Ada language was named
after Lady Ada Lovelace, daughter of the poet Lord Byron. She’s credited with writ-
ing the world’s first computer program in the early 1800s (for the Analytical
Engine mechanical computing device designed by Charles Babbage). Ada also sup-
ports object-oriented programming.

Basic Basic was developed in the 1960s at Dartmouth College to familiarize novices with
programming techniques. Many of its latest versions are object oriented.

C C was developed in the early 1970s by Dennis Ritchie at Bell Laboratories. It ini-
tially became widely known as the UNIX operating system’s development lan-
guage. Today, most of the code for general-purpose operating systems is written in

C or C++.

C++ C++, which is based on C, was developed by Bjarne Stroustrup in the early 1980s
at Bell Laboratories. C++ provides several features that “spruce up” the C language,
but more important, it provides capabilities for object-oriented programming,

Fig. 1.5 | Some other programming languages. (Part 2 of 4.)

©1992-2015 by Pearson Education, Inc.
All Rights Reserved.

1.7 Programming Languages

Objective-C Objective-C is another object-oriented language based on C. It was developed in
the early 1980s and later acquired by NeXT, which in turn was acquired by Apple.
It has become the key programming language for the OS X operating system and
all iOS-powered devices (such as iPods, iPhones and iPads).

Visual Basic Microsoft’s Visual Basic language was introduced in the early 1990s to simplify the
development of Microsoft Windows applications. Its latest versions support object-
oriented programming.

Visual C# Microsoft’s three object-oriented primary programming languages are Visual Basic
(based on the original Basic), Visual C++ (based on C++) and Visual C# (based on
C++ and Java, and developed for integrating the Internet and the web into com-
puter applications).

PHP PHP, an object-oriented, open-source scripting language supported by a commu-
nity of users and developers, is used by millions of websites. PHP is platform inde-
pendent—implementations exist for all major UNIX, Linux, Mac and Windows
operating systems. PHP also supports many databases, including the popular
open-source MySQL.

Fig. 1.5 | Some other programming languages. (Part 3 of 4.)

©1992-2015 by Pearson Education, Inc.
All Rights Reserved.

1.7 Programming Languages

Perl Perl (Practical Extraction and Report Language), one of the most widely used
object-oriented scripting languages for web programming, was developed in 1987
by Larry Wall. It features rich text-processing capabilities.

Python Python, another object-oriented scripting language, was released publicly in 1991.
Developed by Guido van Rossum of the National Research Institute for Mathe-
matics and Computer Science in Amsterdam (CWTI), Python draws heavily from
Modula-3—a systems programming language. Python is “extensible”—it can be
extended through classes and programming interfaces.

JavaScript JavaScript is the most widely used scripting language. It’s primarily used to add
dynamic behavior to web pages—for example, animations and improved interac-
tivity with the user. It’s provided with all major web browsers.

Ruby on Rails ~ Ruby, created in the mid-1990s, is an open-source, object-oriented programming
language with a simple syntax that’s similar to Python. Ruby on Rails combines the
scripting language Ruby with the Rails web application framework developed by
37Signals. Their book, Getting Real (gettingreal.37signals.com/toc.php), is a
must read for web developers. Many Ruby on Rails developers have reported pro-
ductivity gains over other languages when developing database-intensive web
applications.

Fig. 1.5 | Some other programming languages. (Part 4 of 4.)

©1992-2015 by Pearson Education, Inc.
All Rights Reserved.

1.8 Java

» Microprocessors have had a profound impact in
Intelligent consumer-electronic devices.

» 1991

> Recognizing this, Sun Microsystems funded an internal
corporate research project led by James Gosling, which
resulted in a C++-based object-oriented programming language
that Sun called Java.

- Key goal of Java is to be able to write programs that will run
on a great variety of computer systems and computer-
controlled devices.

o This 1s sometimes called “write once, run anywhere.”

©1992-2015 by Pearson Education, Inc.
All Rights Reserved.

1.8 Java (Cont.)

» 1993

> The web exploded in popularity
> Sun saw the potential of using Java to add dynamic content to
web pages.
» Java drew the attention of the business community
because of the phenomenal interest in the web.

» Java Is used to develop large-scale enterprise
applications, to enhance the functionality of web
servers, to provide applications for consumer devices
and for many other purposes.

©1992-2015 by Pearson Education, Inc.
All Rights Reserved.

1.8 Java (Cont.)

Java Class Libraries
» Rich collections of existing classes and methods

» Also known as the Java APIs (Application
Programming Interfaces).

©1992-2015 by Pearson Education, Inc.
All Rights Reserved.

5. Performance Tip 1.1

Using Java API classes and methods instead of writing
Your own versions can improve program performance,
because theyre carefully written to perform efficiently.
This also shortens program development time.

©1992-2015 by Pearson Education, Inc.
All Rights Reserved.

1.9 A Typical Java Development
Environment

» Normally there are five phases
> edit
> compile
> |load
> verify
° execute.

» See the Before You Begin section for information on
downloading and installing the JDK on Windows,
Linux and OS X.

©1992-2015 by Pearson Education, Inc.
All Rights Reserved.

1.9 A Typical Java Development
Environment (Cont.)

» Phase 1 consists of editing a file with an editor
program
> Using the editor, you type a Java program (source code).
> Make any necessary corrections.
> Save the program.

> Java source code files are given a name ending with the .java
extension indicating that the file contains Java source code.

©1992-2015 by Pearson Education, Inc.
All Rights Reserved.

Program is created in an
editor and stored on disk in
a file whose name ends
with .java

Phase I: Edit Editor

Fig. 1.6 | Typical Java development environment—editing phase.

©1992-2015 by Pearson Education, Inc.
All Rights Reserved.

1.9 A Typical Java Development
Environment (Cont.)

Linux editors: v1 and emacs.
Windows provides Notepad.
OSX provides TextEdit.

Many freeware and shareware editors available online:
> Notepad++ (notepad-plus-plus.org)

o EditPlus (www.editplus.com)

> TextPad (www . textpad.com)

> jEdit (www. jedit.orqg).

Integrated development environments (IDES)

> Provide tools that support the software development process, such as
editors, debuggers for locating logic errors (errors that cause programs to
execute incorrectly) and more.

v v Vv v

v

©1992-2015 by Pearson Education, Inc.
All Rights Reserved.

<

1.9 Java and a Typical Java Development
Environment (Cont.)

» Popular Java IDEs
> Eclipse (www.eclipse.orgq)
> NetBeans (www . hetbeans.orq)
> IntelliJ IDEA (www . Jjetbrains. com)

» On the book’s website at
www.deitel.com/books/jhtpl0

> Dive-Into® videos that show you how to execute this book’s

Java applications and how to develop new Java applications
with Eclipse, NetBeans and IntelliJ IDEA.

©1992-2015 by Pearson Education, Inc.
All Rights Reserved.

1.9 A Typical Java Development
Environment (Cont.)

» Phase 2: Compiling a Java Program into Bytecodes

> Use the command javac (the Java compiler) to compile a
program. For example, to compile a program called
welcome. java, you’d type
- javac Welcome. java

> |If the program compiles, the compiler produces a .class file
called welcome. class that contains the compiled version.

©1992-2015 by Pearson Education, Inc.
All Rights Reserved.

Compiler creates bytecodes
and stores them on disk in a
file whose name ends

with .class

Phase 2: Compile Compiler

Fig. 1.7 | Typical Java development environment—compilation phase.

©1992-2015 by Pearson Education, Inc.
All Rights Reserved.

1.9 A Typical Java Development
Environment (Cont.)

» Java compiler translates Java source code into bytecodes
that represent the tasks to execute.

» The Java Virtual Machine (JVM)—a part of the JDK and
the foundation of the Java platform—executes bytecodes.

» Virtual machine (VM)—a software application that
simulates a computer

o Hides the underlying operating system and hardware from the
programs that interact with it.

» If the same VM is implemented on many computer
platforms, applications written for that type of VM can be
used on all those platforms.

©1992-2015 by Pearson Education, Inc.
All Rights Reserved.

1.9 A Typical Java Development
Environment (Cont.)

» Bytecode Instructions are platform independent

» Bytecodes are portable

> The same bytecode instructions can execute on any platform
containing a JVM that understands the version of Java in which the
bytecode instructions were compiled.

» The JVM is invoked by the java command. For example, to
execute a Java application called we 1come, you’d type the
command

- java Welcome

©1992-2015 by Pearson Education, Inc.
All Rights Reserved.

1.9 A Typical Java Development
Environment (Cont.)

» Phase 3: Loading a Program into Memory

> The JVM places the program in memory to execute it—this is
known as loading.

> Class loader takes the . class files containing the program’s
bytecodes and transfers them to primary memory.

> Also loads any of the . class files provided by Java that your
program uses.

» The . class files can be loaded from a disk on your
system or over a network.

©1992-2015 by Pearson Education, Inc.
All Rights Reserved.

Primary 3

Memory
Class loader reads
.class files

| containing bytecodes
from disk and puts
those bytecodes in
memory

Phase 3: Load Class Loader >

/

Fig. 1.8 | Typical Java development environment—Iloading phase.

©1992-2015 by Pearson Education, Inc.
All Rights Reserved.

1.9 A Typical Java Development
Environment (Cont.)

» Phase 4: Bytecode Verification

> As the classes are loaded, the bytecode verifier examines their
bytecodes

> Ensures that they’re valid and do not violate Java’s security
restrictions.

» Java enforces strong security to make sure that Java
programs arriving over the network do not damage
your files or your system (as computer viruses and
worms might).

©1992-2015 by Pearson Education, Inc.
All Rights Reserved.

Primary)
Memory

Bytecode verifier
confirms that all

~ bytecodes are valid and
do not violate Java’s
security restrictions

Phase 4: Verify Bytecode Verifier

J

Fig. 1.9 | Typical Java development environment—verification phase.

©1992-2015 by Pearson Education, Inc.
All Rights Reserved.

1.9 A Typical Java Development
Environment (Cont.)

» Phase 5: Execution
> The JVM executes the program’s bytecodes.

> JVMs typically execute bytecodes using a combination of
Interpretation and so-called just-in-time (JIT) compilation.
> Analyzes the bytecodes as they’re interpreted

o Ajust-in-time (JIT) compiler—such as Oracle’s Java HotSpot™

compiler—translates the bytecodes into the underlying computer’s
machine language.

©1992-2015 by Pearson Education, Inc.
All Rights Reserved.

1.9 A Typical Java Development
Environment (Cont.)

> When the JVM encounters these compiled parts again, the
faster machine-language code executes.

> Java programs go through two compilation phases
> One In which source code is translated into bytecodes (for

portability across JVMs on different computer platforms)
and

> A second In which, during execution, the bytecodes are
translated into machine language for the actual computer on
which the program executes.

©1992-2015 by Pearson Education, Inc.
All Rights Reserved.

 To execute the program, the
JVM reads bytecodes and
just-in-time (JIT) compiles

> (i.e., translates) them into a

> language that the computer
can understand. As the
program executes, it may store
data values in primary

Z memaory.

Primary
Memory

Phase 5: Execute

Java Virtual Machine (JVM)

Fig. 1.10 | Typical Java development environment—execution phase.

©1992-2015 by Pearson Education, Inc.
All Rights Reserved.

Common Programming Error 1.1

Errors such as division by zero occur as a program runs,
so they re called runtime errors or execution-time er-
rors. Fatal runtime errors cause programs to terminate
immediately without having successfully performed their
jobs. Nonfatal runtime errors allow programs to run to
completion, often producing incorrect results.

©1992-2015 by Pearson Education, Inc.
All Rights Reserved.

<

1.10 Test-Driving a Java Application

» Checking your setup. Read the Before You Begin
section to confirm that you’ve set up Java properly on
your computer, that you’ve copied the book’s examples
to your hard drive and that you know how to open a
command window on your system.

©1992-2015 by Pearson Education, Inc.
All Rights Reserved.

a) Painter app running on Window s

|<: Painter +— Close button
E==ECH
Filled | Unda M Clear j-‘______ Clear the

entire drawing

Select a color ——

Select a shape —

specify =
whether a ™~ Undo the last
rectangle or - shape that. was
oval 15 filled addex_i to the
with color (0,0) drawing

b) Painter app running on Linux.

Close
biutton

[Black |v] | Line |v] [Filled [Undo J l Clear J

(0,0}

Fig. 1.11 | Painter app executing in Windows 7, Linwc and OS X, (Part | of 2.)

©1992-2015 by Pearson Education, Inc.
All Rights Reserved.

) Painter app running on O5 X

Close

button —® 00 Painter

. Black $] | Line D Filled Undo Clear

10,0}

Fig. 1.11 | Painter app executing in Windows 7, Linuwc and OS X, (Part 2 of 2.)

©1992-2015 by Pearson Education, Inc.
All Rights Reserved.

|£: Painter

(435,295)

(o O |

| Yellow

) (o

'v| W Filled | Undo | | Clear |

Fig. 1.12 | Drawing a filled yellow oval for the face,

©1992-2015 by Pearson Education, Inc.
All Rights Reserved.

|) Painter EI @

Blue v||oval |v| @ Filled | Undo || Clear |

(371,131)

Fig. 1.13 | Drawing blue eyes,

©1992-2015 by Pearson Education, Inc.
All Rights Reserved.

|) Painter EI@

| Magenta .v] [D'u'al .v] [+ Filledl Unda J [Clear J

”’645

(250,191)

Fig. 1.14 | Drawing black eyebrows and a nose,

©1992-2015 by Pearson Education, Inc.
All Rights Reserved.

|) Painter EI

|Magenta || [oval |v| (/] Filled | Undo | | Clear |

(435,169)

Fig. 1.15 | Drawing a magenta mouth.

©1992-2015 by Pearson Education, Inc.
All Rights Reserved.

|) Painter EI @

|vellow || |oval v| (] Filled | Unda | | Clear |

(328,252)

Fig. 1.16 | Drawing a yellow oval on the mouth to make a smile.

©1992-2015 by Pearson Education, Inc.
All Rights Reserved.

1.11 Internet and the World Wide Web

» In the late 1960s, ARPA—the Advanced Research
Projects Agency of the Department of Defense—rolled
out plans to network the main computer systems of
approximately a dozen ARPA-funded universities and
research institutions.

» ARPA implemented what quickly became known as the
ARPAnNet, the precursor of today’s Internet.

» Its main benefit proved to be the capability for quick
and easy communication via e-mail.

» This is true even on today’s Internet, with e-mail,

Instant messaging, file transfer and social media such

as Facebook and Twitter, enabling billions of people

worldwide to communicate quickly and easily.

©1992-2015 by Pearson Education, Inc.
All Rights Reserved.

1.11 Internet and the World Wide Web
(Cont.)

» The protocol (set of rules) for communicating over the
ARPAnet became known as the Transmission Control
Protocol (TCP).

» TCP ensured that messages, consisting of sequentially
numbered pieces called packets, were properly routed
from sender to receiver, arrived intact and were
assembled In the correct order.

©1992-2015 by Pearson Education, Inc.
All Rights Reserved.

1.11.1 The Internet: A Network of
Networks

» In parallel with the early evolution of the Internet,
organizations worldwide were implementing their own
networks for both intraorganization (that is, within an
organization) and interorganization (that is, between
organizations) communication.

» One challenge was to enable these different networks to
communicate with each other.

» The Internet Protocol (IP) created a true “network of
networks,” the current architecture of the Internet.

» The combined set of protocols is now called TCP/IP.

©1992-2015 by Pearson Education, Inc.
All Rights Reserved.

1.11.1 The Internet: A Network of
Networks (Cont.)
» Businesses rapidly realized that by using the Internet,

they could improve their operations and offer new and
better services to their clients.

» This generated fierce competition among
communications carriers and hardware and software
suppliers to meet the increased infrastructure demand.

» As a result, bandwidth—the information-carrying
capacity of communications lines—on the Internet has
Increased tremendously, while hardware costs have
plummeted.

©1992-2015 by Pearson Education, Inc.
All Rights Reserved.

1.11.2 The World Wide Web: Making the
Internet User-Friendly

» The World Wide Web (simply called “the web”) is a
collection of hardware and software associated with the
Internet that allows computer users to locate and view
multimedia-based documents (documents with various
combinations of text, graphics, animations, audios and

videos) on almost any subject.

©1992-2015 by Pearson Education, Inc.
All Rights Reserved.

1.11.2 The World Wide Web: Making the
Internet User-Friendly (Cont.)

» In 1989, Tim Berners-Lee of CERN (the European
Organization for Nuclear Research) began to develop a
technology for sharing information via “hyperlinked”
text documents.

» Berners-Lee called his invention the HyperText
Markup Language (HTML).

» He also wrote communication protocols such as

HyperText Transfer Protocol (HTTP) to form the

packbone of his new hypertext information system,
which he referred to as the World Wide Web.

©1992-2015 by Pearson Education, Inc.
All Rights Reserved.

1.11.2 The World Wide Web: Making the
Internet User-Friendly (Cont.)

» In 1994, Berners-Lee founded the World Wide Web
Consortium (W3C), devoted to developing web
technologies.

» One of the W3C’s goals 1s to make the web accessible to
everyone regardless of disabilities, language or culture.

©1992-2015 by Pearson Education, Inc.
All Rights Reserved.

1.11.3 Web Services and Mashups

» Mashup Is an applications-development methodology
In which you can rapidly develop powerful software
applications by combining (often free) complementary
web services and other forms of information feeds.

©1992-2015 by Pearson Education, Inc.
All Rights Reserved.

Google Maps

Mapping services

Twitter Microblogging

YouTube Video search

Facebook Social networking
Instagram Photo sharing

Foursquare Mobile check-in

LinkedIn Social networking for business
Groupon Social commerce

Netflix Movie rentals

eBay Internet auctions
Wikipedia Collaborative encyclopedia
PayPal Payments

Last.fm Internet radio

Amazon eCommerce Shopping for books and many other products

Salesforce.com Customer Relationship Management (CRM)

Fig. 1.17 | Some popular web services (www. programmableweb. com/
apis/directory/1?sort=mashups). (Part | of 2.)

©1992-2015 by Pearson Education, Inc.
All Rights Reserved.

Web services source How it’s used

Skype Internet telephony
Microsoft Bing Search

Flickr Photo sharing
Zillow Real-estate pricing
Yahoo Search Search
WeatherBug Weather

Fig. 1.17 | Some popular web services (www. programmableweb. com/
apis/directory/1?sort=mashups). (Part 2 of 2.)

©1992-2015 by Pearson Education, Inc.
All Rights Reserved.

1.11.4 Ajax

» Ajax helps Internet-based applications perform like desktop
applications

» A difficult task, given that such applications suffer
transmission delays as data is shuttled back and forth

between your computer and server computers on the
Internet.

» Applications like Google Maps have used Ajax to achieve
excellent performance and approach the look-and-feel of
desktop applications.

©1992-2015 by Pearson Education, Inc.
All Rights Reserved.

1.11.5 The Internet of Things

» The Internet is no longer just a network of computers—it’s
an Internet of Things.

» Athing is any object with an IP address and the ability to
send data automatically over a network:
> a car with a transponder for paying tolls
> a heart monitor implanted in a human
o a smart meter that reports energy usage
> mobile apps that can track your movement and location

o smart thermostats that adjust room temperatures based on weather
forecasts and activity in the home.

©1992-2015 by Pearson Education, Inc.
All Rights Reserved.

1.12 Software Technologies

Agile software Agile software development is a set of methodologies that try to get soft-

development ware implemented faster and using fewer resources. Check out the Agile
Alliance (www.agilealliance.org) and the Agile Manifesto
(ww.agilemanifesto.org).

Refactoring Refactoring involves reworking programs to make them clearer and easier
to maintain while preserving their correctness and functionality. I¢’s
widely employed with agile development methodologies. Many IDEs

contain built-in refactoring tools to do major portions of the reworking
automatically.

Design patterns Design patterns are proven architectures for constructing flexible and
maintainable object-oriented software. The field of design patterns tries
to enumerate those recurring patterns, encouraging software designers to
reuse them to develop better-quality software using less time, money and
effort. We discuss Java design patterns in the online Appendix N.

Fig. 1.18 | Software technologies. (Part | of 4.)

©1992-2015 by Pearson Education, Inc.
All Rights Reserved.

1.12 Software Technologies

LAMP LAMP is an acronym for the open-source technologies that many devel-
opers use to build web applications—it stands for Linux, Apache, MySQL
and PHP (or Perl or Python—two other scripting languages). MySQL is
an open-source database management system. PHP is the most popular
open-source server-side “scripting” language for developing web applica-
tions. Apache is the most popular web server software. The equivalent for
Windows development is WAMP—Windows, Apache, MySQL and PHP.

Fig. 1.18 | Software technologies. (Part 2 of 4.)

©1992-2015 by Pearson Education, Inc.
All Rights Reserved.

1.12 Software Technologies

Software as a Software has generally been viewed as a product; most software still is

Service (SaaS) offered this way. If you want to run an application, you buy a software
package from a software vendor—often a CD, DVD or web download.
You then install that software on your computer and run it as needed. As
new versions appear, you upgrade your software, often at considerable
cost in time and money. This process can become cumbersome for orga-
nizations that must maintain tens of thousands of systems on a diverse
array of computer equipment. With Software as a Service (Saa$S), the
software runs on servers elsewhere on the Internet. When that server is
updated, all clients worldwide see the new capabilities—no local installa-
tion is needed. You access the service through a browser. Browsers are
quite portable, so you can run the same applications on a wide variety of
computers from anywhere in the world. Salesforce.com, Google, and
Microsoft’s Office Live and Windows Live all offer SaaS.

Platform as a Platform as a Service (PaaS) provides a computing platform for develop-

Service (PaaS) ing and running applications as a service over the web, rather than install-
ing the tools on your computer. Some Paa$S providers are Google App
Engine, Amazon EC2 and Windows Azure™,

Fig. 1.18 | Software technologies. (Part 3 of 4.)

©1992-2015 by Pearson Education, Inc.
All Rights Reserved.

1.12 Software Technologies

Cloud

computing

Software
Development
Kit (SDK)

Saa$ and PaaS are examples of cloud computing. You can use software
and data stored in the “cloud”—i.e., accessed on remote computers (or
servers) via the Internet and available on demand—rather than having it
stored on your desktop, notebook computer or mobile device. This allows
you to increase or decrease computing resources to meet your needs at
any given time, which is more cost effective than purchasing hardware to
provide enough storage and processing power to meet occasional peak
demands. Cloud computing also saves money by shifting the burden of
managing these apps to the service provider.

Software Development Kits (SDKs) include the tools and documenta-
tion developers use to program applications. For example, you'll use the
Java Development Kit (JDK) to build and run Java applications.

Fig. 1.18 | Software technologies. (Part 4 of 4.)

©1992-2015 by Pearson Education, Inc.
All Rights Reserved.

1.12

Alpha

Beta

Release
candidates

Final release

Continuous
beta

Software Technologies

Alpha software is the earliest release of a software product that’s still under
active development. Alpha versions are often buggy, incomplete and unstable
and are released to a relatively small number of developers for testing new
features, getting early feedback, etc.

Beta versions are released to a larger number of developers later in the devel-
opment process after most major bugs have been fixed and new features are
nearly complete. Beta software is more stable, but still subject to change.

Release candidates are generally feature complete, (mostly) bug free and ready
for use by the community, which provides a diverse testing environment—
the software is used on different systems, with varying constraints and for a
variety of purposes.

Any bugs that appear in the release candidate are corrected, and eventually
the final product is released to the general public. Software companies often
distribute incremental updates over the Internet.

Software that’s developed using this approach (for example, Google search or
Gmail) generally does not have version numbers. It’s hosted in the coud (not
installed on your computer) and is constantly evolving so that users always
have the latest version.

Fig. 1.19 | Software product-release terminology.

©1992-2015 by Pearson Education, Inc.
All Rights Reserved.

1.13 Keeping Up-to-Date with Information

Technologies

AllThingsD

Bloomberg BusinessWeek
CNET

Communications of the ACM
Computerworld

Engadget

eWeek

Fast Company

Fortune

GigaOM

Hacker News

IEEE Computer Magazine
InfoWorld

Mashable

PCWorld

SD Times

allthingsd.com

www.businessweek.com

news.cnet.com

cacm.acm.org

www. computerworld. com

www.engadget. com

www . eweel . com

www. Fastcompany

.com/

money.cnn.com/magazines/fortune

gigaom.com

news .ycombinator.com

www. computer.org/portal /web/computingnow/computer

www. infoworld. com

mashable.com
www . pcworld. com

www.sdtimes.com

Fig. 1.20 | Technical and business publications. (Part I of 2.)

©1992-2015 by Pearson Education, Inc.
All Rights Reserved.

1.13 Keeping Up-to-Date with Information
Technologies

Publication URL

Slashdot slashdot.org/
Technology Review technologyreview. com
Techcrunch techcrunch. com

The Next Web thenextweb . com

The Verge waww . theverge. com
Wired www.wired. com

Fig. 1.20 | Technical and business publications. (Part 2 of 2.)

©1992-2015 by Pearson Education, Inc.
All Rights Reserved.

	Slide 1: Chapter 1 Introduction to Computers, the Internet and Java
	Slide 2
	Slide 3
	Slide 4
	Slide 5: 1.1 Introduction
	Slide 6: 1.1 Introduction (Cont.)
	Slide 7
	Slide 8: 1.1 Introduction (Cont.)
	Slide 9: 1.1 Introduction (Cont.)
	Slide 10: 1.1 Introduction (Cont.)
	Slide 11: 1.2 Hardware and Software
	Slide 12: 1.2 Computers: Hardware and Software (Cont.)
	Slide 13: 1.2 Computers: Hardware and Software (Cont.)
	Slide 14: 1.2 .1 Moore’s Law
	Slide 15: 1.2 .1 Moore’s Law (Cont.)
	Slide 16: 1.2.2 Computer Organization
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22: 1.3 Data Hierarchy
	Slide 23
	Slide 24: 1.3 Data Hierarchy (Cont.)
	Slide 25: 1.3 Data Hierarchy (Cont.)
	Slide 26: 1.3 Data Hierarchy (Cont.)
	Slide 27: 1.3 Data Hierarchy (Cont.)
	Slide 28: 1.3 Data Hierarchy (Cont.)
	Slide 29: 1.3 Data Hierarchy (Cont.)
	Slide 30: 1.3 Data Hierarchy (Cont.)
	Slide 31: 1.3 Data Hierarchy (Cont.)
	Slide 32
	Slide 33: 1.4 Machine Languages, Assembly Languages and High-Level Languages
	Slide 34: 1.4 Machine Languages, Assembly Languages and High-Level Languages (Cont.)
	Slide 35: 1.4 Machine Languages, Assembly Languages and High-Level Languages (Cont.)
	Slide 36: 1.5 Introduction to Object Technology
	Slide 37: 1.5.1 The Automobile as an Object
	Slide 38: 1.5.1 The Automobile as an Object (Cont.)
	Slide 39: 1.5.2 Methods and Classes
	Slide 40: 1.5.3 Instantiation
	Slide 41: 1.5.4 Reuse
	Slide 42
	Slide 43: 1.5.5 Messages and Method Calls
	Slide 44: 1.5.6 Attributes and Instance Variables
	Slide 45: 1.5.6 Attributes and Instance Variables (Cont.)
	Slide 46: 1.5.7 Encapsulation
	Slide 47: 1.5.8 Inheritance
	Slide 48: 1.5.9 Interfaces
	Slide 49: 1.5.9 Interfaces (Cont.)
	Slide 50: 1.5.10 Object-Oriented Analysis and Design (OOAD)
	Slide 51: 1.5.10 Object-Oriented Analysis and Design (OOAD) (Cont.)
	Slide 52: 1.5.11 The UML (Unified Modeling Language)
	Slide 53: 1.6 Operating Systems
	Slide 54: 1.6.1 Windows—A Proprietary Operating System
	Slide 55: 1.6.1 Windows—A Proprietary Operating System (Cont.)
	Slide 56: 1.6.2 Linux—An Open Source Operating System
	Slide 57: 1.6.2 Linux—An Open Source Operating System (Cont.)
	Slide 58: 1.6.3 Android
	Slide 59: 1.6.3 Android (Cont.)
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64: 1.8 Java
	Slide 65: 1.8 Java (Cont.)
	Slide 66: 1.8 Java (Cont.)
	Slide 67
	Slide 68: 1.9 A Typical Java Development Environment
	Slide 69: 1.9 A Typical Java Development Environment (Cont.)
	Slide 70
	Slide 71: 1.9 A Typical Java Development Environment (Cont.)
	Slide 72: 1.9 Java and a Typical Java Development Environment (Cont.)
	Slide 73: 1.9 A Typical Java Development Environment (Cont.)
	Slide 74
	Slide 75: 1.9 A Typical Java Development Environment (Cont.)
	Slide 76: 1.9 A Typical Java Development Environment (Cont.)
	Slide 77: 1.9 A Typical Java Development Environment (Cont.)
	Slide 78
	Slide 79: 1.9 A Typical Java Development Environment (Cont.)
	Slide 80
	Slide 81: 1.9 A Typical Java Development Environment (Cont.)
	Slide 82: 1.9 A Typical Java Development Environment (Cont.)
	Slide 83
	Slide 84
	Slide 85: 1.10 Test-Driving a Java Application
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91
	Slide 92
	Slide 93: 1.11 Internet and the World Wide Web
	Slide 94: 1.11 Internet and the World Wide Web (Cont.)
	Slide 95: 1.11.1 The Internet: A Network of Networks
	Slide 96: 1.11.1 The Internet: A Network of Networks (Cont.)
	Slide 97: 1.11.2 The World Wide Web: Making the Internet User-Friendly
	Slide 98: 1.11.2 The World Wide Web: Making the Internet User-Friendly (Cont.)
	Slide 99: 1.11.2 The World Wide Web: Making the Internet User-Friendly (Cont.)
	Slide 100: 1.11.3 Web Services and Mashups
	Slide 101
	Slide 102
	Slide 103: 1.11.4 Ajax
	Slide 104: 1.11.5 The Internet of Things
	Slide 105
	Slide 106
	Slide 107
	Slide 108
	Slide 109
	Slide 110
	Slide 111

